
would not pass through insert membranes, 12 control 
wells were prepared without postnatal tissue. At 20 to 
23 DIV, cwer slips were tested for trypan blue exclu- 
sion. No viable cells were found to have passed 
through insert membranes. Postnatal cells were 
patch-clamped at 20 to 27 DIV. Those generating 
APs were injected with 0.2% dextran fluorescein (Mo- 
lecular Probes; -500 PA, 10 Hz, 30 min) for later iden- 
tification. Then cells were fixed, treated with 2N HCI 
(37°C for 30 min), 0.1 M borate buffer (25°C for 10 
min), and immunoreacted with sheep anti-BrdU 

(1 :100; Fiigerald), followed by hodamine-conjugat- 
ed secondary antibody (1 : 40; Jackson Immuno- 
Research). Fluorescein-filled cells were identified with 
confocal microscopy and evaluated for BrdU-immu- 
noreactivity by two independent 0bse~er~.  
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Controlof lnflammation,CytokineExpression, Mendelianfrequencyandsize-However, 

and Germinal Center Formation by BCL-6 beginning a few days to 3 weeks after birth, 
BCL-6-I- mice displayed variable degrees 
of growth retardation and ill health.   bout 

Alexander L. Dent, Arthur L. Shaffer, Xin Yu, David Allman, half of the BCL-6-1- mice were sickly and 
Louis M. Staudt* died before 5 weeks of age. Roughly 20% of 

BCL-6-I- mice appeared grossly healthy 
The gene encoding the BCLB transcriptional repressor is frequently translocated and and were similar to wild-type littermates 
mutated in diffuse large cell lymphoma. Mice with a disrupted BCL-6 gene developed with respect to flow cytometric analysis of 
myocarditis and pulmonary vasculitis, had no germinal centers, and had increased bone marrow, splenic, and thymic lympho- 
expression of T helper cell type 2 cytokines. The BCL-6 DNA recognition motif resembled cyte populations (1 2). 
sites bound by the STAT (signal transducers and activators of transcription) transcription Pathological examination of the BCL- 
factors, which mediate cytokine signaling. BCL-6 could repress interleukin-4 (IL-4)- 6-I- mice revealed a prominent myocarditis 
induced transcription when bound to a site recognized by the IL-4-responsive tran- and pulmonary vasculitis that probably con- 
scription factor State. Thus, dysregulation of STAT-responsive genes may underlie the tributed to the animals' illness and death. 
inflammatory disease in BCLS-deficient miceand participate in lymphoid malignancies. Myocarditis was observed in 82% of the 

BCL-6-1- mice examined, and 73% of the 
mice had evidence of pulmonary vasculitis 
(Fig. 2), but neither pathology was observed 

Diffuse large cell lymphoma is a common DNA (Fig. 1B). No BCL-6 protein derived in wild-type littermates. The cellular infil- 
and aggressive subtype of B cell non- from the targeted locus could be detected in trates in the hearts and lungs were composed 
Hodgkin's lymphoma that frequently harbors either heterozygous ( +/-) or homozygous of mononuclear cells and polymorphonucle- 
genetic alterations in the BCL-6 gene: Up to (-/-) BCL-6 mutant mice (1 1) (Fig. 1C). ar cells, virtually all of which were eosino- 
45% of these lymphomas contain BCL-6 BCL-6+/- mice appeared normal and phils (Fig. 2). Although inflammatory dis- 
translocations and 73% have mutations in a BCL-6-I- mice were born with a normal ease was generally correlated with ill health 
putative 5' regulatory region of the gene (1). 
Because these genetic changes invariably 
spare the BCL-6 coding region, the contri- A B C 
bution of BCL-6 to lymphomagenesis is like- 5' w 3' H = 4 k b  +I- -/- -- ly to be a subversion of its role in nontrans- 
formed cells. Consistent with this possibility, 
BCL-6 protein is expressed at the highest 

A A 
levels in germinal center B lymphocytes, k~ 
which are the cells from which diffuse large - 200 
cell lymphomas may arise (2-5). BCL-6 is a 
potent transcriptional repressor, but its nat- 
ural target genes have not been identified B 

- 97 

(6-8). To determine the normal biological - 68 
function of BCL-6, we disrupted BCL-6 in 
the mouse germ line. 1 2 3 3  

Using embryonic stem cell methodology 
(9), we deleted a portion of the BCL-6 locus 
encoding the zinc finger DNA binding do- 
main of the protein (10) (Fig. 1A) and 
confirmed the structure of the mutant locus 
by Southern (DNA) blot analysis of tail 
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ATG * 30 kb Fig. 1. Disruption of the BCL-6 gene. (A) Partial 
14 kb 16 kb 

4 - - map of the mouse BCL-6 locus (top), structure of 
the BCL-6 targeting construct (middle), and the 

targeted BCL-6 allele (bottom). Mapped exons corresponding to the disrupted zinc finger domains are 
indicated by black boxes; the unmapped coding region is indicated by a grey box. The mutated BCL-6 
locus would encode a truncated protein in which four of the six BCL-6 zinc fingers are disrupted and which 
cannot bind DNA in vitro (16). Restriction enzyme sites: B, Barn HI; E, Eco RI; S, Spe I; X, Xho I. neo = 

PGK-neomycinr cassette. (6) Southern blot analysis of mice derived from intercrossing BCL-6+/- mice. Barn 
HI-digested tail DNAfrom wild-type mice (+/+) and mice heterozygous (+/-) or homozygous (-/-)for the 
disrupted BCL-6 allele was analyzed with a genomic flanking probe [probe 2 in (A)]. The structure of the 
targeted BCL-6 allele was also confirmed using probe 1 (A). (C) Analysis of wild-type and mutated BCL-6 
protein expression. Spleen cells from immunized BCL-6+/- and BCL-6-/- mice were assayed for BCL-6 
protein expression by immunoprecipitation followed by protein immunoblotting (7 1). Wild-type BCL-6 mi- 
grates at 90 to 100 kD (2-5) (lane 2); the truncated BCL-6 protein encoded by the targeted BCL-6 allele, 
predicted to be 12 kD smaller than the wild-type protein, was not detectable. ctl, control. 
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Ag. 4. Cytokine mRNA expression in BCL-6-/- mice. (A) 

and wild-type mice from the same litter were analyzed 
(litter 1, lanes 1 and 2; litter 2, lanes 3 and 4; litter 3, lanes 

L32 5 through 7). Assays are representative of results from 
BCL-6-'- lymph nodes (n = 6), wild-type lymph nodes (n 

PDH = 7), and BCL-6-'- pulmonary inflammatory cells (n = 
2). A Storm phosphoimager system (Mdecuhr Dynam- 

1 2  3 4  5 6  7 ics) was used to quantiite the pixel intmsity of each Fig. 2. Histology of heart and lungs from BCL- cytokine band, which was divided by the sum of the 
6-/- mice. (A) low-power view- he- intensitii in the control L32 and glyceraldehyde phosphate dehydrogenase ( W D H )  bands in the 
matox~lin and eosin stain. Inset: high-~owerview, same lane for normalization. The ratio of cytokine expression in each BCL-6-'- mouse rdative to its 
Giemsa (B) P"lmOnaryvasculitis~ low-power wild-type littermate control is shown at the left of each cytokine band. nd, not determined. (B) ELISA's 

hematoxylin and eosin Inset: high of 11-4, IL-5, IL-13, and IFN-y produced after anti-CD3 activation of T cells from BCL-6-I- or wild-type 
power-view, Giemsa stain. (+/+) mice. Cultures of inflammatory cells from hearts and lungs of BCL-6-/- mice (n = 3) were 

compared with a culture of hematopoietic cells pooled from the hearts and lungs of 10 wild-type control 
mice and tested. The average cytokine concentration in the three BCL-6-/- cultures is presented, 

in these animals, some relatively healthy C0.1 = cytokine concentration was below the sensitii limit of the assay (0.1 ng/ml). 
BCL-66- mice had histological evidence of 
myocarditis or pulmonary vasculitis or both. 
Inflammatory disease was not detected in the bodies to immunoglobulin D (IgD) to iden- consisting largely of eosinophils (1 6). 
gut, kidneys, or skin of BCL-66- mice. tify non-germinal center B cells (14, 15) We measured the ability of the BCL-66- 

A second prominent phenotype of BCL- (Fig. 3). Spleens from wild-type immunized mice to make antibodies to TNP in response 
6-I- mice was revealed when we immu- mice (Fig. 3B) showed a large increase in to TNP-KLH (13). The concentrations of 
nized the healthiest BCL-6-I- mice with the number of germinal centers as com- primary IgM antibodies to TNP in BCL- 
the T cell-dependent antigen trinitrophe- pared with unimmunized mice (Fig. 3A). 6-1- mice and wild-type control mice were 
nyl-conjugated keyhole limpet hemocyanin Although the spleens of unimmunized comparable, whereas BCL-6-1- mice were 
(TNP-KLH) (13). The germinal center im- BCL-6-I- mice had normal primary folli- severely impaired in their ability to make 
mune response was evaluated by immuno- cles (Fig. 3C), immunized BCL-6-I- mice secondary IgG antibodies to TNP of all sub- 
histochemical staining (13) of spleen sec- did not develop germinal centers (Fig. 3D). classes (Fig. 3E). In contrast, immunization 
tions with peanut agglutinin (PNA) to Rather, the BCL-6-1- spleens were en- of BCL-6-I- mice with the T cell-indepen- 
identify germinal center B cells and anti- larged by a granulocytic infiltrate (Fig. 3D) dent antigen TNP-Ficoll elicited IgM and 

Fig. 3. Analysis of immune responses 
of BCL-6-/- mice. Spleen sections 
were stained with PNA (red) to reveal 
germinal center cells and with antibod- 
ies to IgD (blue) to reveal B cell follicles. 
The intensely staining brown cells in (C) 
and (D) are granulocytes that have high 
endogenous peroxidase activity. (A) 
Wild-type unimmunized littermate. (8) 
Wild-type littermate immunized with 
TNP-KLH. (C) Unimmunized BCL-6-/- 
mouse. (D) BCL-6-/- mouse immu- 
nized with TNP-KLH. (E) Titers of anti- 
bodies to TNP of various lg subclasses 
after immunization with TNP-KLH (left 
panel) or TNP-Ficoll (right panel) (73). 
The log, titers from three BCL-6-/- or 
wild-type mice are shown with a bar 
re~resentina the mean. Unimmunized 
mice generally had anti-TNP titers of 1 log,. 
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IgG3 anti-TNP titers that were indistin- up-regulates CD23 in response to IL-4 treat- The BCL-6-I- mouse revealed BCL-6 as a 
guishable from those of wild-type mice (Fig. ment (24). WI-LZ-NS cells, which lack critical regulatory factor that determines the 
3E). The selective defect of BCL-6-I- mice BCL-6 (3, were transiently transfected with outcome of the immune response. In the ab- 
in generating an IgG antibody response to a expression vectors for BCL-6 and mouse sence of BCL-6, germinal centers and T cell- 
T cell-dependent antigen is in keeping with ICAM, a cell surface protein that served as a dependent antibody responses were not gen- 
the inability of these mice to mount a ger- marker for transfected cells (28). After trans- erated, whereas antibody responses to a T 
minal center reaction. fection, IL-4 induced CD23 expression in the cell-independent antigen were normal. In 

To understand further the pathogenesis of absence of BCL-6, but addition of BCL-6 contrast to some other mouse mutants that 
the inflammatory disease in BCL-6-I- mice, decreased CD23 expression and blocked its lack germinal centers (30), the architecture of 
we immunophenotyped the inflammatory IL-4 inducibility (Fig. 5C). These data suggest secondary lymphoid organs in BCL-6-I- mice 
cells from the lungs of mice with severe pul- that CD23 may be a natural target gene for appeared histologically normal (Fig. 3C), and 
monary vasculitis and detected monocytes/ BCL-6 repression. Consistent with this no- B and T cells proliferated normally in re- 
macrophages, granulocytes, and CD4+ T lym- tion, germinal center B cells, which express sponse to a variety of mitogenic stimuli in 
phocytes (1 6). To test whether T cells from BCL-6 protein, do not express CD23 (29) vitro (31 ) and had normal expression of sev- 
BCL-66- mice might abnormally express cy- even though other activated B cells do. More eral molecules that have been implicated in 
tokines, we activated T cells in vitro with generally, these data show that BCL-6 may germinal center formation (12). Together 
antibodies to the CD3 component of the T modify the outcome of IL-4 signaling in cells with the selective expression of BCL-6 in all 
cell receptor and monitored the expression of that express BCL-6. germinal center B cells and in a subset of 
cytokine mRNAs with a ribonuclease (RNase) 
protection assay (17) (Fig. 4A). BCL-66- 
lymph node cultures had elevated interleu- Fig. 5. Repression A 9 B 
kin-4 (IL-4), IL-5, and IL-13 mRNA levels by BCL-6 of IL-4-jn- 8GL 15- 
when compared to cultures from wild-type lit- duced expression of Antibody: - - - ,$ s 1-11-4 
termate controls. Notably, BCL-6-I- mice CD23. (A) Binding of 

Protein: - Luc BCL-6 + I L - 4  
and their littermate controls expressed inter- BCL-6 and Stat6 to - 
feron-y (IFN-y) mRNA comparably (Fig. 4A), the IL-4-cesp0nsive 

- -  ..... a m = 10- 
K 

and IL-12 p40 mRNA was not detected in ~ r ~ ~ o ~ e ~ ~ ~ ~ ~ , " ~  =I 

these cultures (1 6). Activation of T cells from binding assays were E UI .- 
pulmonary inflammatory lesions yielded ele- performed with the A 

- 
vated IL-4, IL-5, IL-6, and IL-13 mRNA, with of a radiolabeled BCL-6 c x .- N 5-  
low Or no expression of IL-2, IL-9, IL-10, IL- CD23b binding site 
15, and IFN-y mRNAs (Fig. 4A, lane 7). and in vitro-translated o 
C~tokine enzyme-linked immunosorbant as- BCL-6 (lanes 3 1 2 3 4 5  z 

says (ELISAs) revealed increased ~roduction through 5), luciferase 
of IL-4, IL-5, and IL-13 in cultures of BCL- (LUC) (lane 2), m~clea~ 6 (:o I " ,  ( 3  L I ~ :  (10 ug) . @  6-I- inflammatory cells without a comparable from un- 

stimulated WI-L2-NS Antibody: - - NS pr* -Stat6 -Stai6 
increase in IFN-y production (Fig. 4B). cells (lane 6), or WI- 

IL-4, IL-5, IL-6, and IL-13 are all cyto- L2-NScellsstimulated 
11-4: - + + + 

r)rr  .4 
C 

kines that are produced primarily by the T with ILe4 (lanes 
helper cell type 2 (TH2) subset of T lympho- through 9). Antibodies 
cytes, whereas IFN-y is a hallmark of TH1 to BCL-6 (lane 5) or StatG- 

0 cells (18, 19). Development of TH2 cells is Stat6 (lane 9) or nor- 
6 / 0 9  

dependent on the Stat6 transcription factor, ma1 rabbit serum (NS) 
which is activated during I L - ~  signaling were included in the indicated reactions. (B) Repression by 
(20). signal transducers and activators of BCL-6 of an IL-4-responsive reporter construct. NIH 3T3 

transcription (STAT) transcription factors cells were transfected with a luciferase reporter construct 
containing a multirnerized CD23b StatG/BCL-6 site, and, recognize the GAS motif (21)' which bears a in the indicated lanes, expression vectors for Stat 6 or 

previously to the BCL-6 or both. Transfected cells were either stimulated 
BCL-6 DNA binding site ( 6  8* (black bars) or not stimulated (grey bars) with IL-4. Data are 
22, 23). Gel mobility-shift DNA binding representative of three independent experiments. (c) 
assays (24) revealed that BCL-6 could bind Repression by BCL-6 of endogenous CD23 expression in a 
well to an IL-4-responsive GAS motif in the B cell line. WI-L2-NS cells were transfected with expression 
CD23b promoter (25) that was also a bind- vectors for BCL-6 (or empty control vector) and the mouse 
ing site for stat6 (26) ( ~ i ~ .  5 ~ ) .  we next ICAM cell surface protein as a marker of transfected cells. 

tested the ability of BCL-6 to repress tran- Transfected ICAM+ cells, treated or untreated with IL-4, 

scription through the CD23b GAS element were analyzed for cell surface expression of CD23 by flow Added IL-4 W +BCL-6 
cytornetry. Data are representative of three independent 

'loned Wstream of the thymidine experiments. Top panel: empty vector, no IL-4 (white 
promoter. In a transient transfectiOn assay histogram) versus empty vector, 411-4 (grey histogram). 
(27), BCL-6 modestly repressed basal Middle panel: BCL-6 expression vector, no IL-4 (black 
scription but blocked the Stat6-dependent histogram) versus empty vector, no IL-4 (white histo- 
activation of this reporter gene by IL-4 in a gram). Bottom panel: BCL-6 expression vector, +IL-4 
concentration-dependent manner (Fig. 5B). (black histogram) versus empty vector, +IL-4 (grey 

Finally, we investigated whether BCL-6 histogram). 10 11:. i 1 . .  101 

could inhibit expression of the endogenous 
b 

CD23 
CD23 gene in a B cell line, WI-L2-NS, which (CAM+ cells) 
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germinal center T cells (2-5), our findings 
define BCL-6 as an obligatory regulator of 
germinal center differentiation. 

The BCL-6 _ / _ mouse revealed a second 
and unanticipated function of BCL-6 in con­
trolling inflammation. Our data suggest that 
abnormal production of TH2-like lympho-
kines underlies the inflammation in BCL-
6_/ /_ mice. Consistent with this notion, the 
inflammatory heart and lung lesions showed 
pronounced eosinophilia that was likely due 
to local IL-5 production by TH2 cells. Further­
more, after immunization with TNP-KLH, se­
rum IgE levels were elevated in some BCL-
6 _ / _ mice, which is again a feature of TH2 
responses (19, 32). Because IL-4 signaling 
through Stat6 is required for the differentia­
tion of naive T cells into TH2 cells (20, 33), 
BCL-6 could conceivably modulate this pro­
cess by repressing Stat6-responsive genes. 
BCL-6 protein expression is high in germinal 
center T cells and in occasional T cells out­
side of the germinal center but is not detect­
able in resting or mitogenically activated T 
cells (2,4), which suggests that BCL-6 might 
specifically block TH2 differentiation during 
an antigen-driven immune response. Addi­
tionally, BCL-6 may regulate inflammation by 
modulating signaling by cytokines besides 
IL-4 because the BCL-6 DNA recognition 
motif resembles the binding sites for several 
STAT factors. 

The present results provide a framework 
for investigations into the molecular pa­
thology of diffuse large cell lymphoma 
caused by dysregulation of BCL-6 expres­
sion. The aberrant lymphokine regulation 
in BCL-6_ / _ mice and the potential of 
BCL-6 to repress transcription by binding 
to STAT sites raises the possibility that 
constitutive expression of BCL-6 in diffuse 
large cell lymphoma might influence the 
responsiveness of the lymphoma cells to 
extrinsically or intrinsically derived cyto­
kines. A full understanding of the abnormal 
proliferation of diffuse large cell lymphomas 
will only come from detailed knowledge of 
the role of BCL-6 in cytokine signaling and 
in the germinal center reaction. 
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