
EE33a 
could also explain why a mlgM molecule 
that carries a Y —» F mutation in its trans­
membrane part and presumably is less tightly 
associated with the Ig-a,Ig-|3 heterodimer 
than wild-type mlgM does not reach the 
antigen-presentation compartment {16). 

B cells require T cell help for the pro­
duction and affinity maturation of antibod­
ies against protein antigens {17). Our find­
ing that B cells with a tailless IgG2a-BCR 
cannot efficiently present antigen to T cells 
explains the reduction in IgGl and IgE 
serum concentrations in mutant mice that 
express tailless IgGl-BCR and IgE-BCR, 
respectively {18). Activated memory B cells 
appear to require the cytoplasmic tails of 
mlg molecules and the efficient antigen 
presentation connected with this structure 
in order to expand and differentiate into 
antibody-producing plasma cells. Thus, the 
conserved COOH-terminal sequences of 
mlg molecules are finally assigned an im­
portant immunological function. 
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Effect of Transmembrane and Cytoplasmic 
Domains of IgE on the IgE Response 

Gemot Achatz,* Lars Nitschke, Marinus C. Lamersf 

B cells use immunoglobulin M (IgM) and IgD as antigen receptors, but after contact with 
antigen they can switch and use IgG, IgA, or IgE. In mice lacking the transmembrane and 
cytoplasmic domains of IgE, serum IgE is reduced by more than 95 percent and, after 
immunization, specific responses are negligible. In mice lacking most of the cytoplasmic 
tail of IgE, serum IgE levels are reduced by 50 percent and specific responses are 
reduced by 40 to 80 percent, without a clear secondary response. Thus, membrane 
expression is indispensable for IgE secretion in vivo, and the cytoplasmic tail influences 
the degree and quality of the response. 

Immunoglobulin E contributes least to the 
serum immunoglobulins (Igs). Its specific 
function is not understood, although it is 
well known as the cause of allergic reactions 
(1). IgE, like other Igs, is also expressed as 
an integral membrane protein (mlgE) on B 
cells. The transmembrane segments of mlgs 
are 25 amino acids long, whereas the cyto­
plasmic domains vary in size from three 
residues [Lys-Val-Lys (KVK)] for mlgM and 
mlgD to 14 to 28 residues for other isotypes 
(2). The nature and effects of the signals 
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generated by mlgs other than IgM and IgD 
are mostly unknown, but they may control 
affinity maturation, memory induction, and 
differentiation into plasma cells (3). To 
study the role of the transmembrane do­
main and cytoplasmic tail of mlgE, we made 
mouse lines that carried mutations in these 
domains in the germline 8 gene, using the 
gene-targeting technique, in embryonic 
stem (ES) cells (4, 5) (Fig. 1). The AM1M2 
line lacks the transmembrane and cytoplas­
mic domains of IgE, whereas the KVKAtail 
line can only express a cytoplasmic tail of 
three amino acid residues (KVK), which is 
identical to the cytoplasmic domain of 
mlgM and mlgD. 

Serum Igs in 7-week-old unprimed 
mice were measured (Fig. 2A). There was 
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no difference in IgM, IgG1, IgGZa, IgGZb, 98% in AMlM2 mice and by 50% in 
IgG3, and IgA titers between age- and KVKAtail mice. Similar reductions were 
sex-matched wild-type and mutant mice; found in 3- and 6-month-old animals (Fig. 
however, serum IgE was reduced by 94 to 2B). Thus, the mutations have no effect 
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Fig. 1. Construction of the mutant mouse lines AM1 M2 and KVKAtail. (A) Organization of the CE gene. The 
four constant-region exons are marked as CHI to CH4. Membrane exons MI and M2 are marked as 
indicated in inset at right. Selected restriction enzyme sites and the probes used for Southem blot analysis are 
shown. (B) Linearized targeting vector. (C) The CE allele after primary targeting. (D) Cre-mediated recombi- 
nation between the two loxP sites flanking theneo and tk genes results in the generation of the KVKAtail 
allele. (E) Cre-mediated recombination between the most 5' and 3' loxP sites creates the AM1 M2 allele. 
(F and G) Southern blot analysis of the primary targeting event. (F) Hind Ill-Eco RI-digested DNA was 
hybridized with the external probe. The sizes of wild-type and target fragments are indicated. The 
smaller (target) band is indicative of the presence of the singular loxP site (marked by the Eco RI site). 
Both clones 11/5/3 and 15/6/5 show equal intensities of the wild-type and target bands. (G) Hybridization of 
the Xba I-digested DNA with the neo probe shows singular integration events of clones 11 /5/3 and 15/6/5. 
(H and I) Southern blot analysis of heterozygous and homozygous mice. (H) AM1 M2 was confirmed by Hind 
I l l  digestion and hybridization with the external probe. The sizes of the wild-type and targeted fragments are 
indicated. (I) KVKAtail was confirmed by a Hind Ill-Sac I double digest and hybridization with a probe 
spanning the membrane exons. The mutant allele increases by the size of one singular loxP site (100 bp). 

Fig. 2. Serum levels of 
immunoglobulins in wild- 
type (black bars), 
KVKAtail (white bars), 
and AM1 M2 (gray bars) 
mice. (A) Seven-week- 
old mice of each group 
were bled, and the sera 
of individual mice of each 
group were pooled (6) 
(B).The mice used for im- Total IgE 

munization experiments with DNP-OVA (see Fig. 3A) were bled before and after immunization. w7, 
7-week-old mice, preimmune sera; w14 and w24, 14- and 24-week-old mice, bled 1 week and 11 
weeks after the second booster immunization. Serum levels of total IgE were determined and are shown 
above bars. Error bars indicate standard errors. 

on serum concentrations of Igs other than 
IgE. 

The immune response of the mutant 
mice was assessed with two different im- 
munization protocols. First, antibody titers 
were measured after mice were immunized 
with the T cell-dependent antigen 2,4- 
dinitrophenyl-ovalbumin (DNP-OVA) 
(6). Serum levels of specific IgGl were 
comparable in wild-type and mutant mice 
(Fig. 3A). In AMlM2 mice, DNP-specific 
IgE antibodies were barely detectable, and 
in KVKAtail mice titers were 50 to 80% 
lower than in control mice (Fig. 3B). Ti- 
ters increased after the first booster, but a 
clear secondary response, as characterized 
by a strong and fast rise in specific 
antibody titer, was absent (Fig. 3B). 
Therefore, the transmembrane domain of 
IgE is indispensable for T cell-dependent 
IgE secretion, and the cytoplasmic tail 
influences the degree and quality of the 
response. 

To  determine whether the reduction in 
IgE titers in the mutant lines was caused 
by reduced levels of IgE production per 
cell or by a smaller number of cells that 
produce IgE, we measured the increase in 
the number of IgE-secreting cells 1 week 
after a third booster immunization with 
DNP-OVA (7). There was an average in- 
crease of 786 IgE-secreting cells in the 
wild-type mice, an average of 334 in 
KVKAtail mice, and an average of 0 in 
AMlM2 mice. Therefore, the reduced IgE 
levels in the mutant mice reflected smaller 
numbers of IgE-secreting cells. 

The second immunization protocol in- 
volved infestation with the helminth Nip- 
postrungylus brasibensis (8) .  N .  brasibensis in- 
duces robust IgGl and IgE production, both 
through a dominant activation of type 2 T 
helper (TH2) cells and a strong T cell-inde- 
pendent activation of B cells (9). Switch 
recombination to IgE and IgGl is dependent 
on interleukind (ILd), whereas switch re- 
combination to IgG2a is not induced by IL-4 
(10, 11). Serum IgGl  and IgG2a levels 
showed the expected pattern both in wild- 
type and mutant mice: an 8- to 10-fold in- 
crease in IgGl levels at day 14 after infesta- 
tion, and no increase in IgG2a titer. In wild- 
type mice (Fig. 3C), serum IgE rose from 300 
nglml to 16 pdml by day 14 after infesta- 
tion; in AMlM2 mice it rose from 20 nglml 
to 1.4 pglml; and in KVKAtail mice it rose 
from 130 nglml to 8 kglml. After secondary 
infestation 11 weeks after the first challenge 
with N. brasibensis, a strong and fast IgE 
response was seen in the wild-type mice 
(Fig. 3C), which is indicative of a memory 
response. The IgE response in the 
KVKAtail mice was also substantial but 
was at 55% of the wild-type response. In 
the AMlM2 mice, IgE was now clearly 
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Fig. 3. Serum IgE responses in immunized mice. (A and B) Mice (six animals per group) were immunized 
with DNP-OVA and received booster immunizations after 2 and 6 weeks. Mice were bled at the indicated 
times and the sera of each group were pooled. Results are expressed as the serum dilution 
where half-maximum absorbance was obtained for lgGl (A) and IgE (B). (C) Mice (five animals per group) 
were infested with N. brasiliensis at dO and d77 and bled at the indicated times. Results are given as 
arithmetic means of serum levels of IgE. Bars indicate standard errors. 

measurable; however, the response was 
sluggish and was reduced (13% of the wild- 
type response). The results indicate that the 
IeE resDonse to N. brasihis also needs a - 
specific interaction with the IgE antigen re- 
ceptor complex on the B cell, accompanied 
by strong TH2 cell activity. 

To determine whether class switch to 
IgE was impaired by the targeting event, we 
stimulated isolated spleen cells of wild-type, 
AMlM2, and KVKAtail mice in vitro with 
lipopolysaccharide (LPS) and IL-4 (1 0,12). 
As shown in Fie. 4. the concentrations of 
IgE and IgGl i i  ti;e, culture supernatants 
were com~arable in wild-me and mutant 
mice. These results imply &at the reduced 
IeE titers found in both mutant lines are 
solely a reflection of the loss of biological 
activities associated with the transmem- 
brane and cytoplasmic domains of IgE. 

There are two possible explanations for 
these findings. First, signals generated via 
mIg are needed at all times, not only for 
the maturation process but also for the 
expansion of antigen-specific cells. Sec- 
ond, antigen presentation to TH cells is 
necessary during an antibody response, 
and only the antigen receptor is capable of 
effective antigen capture for presentation. 
The hv~otheses are not necessarilv mutu- 

(2, 13). Further, both the Ig-a-Ig-P 
sheath and the cytoplasmic tail of mIg (14, 
15) have been implicated in guiding re- 
ceptor-bound antigen via the receptor to 
the antigen-processing compartments. Key 
residues for internalization are present in 
the tails in the form of a Tyr-X-X-IlelMet 
motif, where X is any amino acid (1 5, 16). 
These facts predict that the results we 
obtained in the KVKAtail and AMlM2 
lines can be extended to the IgG isotypes 
and perhaps to IgA. Indeed, Kaisho et al. 
(17) reach very similar conclusions in 
studying mice carrying matching muta- 
tions in the y 1 gene. 
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