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The Product of the Proto-Oncogene c-cbl: A
Negative Regulator of the Syk Tyrosine Kinase

Yasuo Ota and Lawrence E. Samelson*

Engagement of antigen and immunoglobulin receptors on hematopoietic cells is directly
coupled to activation of nonreceptor protein tyrosine kinases (PTKs) that then phos-
phorylate critical intracellular substrates. In mast cells stimulated through the FceRI
receptor, activation of several PTKs including Syk leads to degranulation and release of
such mediators of the allergic response as histamine and serotonin. Regulation of Syk
function occurred through interaction with the Cbl protein, itself a PTK substrate in this
system. Overexpression of Cbl led to inhibition of Syk and suppression of serotonin
release from mast cells, demonstrating its ability to inhibit a nonreceptor tyrosine kinase.
Complex adaptor proteins such as Cbl can directly regulate the functions of the proteins

they bind.

Cbl, the product of the proto-oncogene
c-cbl, is a prominent substrate of the cellular
PTKs activated by multiple immune and
growth factor receptors (I, 2). Both the
retroviral gag-v-cbl fusion protein and a Cbl
protein containing a 17-amino acid inter-
nal deletion, which was isolated from the
70Z pre-B cell tumor line, are transforming
in fibroblast and pre-B cells (3). However,
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the function of the proto-oncogene product
remains undefined. The fact that it under-
goes tyrosine phosphorylation and that it
binds critical signaling molecules such as
PTKs and adaptor molecules such as Grb2
and the phosphoinositide-3 kinase subunit
p85, and the observation that SLI-1, a Cae-
norhabditis elegans homolog, has an inhibi-
tory effect on the Ras pathway suggest that
Cbl has a critical function in signal trans-
duction (4). Cbl is rapidly tyrosine phos-
phorylated in the rat basophilic leukemia
cell line RBL-2H3 after antigen-induced
aggregation of the FceRI receptor (5). In
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this system, long studied as a model of
allergen-induced mast cell degranulation
(6), we demonstrated that Syk is involved
in the phosphorylation of tyrosine residues

in the COOH-terminal 250 amino acids of

Cbl. Cbl and Syk form a complex in which
the NH,-terminal half of Syk containing its
tandem SH2 domains bind to Cbl residues
1-655 (7). After receptor engagement, the
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Fig. 1. Overexpression of Cbl leads to inhibition of
Syk tyrosine phosphorylation. (A) RBL-2H3 cells
were infected with recombinant Syk vaccinia and
either recombinant Cbl vaccinia or vaccinia vec-
tor, washed, and incubated with monoclonal IgE.
Minutes of exposure to antigen are indicated
above each lane. (9). Protein from cell lysates were
immunoprecipitated with the indicated antibody
and immunoblotted with antibodies specific for
Cbl, phosphotyrosine (pY), or Syk. (B) Cells were
infected with Syk vaccinia recombinants and the
following ratios of Cbl and empty vector (in PFU/
cell): 0/25, 3/22, 8.5/16.5, and 25/0 (lanes 1
through 4). The cells were loaded with IgE for 6
hours and stimulation with DNP-HSA was for 2
min. Immunoprecipitation and blotting were done
with the indicated antibodies.
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Fig. 2. Qverexpression of Cbl inhibits Syk activity.
RBL-2H3" cells were infected with Syk vaccinia
recombinant virus (5 PFU/cell) and empty vector
(25 PFU/cell), 70Z Cbl vaccinia (A), Cbl truncation
mutants (B), or wild-type Cbl vaccinia viruses. Af-
ter infection for 2 hours, cells were incubated with
IgE and stimulated with DNP-HSA. Proteins were
immunoprecipitated with antibodies to Syk or Cbl
as indicated and were detected by immunoblot-
ting with antibodies to phosphotyrosine (pY ), Cbl,
or Syk. For the in vitro kinase assay, anti-Syk im-
munoprecipitates were incubated in kinase buffer
with ¢fb3. The phosphorylated proteins were re-
solved with SDS-PAGE.
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fraction of Cbl bound to Syk had decreased
tyrosine phosphorylation relative to that
observed on total Cbl. These and additional
observations suggest a regulatory effect of
Cbl in this system, and led us to determine
whether Cbl overexpression could affect
Syk kinase activity and mast cell function.

Overexpression of Cbl, Syk, and rele-
vant mutant forms of each was accom-
plished with recombinant vaccinia con-
structs (5, 8). RBL-2H3 cells were infected
with constructs encoding Syk and either
Cbl or empty vector alone (9). Detection of
Cbl and Syk by immunoblotting demon-
strated that infection with recombinant Cbl
constructs resulted in a threefold increase in
the amount of Cbl protein (Fig. 1A) (10).
Addition of the antigen dinitrophenyl-hu-
man serum albumin (DNP-HSA) to aggre-
gate FceRlI receptors occupied by monoclo-
nal immunoglobulin E (IgE)-binding DNP
led to tyrosine phosphorylation of Syk de-
tectable after 1 min (Fig. 1A). Overexpres-
sion of Cbl led to decreased tyrosine phos-
phorylation of Syk. Infection with vector
alone had no effect on the amount of ty-
rosine phosphorylation (5). Infection with

Fig. 3. Overexpression

Vector 70Z Cbl

REPORTS

increasing amounts of recombinant Cbl
virus led to greater amounts of Cbl expres-
sion in RBL-2H3 cells (Fig. 1B). This in
turn led to a dose-dependent decrease in
the amount of Syk tyrosine phosphoryl-
ation. The highest dose of virus resulted in
nearly complete inhibition of Syk tyrosine
phosphorylation, and was thus used in sub-
sequent experiments.

Because Syk tyrosine phosphorylation
reflects enzyme activation (11), overexpres-
sion of Cbl should lead to inhibition of Syk
PTK activity. RBL-2H3 cells were infected
with recombinant Syk constructs and with
recombinant virus encoding Cbl, a form of
Cbl containing a 17-amino acid internal
deletion, or empty vector (Fig. 2A).
Amounts of Syk were comparable under all
conditions, and infection with either wild-
type Cbl or the 70Z form led to more than
tenfold overexpression of protein. Overex-
pression of Cbl led to inhibition of antigen-
induced Syk tyrosine phosphorylation and
Syk activity, measured by autophosphoryl-
ation and the phosphorylation of the cyto-
plasmic fragment of erythrocyte band 3
(10). Expression of the mutant form or vec-
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of Cbl blocks Syk as-  Antigen: =% T a= = - ~
sembly with the Fc re- ) - -
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ruses; incubated with

ip: antiFoy  p— — SYK
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IgE; and stimulated with DNP-HSA as in Fig. 2. Proteins from cellular lysates were immunoprecipitated
with antibodies to the Fcy component of the FceRlI receptor or to phosphotyrosine and were detected
by immunoblotting with antibodies to Syk or phosphotyrosine.
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Fig. 4. Inhibition of RBL-2H3 cellular function after overexpression of Cbl. (A) Cells were coinfected with
Syk vaccinia recombinants (5 PFU/cell) and with the following proportions of wild-type Cbl and vaccinia
vector (in PFU/cell ratios): 0/25, 5/20, and 25/0. Cbl protein was detected by blotting with antibodies to
Cbl and quantified by densitometry. Without wild-type overexpression, the amount of Cbl is arbitrarily
one unit. With a ratio of 5/20, the amount of Cbl was 3.2 times that found without exogenous Cbl.
Infection with 25 PFU/cell led to 10.3-fold overexpression. The cells were incubated with IgE and tritiated
serotonin for 6 hours, stimulated with DNP-HSA for 45 min, or left unstimulated. Serotonin release was
measured by scintillation counting. (B) RBL-2H3 cells were infected with 5 PFU/cell of Syk vaccinia
recombinant virus and 25 PFU/cell of vector, 70Z Cbl vaccinia, or wild-type Cbl vaccinia viruses. After
infection for 2 hours, cells were then incubated with IgE and tritiated serotonin for 6 hours, and
stimulated (solid bars) with DNP-HSA for 45 min or left unstimulated (hatched bars). (C) RBL-2H3 cells
were infected with Syk vaccinia recombinant virus (5 PFU/cell) and vector (25 PFU/cell), wild-type Cbl,
or Cbl truncation mutant vaccinia viruses and treated as in (B).
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tor alone had no effect. The failure of the
70Z form to block Syk activity demon-
strates the specificity of the interaction,
because only a small internal deletion re-
sulted in failure of kinase inhibition, al-
though both wild-type and 70Z Cbl bound
Syk (5, 12).

The region of Cbl between residues 481
and 655 is required for interaction with Syk,
and after overexpression, for inhibition of
tyrosine phosphorylation of endogenous
Cbl (5). Expression of either the Cbl 1-655
truncation mutant or wild-type Cbl had the
same inhibitory effect on FceRI-mediated
Syk tyrosine phosphorylation and Syk ac-
tivity (Fig. 2B). The 1-480 mutant failed to
inhibit Syk activity. Thus, the capacity to
bind Syk and inhibit its activity maps to the
same region of Cbl.

Antigen-induced aggregation of the
FceRI leads to activation of the Lyn PTK,
which tyrosine phosphorylates the receptor
Fcy chain. Syk becomes activated by bind-
ing the phosphorylated receptor subunit
through its tandem SH2 domains (6, 11).
To further evaluate the mechanism of Cbl
inhibition of Syk, we investigated Fcy phos-
phorylation and Syk interaction with the
Fcy subunit after Cbl overexpression. There
was no effect on antigen-induced Fcy chain
tyrosine phosphorylation when either wild-
type or mutant Cbl was overexpressed (Fig.
3). Thus, Cbl had no effect on this Lyn
function. Syk was found to be pre-associat-
ed with the receptor, though the level of
association increased slightly after antigen
activation. Overexpression of the 70Z form
of Cbl had no effect on Syk association, but
overexpression of wild-type Cbl blocked as-
sociation of Syk detected with antibodies to
either Syk or phosphotyrosine. The inter-
action of Cbl with Syk, by blocking associ-
ation with the FceRI and blocking kinase
activity, would be expected to block cellular
activation. Examination of the pattern of
intracellular tyrosine phosphorylation con-
firmed this prediction. A marked decrease
in the number of phosphorylated substrates
was detected after overexpression of wild-
type but not 70Z Cbl.

FceRI-induced degranulation in mast cells
is dependent on Syk expression and activity.
RBL-2H3 cells selected for failure to express
this enzyme do not respond to FceRI by re-
lease of histamine (I13). Inhibition of Syk
interaction with the FceRIl receptor also
blocks degranulation (14). We thus tested the
effect of Cbl overexpression on the functional
response of RBL-2H3 cells to receptor cross-
linking (15). RBL-2H3 cells were infected
with various amounts of recombinant Cbl to
test for a dose-dependent effect on cellular
function (Fig. 4). Recombinant vaccinia con-
taining vector alone was added as needed to
keep total viral load constant. Immunoblot-
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ting revealed increasing amounts of Cbl pro-
tein (12). Receptor-induced serotonin release
in the absence of exogenous Cbl was compa-
rable to that seen without infection (12, 16).
Expression of recombinant Cbl led to a dose-
dependent inhibition of receptor-mediated re-
lease of serotonin. Higher levels of Syk over-
expression overcame the Cbl-mediated inhi-
bition (12). Serotonin release in response to
receptor cross-linking was also inhibited by
the Cbl 1-655 truncation mutant. The 1-480
truncation mutant, which failed to bind Syk,
failed to block serotonin release. Overexpres-
sion of the 70Z form of Cbl fails to block and
reproducibly led to a slight stimulation of
release. Thus, the Cbl mutants that block Syk
enzymatic activity are the same as those that
inhibit RBL-2H3 function.

The observation that Cbl is rapidly ty-
rosine phosphorylated in response to liga-
tion of various receptors and that it is
associated with multiple signaling mole-
cules has led to-much interest in uncover-
ing the function of this protein (1, 2). The
capacity of distinct mutations of Cbl to
lead to transformation and the observa-
tion that a homolog in C. elegans has a
negative regulatory role in controlling Ras
function support the idea that the Cbl
protein has important functions in signal
transduction (3, 4). Overexpression of Cbl
reveals an undiscovered role for this pro-
tein. It blocks Syk assembly with the ac-
tivated receptor and blocks Syk enzymatic
activity. Cbl can thus serve as an endog-
enous regulator of signal transduction
pathways and cellular activation in the
mast cell. Perhaps in this system, endoge-
nous levels of Cbl set a ceiling on Syk
activity.” The multiple interactions that
Cbl forms in various systems suggests that
it can be viewed as a complex adaptor
protein, much like the insulin receptor

substrates IRS-1 and IRS-2 (17). All of °

these molecules are capable of linking
multiple signaling elements in a highly de-
fined manner. Qur data demonstrate that
the function of such adaptor molecules can
extend beyond regulation of signaling
through assembly. Complex adaptors can
also directly regulate the activity of the
molecules they bind, thereby directly affect-
ing cellular function.
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