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Positional Cloning of the Gene for Multiple
Endocrine Neoplasia-Type 1

Settara C. Chandrasekharappa, Siradanahalli C. Guru,
Pachiappan Manickam, Shodimu-Emmanuel Olufemi,
Francis S. Collins* e Michael R. Emmert-Buck,
Larisa V. Debelenko, Zhengping Zhuang, Irina A. Lubensky,
Lance A. Liotta e Judy S. Crabtree, Yingping Wang,
Bruce A. Roe, ¢ Jane Weisemann and Mark S. Boguski e
Sunita K. Agarwal, Mary Beth Kester, Young S. Kim,
Christina Heppner, Qihan Dong,T Allen M. Spiegel,

A. Lee Burns, Stephen J. Marx

Multiple endocrine neoplasia-type 1 (MEN1) is an autosomal dominant familial cancer
syndrome characterized by tumors in parathyroids, enteropancreatic endocrine tissues,
and the anterior pituitary. DNA sequencing from a previously identified minimal interval
on chromosome 1113 identified several candidate genes, one of which contained 12
different frameshift, nonsense, missense, and in-frame deletion mutations in 14 pro-
bands from 15 families. The MENT gene contains 10 exons and encodes a ubiquitously
expressed 2.8-kilobase transcript. The predicted 610-amino acid protein product,
termed menin, exhibits no apparent similarities to any previously known proteins. The
identification of MENT will enable improved understanding of the mechanism of endo-
crine tumorigenesis and should facilitate early diagnosis.

Familial cancer syndromes have attracted
widespread interest over the past decade, in
part because of their potential to shed light
on the general mechanisms of carcinogen-
esis. Positional cloning methods have led to
the precise identification of the responsible
gene for more than a dozen such disorders
(I1). In keeping with the hypothesis origi-
nally articulated by Knudson for retinoblas-
toma (2), most of the responsible genes are
of the tumor suppressor type. In such a
circumstance, affected individuals have in-
herited one altered copy of the responsible
gene from an affected parent, but the tumors
have lost the remaining copy (the wild-type
allele) as a somatic event. Thus, the inheri-
tance pattern is dominant, but the mecha-
nism of tumorigenesis is recessive. The im-
portance of gene discovery often extends

beyond affected pedigrees, as the same tumor
suppressor gene is often found to play a role
(by mutation of both alleles) in sporadic
cases of the same neoplasm.

Multiple endocrine neoplasia~type 1
(MEN1) (OMIM *131100) appears to be a
compelling example of this paradigm, with
prevalence estimates ranging from 1 in
10,000 to 1 in 100,000 (3, 4). Affected
individuals develop varying combinations
of tumors of parathyroids, pancreatic islets,
duodenal endocrine cells, and the anterior
pituitary, with 94% penetrance by age 50
(4). Less commonly associated tumors in-
clude foregut carcinoids, lipomas, angiofi-
bromas, thyroid adenomas, adrenocortical
adenomas, angiomyolipomas, and spinal
cord ependymomas. Except for gastrinomas,
most of the tumors are nonmetastasizing,
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but many can create striking clinical effects
because of the secretion of endocrine sub-
stances such as gastrin, insulin, parathyroid
hormone, prolactin, growth hormone, glu-
cagon, or adrenocorticotropic hormone.

Nine years ago MENI was mapped (5)
to chromosome 11q13 by linkage analysis
(Fig. 1A). Subsequent investigation of a
large number of pedigrees by many groups
revealed no evidence of locus heterogeneity
(6, 7). The identification of critical recom-
binants recently led to the conclusion that
the candidate interval is bounded by marker
D11S1883 on the centromeric side and
marker D11S449 on the telomeric side (7)
(Fig. 1B).

In a concerted effort to identify MENI,
we developed 18 new polymorphic markers
in the MENI region of 11q13 (8) and con-
structed a fully overlapping 2.8-Mb contig
map of yeast, bacteriae, and Pl artificial
chromosome (YAC, BAC, and PAC)
clones and P1 clones (9). We then carried
out an intensive search for transcripts,
which resulted in the identification of 33
candidate genes (10). To focus the search
more precisely, we also took advantage of
the observation that tumors arising in
MENI1 patients are frequently found to
have somatically lost the wild-type allele of
markers in the vicinity of the gene (5, 11).
Interstitial deletions or mitotic crossing-
over events of this sort provide information
on candidate interval boundaries. We used
tissue microdissection to separate tumor
cells from stroma (12) in a large number of
familial MEN1 tumors and sporadic gastri-
nomas, and we found an entirely consistent
minimal interval (Fig. 1B) bounded centro-
merically by marker PYGM (12-14) and
telomerically by marker D11S4936 (14).

We analyzed the sequence of two BACs
(b137C7 and b79G17) covering most of
this interval (Fig. 1C) (15), as well as pub-
licly available sequence of a few cosmids
just telomeric to b79G17 (16). A total of
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eight transcripts were identified by compar-
ison with expressed sequence tag (EST)
databases and computer analysis for the
likely presence of exons. Each of these tran-
scripts was considered a possible candidate
for MEN1.

One of these eight candidates, originally
designated mu, was first identified by Pow-

Fig. 1. Steps in the positional
cloning of the MEN1 gene. Ini-
tial linkage to chromosome
11913 (A) led to finer mapping

REPORTS

erBLAST matches (17) between shotgun
sequence assemblies derived from b137C7
and 44 different ESTs in the dbEST data-
base. Twenty-six of these ESTs were human
clones isolated from seven different tissues;
the remaining 18 ESTs were derived from
mouse or rat libraries. Interestingly, 20 of
the human ESTs had previously been as-

by meiotic recombination and & o o
tumor loss of heterozygosity Eog & F F
(LOH) analysis (B). Nearly com- &~ 100 kb & o a
plete bacterial clone coverage L : |

Of the MOSt likely CANCIAME IN- | tessesecessseensseessmeeeees FoRit WS s ’ ............ &
terval (PYGM to D1154936) e

was achieved with BACs C 10 kb

b137C7 and b79G17 and cos- i ) b137C7 b79G17 c2 :
mids cSRL116b6, 23¢9, and — » C1

11494 (16), which could be as- PYGM e D1154936
sembled into two sequence D

contigs, C1 and C2 (C). DNA .

sequencing revealed several
candidate genes, one of which
(D) was found to harbor muta-

tions in 14 of 15 probands. The arrow indicates the direction of transcription.

Fig. 2. Predicted amino acid
sequence of the protein en-
coded by the MENT gene,
as derived from an appar-
ently full-length leukocyte
cDNA clone. The first methi-
onine is associated with an
excellent Kozak (26) con-

SFLKRQRKGL
sensus sequence (GC-

MGLKAAQKTL FPLRSIDDVV RLFAAELGRE EPDLVLLSLV LGFVEHFLAV NRVIPTNVPE
LTFQPSPAPD PPGGLTYFPV ADLSIIAALY ARFTAQIRGA VDLSLYPREG GVSSRELVKK
VSDVIWNSLS RSYFKDRAHI QSLFSFITGT KLDSSGVAFA VVGACQALGL RDVHLALSED
HAWVVFGPNG EQTAEVTWHG KGNEDRRGQT VNAGVAERSW LYLKGSYMRC DRKMEVAFMV
CAINPSIDLH TDSLELLQLQ QKLLWLLYDL GHLERYPMAL GNLADLEELE PTPGRPDPLT
LYHKGIASAK TYYRDEHIYP YMYLAGYHCR NRNVREALQA WADTATVIQD YNYCREDEEI
YKEFFEVAND VIPNLLKEAA SLLEAGEERP GEQSQGTQSQ GSALQDPECF AHLLRFYDGI
CKWEEGSPTP VLHVGWATFL VQSLGRFEGQ VRQKVRIVSR EAEAAEAEEP WGEEAREGRR
RGPRRESKPE EPPPPKKPAL DKGLGTGQGA VSGPPRKPPG TVAGTARGPE GGSTAQVPAP
AASPPPEGPV LTFQSEKMKG MKELLVATKI NSSAIKLQLT AQSQVQOMKKQ KVSTPSDYTL
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CATGG), and no other in-frame ATG codons are found upstream. The GenBank accession numbers for
the cDNA (2772 bp) and genomic (9181 bp) sequences are U93236 and U93237, respectively.

I R - T Fig. 3. Detection of frameshift
& & & & Patient Normal = and nonsense mutations. (A)

¢ £ &  § GATC GATC [  Analysisofexon2inaMENT pa-
£ B % ;g:- -—@" g tient and a normal control, using
5 B G| L . g ddF to reveal pattern differences
< A w-‘-—: et .| T (arrows) indicative of a possible
- o TR e E;;_“‘—' = mutation (20). (B) Abnormal ddF
: $ --...: ,:_'."u-" %' pattemn in exon 9 from a different
I o e | patient. (C) Identification of.a sin-

> Cee W ;8 gle nucleotide deletion by se-
El L‘},/ e —— A quencing of a cloned exon 2 PCR
H g » ! product from the patient whose
> = - ddF pattem is shown in (A). The
i :.j -~ sequence shown is of the anti-
! ! -8 s £ Pe ot Moot sense strand; the mutation is
o » Sl 51?deIC. (D) This frameshift mu-
B .= a —_— e tation was confirmed by detecting
SETCL o ¢ — = | the presence of a new Afl |l site in
D 0 Sl# . ® __ [ S PCRamplfid exon 2 from this
; . ¢ |l W ol 2 patient and two affected relatives.

é e é (E) Direct sequencing of the exon

A = & ___— == L 9PCRproductfrom (B), revealing

H H [ e & :'_ ‘::" - § the presence of a heterozygous C
é e msT §  — T substitution. Again the se-

- hasel E/P_ _ = _\E quence is of the antisense strand;
o g/ == = == = \é  the mutation creates a stop
codon (TGG — TAG or W436X).
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sembled into a UniGene cluster and placed
on the transcript map between markers
D11S913 and D11S1314 (18).

These 26 human ESTs constituted a 1.9-
kb cDNA contig. Northern (RNA) blotting
(10) identified a transcript of 2.8 kb that
was expressed in roughly equivalent
amounts in all adult tissues tested, including
pancreas, adrenal medulla, thyroid, adrenal
cortex, testis, thymus, small intestine, stom-
ach, spleen, prostate, ovary, colon, and leu-
kocytes. Screening of a leukocyte cDNA
library yielded an apparently full-length
2.8-kb clone whose sequence was then fully
determined on.both strands (Fig. 2). Com-
parison of the cDNA sequence with genom-
ic sequence from b137C7 revealed that the
mu gene contains 10 exons (with the first
exon untranslated) and extends across 9 kb
(Fig. 1D).

Primers designed from intronic sequence
were used to amplify exons from genomic
DNA of affected members of 15 typical
MENI1 families (19), and mutations were
sought by the dideoxy fingerprinting (ddF)
method (20). Two examples of abnormal
ddF patterns are shown in Fig. 3, A and B
(exons 2 and 9). Sequencing of polymerase
chain reaction (PCR)-amplified material
(Fig. 3E), or in some instances cloned prod-.
ucts (Fig. 3C), was used to identify the
nature of the abnormality. For 10 different
mutations for which other affected family
members were available for study (all ex-
cept E363del and W436X), we confirmed
that the observed alteration was inherited
concordantly with the MENI phenotype
(Fig. 3D) (21).

A total of five frameshift mutations,
three nonsense mutations, two in-frame de-
letions, and two missense alterations were
identified (Fig. 4). Two mutations
(416delC and 512delC) were encountered
twice in families not known to be related.
None of these mutations were observed in
an analysis of 71 normal DNA samples.
Four relatively common polymorphisms—
R171Q (CGG/CAG), L432L (CTG/
CTA), D418D (GAC/GAT), and A541T
(GCA/ACA)—were also encountered and
were observed in 1.4%, 0.7%, 42%, and 4%
of normal chromosomes, respectively (n =
142).

The identification of mutations in 14 of

Fig. 4. Summary of muta-
tions identified in 15 unrelat-

YRR R N R L IR I i B R e

op e

15 unrelated affected individuals leaves lit-
tle doubt that the MENI gene has been
identified. We propose the name menin for
the 610—amino acid predicted protein prod-
uct. Sequence analysis provides few clues to
its normal function. There is no signal pep-
tide, and, although there are four moderate-
ly hydrophobic regions in the NH,-terminal
half of the protein, these are not likely to
represent transmembrane domains. Three
leucine-rich regions match the PROSITE
signature for leucine zippers (22), but these
regions are not amphipathic and have no
strong coiled-coil potential, and this signa-
ture is known to generate many false posi-
tive matches. Nuclear localization signa-
tures are absent. The protein sequence has
several regions of low compositional com-
plexity, including a very hydrophilic mixed-
charge cluster between residues 446 and
491 (23). There is no detectable homology
to the complete genomic sequence of Sac-
charomyces cerevisiae.

The observation that many of the muta-
tions detected (Fig. 4) would most likely
result in loss of function of the protein
product is consistent with a tumor suppres-
sor mechanism. Such a mechanism distin-
guishes MEN1 from the related disorder
multiple endocrine neoplasia~type 2, where
activating mutations of the RET oncogene
are responsible (24). Although, in the ab-
sence of examples of complete gene dele-
tion, we cannot rule out the possibility of a
dominant negative effect of the truncated
menin protein product, the observation of
mutations in which as few as 82 amino acids
would be left intact (357del4, Fig. 4) makes
this mechanism unlikely. It will be of great
interest to determine whether, as predicted
by the Knudson model (2), somatic muta-
tions in the MENI gene are responsible for
sporadic endocrine tumors, including the
common parathyroid adenomas, which oc-
cur at an annual incidence of 154 per
100,000 in individuals over age 60 (25).

Now that the MENI gene has been
cloned, it will be important to study the role
of MENI gene diagnostics in younger at-
risk individuals so as to assess the value of
identifying or excluding the presence of a
mutation before the onset of symptoms.
Moreover, the application of a broad and
powerful repertory of molecular genetic, cell

ed MEN1 patients. The loca-
tions of the five frameshift
mutations are shown above
a diagram of the MENT

357del4_416delC _512delC 735del4 1132delG 1008p
| — 1 /
o 2 [ 3 [apl6]7[8] 9] 10 Z,
L22R  K119del W198X E363del Rs27x
W436R
W436X

gene, with the exons numbered; cross-hatched areas are untranslated. Two in-frame deletions of a
single amino acid, three nonsense mutations, and two missense mutations are shown below the gene
diagram. The 416delC and 512delC mutations were each encountered twice. Mutation abbreviations

follow standard nomenclature (27).
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biological, and animal model approaches
can now be initiated to pursue an under-
standing of the molecular basis of this dis-
order, with the eventual goal of developing
better therapeutic strategies.
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Endosomal Targeting by the Cytoplasmic Tail of
Membrane Immunoglobulin

Peter Weiser,*t Ralph Muller,” Uschi Braun, Michael Rethi

Membrane-bound immunoglobulin (mlg) of the IgG, IgA, and IgE classes have conserved
cytoplasmic tails: To investigate the function of these tails, a B cell line was transfected
with truncated or mutated y2a heavy chains. Transport to the endosomal compartment
of antigen bound by the B cell antigen receptor did not occur in the absence of the

cytoplasmic tail; and one or two mutations,

respectively, in the Tyr-X-X-Met motif of the

tail partially or completely interrupted the process. Experiments with chimeric antigen

receptors confirmed these findings. Thus,

a role for the cytoplasmic tail of mig heavy

chains in endosomal targeting of antigen is revealed.

The B cell antigen receptor (BCR) is a
multiprotein complex that includes the
membrane-bound immunoglobulin mole-
cule (mlg) and the Ig-a,lg-B heterodimer
(1). The latter molecules function as the
signaling subunit of the BCR. They are also
required for the intracellular transport of
[gM-BCR to the endosomal compartment,
where the bound antigen is proteolytically
degraded (2). All classes of mlg are associ-
ated with the Ig-o,lg-B heterodimer (3),
but the heavy chains differ in the length of
their cytoplasmic tails: there are 3 amino
acids for wm and dm tails and 28 amino
acids for ym and em tails. No function has
so far been attributed to the conserved cy-
toplasmic sequence of mlgG molecules that
are expressed on memory B cells.

To analyze the function of the 28—amino
acid cytoplasmic tail of the y2am heavy
chain, we truncated or mutated the se-
quence (4) coding for this tail in the ex-
pression vector pSV2neoyZam (5). The
chain lacking all cytoplasmic amino acids
except for the three KVK (6) residues
(which are identical to the COOH-termi-
nus of the wm chain) we called y2amtl.
Point mutations were introduced to change
the YXXM motif in the y2am cytoplasmic
sequence to either LXXM (y2amY20L) or
LXXL (y2amY20L,M23L). Expression vec-
tors for these heavy chains were transfected
into K46\12 B lymphoma cells expressing a
A1 light chain. The expressed wild-type and
mutated y2am chains associate with the A1
light chain to form 5-iodo-4-hydroxy-3-ni-
trophenyl-acetyl (NIP)-specific mlgG2a
molecules.

After surface biotinylation of K46\y2am
and K46\y2amtl cells, the wild-type and
tailless 1gG2a-BCR complexes were affini-
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ty-purified over NIP-Sepharose (7) and an-
alyzed by protein immunoblotting (Fig. 1).
This analysis confirmed that the y2amtl
chain has a lower molecular weight than
the wild-type y2am chain (Fig. 1, lanes 4
and 2) and showed that both mIgG2a mol-
ecules are associated with the Ig-o,1g-B het-
erodimer to the same extent. Yet unidenti-
fied surface proteins of 41 and 42 kD were
copurified together with the wild-type but
not truncated IgG2a-BCR complex. These
molecules may thus require the y2am tail
for efficient binding. A fluorescence-acti-
vated cell sorter analysis confirmed that
similar amounts of mlgG2atl and wild-type
mlgG2a were expressed on K46 cells,
whereas the two point-mutated mlgG2a
molecules were expressed in amounts that
were reduced by a factor of 3 to 5.

The endosomal transport of antigen
bound to wild-type or mutated IgG2a-BCR
was tested in an ovalbumin (OVA) peptide
presentation assay (8). The different y2am
transfectants of K46\12 cells were cocul-
tured with the T helper cell line 3D054.8,
which is specific for the OVA 323-339 pep-
tide in the presence of NIP-OVA or OVA
alone (Fig. 2). The K46\y2am cells, which
express wild-type [gG2a-BCR, were able to
present the antigenic peptide to the T cells
when exposed to low amounts of NIP-OVA,
whereas exposure to the same amount of
OVA did not result in antigen presentation
(Fig. 2B; P < 0.001). K46\y2amtl cells,
which express the tailless [gG2atl-BCR com-
plex, did not present the OVA peptide even
when cultured with large amounts of the
specific antigen (Fig. 2C). The same defect
was found in two independent y2am trans-
fectants of K46\12 that expressed an [gG2a-
BCR with a double (Y - L, M — L) (6)
mutation of the YXXM motif. These are
referred to as K46Ay2amY20L,M23L (Fig. 2,
E and F). K46Ay2amY20L cells, expressing
an IgG2a-BCR with a single Y — L muta-
tion of the YXXM motif, had a modest but
not statistically significant capacity to
present antigen (Fig. 2D; P < 0.3). The
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