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Primary Production in Antarctic Sea Ice 
difficult property to achieve in cryogenic 
thermometry. A lock-in atnplifier could be 
used with an ac applied voltage to contin- 
uously read the slope of the curve of S 
versus V. If a metal strain gauge were to be 
used (as in our experiment), although the 
resistance sl may change in a tnagnetic 

Fig. 4. The boundary between quadratic (PE) and 
linear (piezoelectric) behavior of the electric fied- 
induced stran in ST0 shown as the value of the 
voltage V, and strain Sc at the crossover as a 
function of temperature. At low temperatures S, is 
lncreasng, lmplyng that the PE region, which IS 

useful n certaln appllcatons, perssts to T = 0; the 
decreasng Vc shows that less voltage IS required 
to reach the hear response reglme (27). 
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A numerical model shows that in Antarctic sea ice, increased flooding in regions with 
thick snow cover enhances primary production in the infiltration (surface) layer. Pro- 
ductivity in the freeboard (sea level) layer is also determined by sea ice porosity, which 
varies with temperature. Spatial and temporal variation in snow thickness and the 
proportion of first-year ice thus determine regional differences in sea ice primary pro- 
duction. Model results show that of the 40 teragrams of carbon produced annually in the 
Antarctic ice pack, 75 percent was associated with first-year ice and nearly 50 percent 
was produced in the Weddell Sea. 

S e a  ice surrounding the Antarctic conti- represents one of the largest and most dy- 
nent varies in extent from 4 X lo6 ktn2 in namic ecosystems on  Earth. Algae associat- 
sutnmer to 20 X 106 ktnZ in winter 11) and ed with ice mav attain standine crous with 
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" A 

atnounts of chlbrophyll a in excess of 400 
mg m-2 and rates of primary production of 
>1 g C tn-2 day-', comparable to produc- 
tive oceanic regions 12. 3 ) .  Because sea ice 

c, , , 

microalgal production is spatially and tetn- 
~ o r a l l v  variable, its contribution to the car- 
bon cycle of the Southern Ocean and its 
imuortance as a food source for hieher tro- - 
phic levels [such as overvlintering juvenile 
krill 14)l have been difficult to determine. . . -  

W e  used an expanded version of a one- 
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dimensional numerical model (5-7) to in- types was similar and showed little spatial that in multiyear ice (Table 1). The high- 
vestigate the dynamics of primary produc- variation (1 1 ), annual production in the est rates of production were associated 
tion in Antarctic pack ice between 1 Oc- first-year infiltration layer was 27 times with those regions that had the highest 
tober 1989 and 30 April 1990. This ap- 
proach allowed us to resolve regional 
differences in the size of the sea ice algal 
standing crop and in the rate of carbon 
fixation as a function of sea ice type (first- 
year and multiyear ice), sea ice habitat 
(infiltration and internal freeboard lay- 
ers), and environmental conditions. In the 
model, algae grow within an infiltration 
layer located at the sea ice-snow interface 
and within an internal freeboard laver 
near sea level. Nutrient exchange is a 
function of surface flooding and sea ice 
porosity (8). Algal growth in the bottom 
ice layer is neglected because this commu- 
nity is generally absent in pack ice (9). As 
inpdt, the model uses measurements col- 
lected remotely (sea ice extent and snow 
thickness) and in situ (cloud cover and air 
temperature) (10). Simulations of sea ice 
in the Weddell Sea produced algal stand- 
ing crops that compare favorably with in 
situ observations (Fig. 1); consequently, 
the model was extended to the entire Ant- 
arctic ice pack. 

In the model. regional differences in 
primary { ~ i ~ .  2) were largely 
determined by variations in the propor- 
tion of first-year ice. Although production 
within the freeboard layer of both ice 

0 . . a 

Oct Nov Dec Jan Feb Mar Apr 

Month 

Standing crop (mg Chl a m q  

Fig. 1. (A) Mean monthly ice algal standing crop 
for the Weddell Sea predicted by the model and 
measured in sea ice cores (n = 257). In both 
cases the SDs were similar in magnitude and were 
approximately equal to the monthly means. (B) 
Frequency histograms for data used to generate 
(A). Chi a, chlorophyll a. 

Primary production (mg C m-2 day-') 

Fig. 2. Maps of sea Ice prmary product~on for the 
15th day of each month durng the s~rnulat~on (Oc- 
tober s not shown]. Gray areas on the ~nset map 
denote multiyear Ice 
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proportion of first-year ice, such as the 
Weddell Sea (0.95 g C m-2 month-') and. 
the southern Indian Ocean (1.02 g C m-2 
month-'). Productivity in these regions 
also was enhanced by thick mean snow 
cover (0.17 m) and high seawater nitrate 
concentration (23 FM). In contrast, in 
the southwestern Pacific, the transience of 
first-year ice and high proportion of mul- 
tiyear ice (40 to 65%), thinner mean snow 
cover (0.13 m), and lower seawater nitrate 
concentration (18 pM) resulted in the 
lowest mean rate of production (0.59 g C 
m-2 month-') of any Antarctic region 
(Table 1). 

The relative importance of light and 
nutrients for algal productivity throughout 

the Antarctic ice pack varied markedly 
with season and habitat. In the freeboard 
layer during the spring, algal biomass, pro- 
ductivity (Fig. 3A), and nutrient uptake 
were low, and algal growth was controlled 
by light availability (Fig. 3B). Increased 
amounts of light in November led to a 
marked rise in productivity; however, the 
concomitant increase in nutrient demand 
and reduction in nutrient concentrations 
limited algal growth during the austral 
summer. As temperatures cooled in late 
February (Fig. 3C), sea ice porosity de- 
creased below the threshold required for 
nutrient exchange (8), resulting in a rapid 
decline in production within the freeboard 
layer (Fig. 3A). The timing of this decline 

Table 1. Temporal changes in first-year ice extent (FIE), productivity in the infiltration layer (PIF) and 
freeboard layer (PFF) of first-year ice, multiyear ice extent (MIE), productivity in the infiltration layer (PIM) 
and freeboard layer (PFM) of multiyear ice, and mean productivity for both ice types together (TPP). 

FIE PIF PFF MIE PIM PFM TPP 
Month (lo6 (g C m-2 (g C m-2 (lo6 (g C m-2 (g C m-2 (g C m-2 

km2) month-') month-') km2) month-') month-') month-') 

Oct 
Nov 
Dec 
Jan 
Feb 
Mar 
A P ~  

Oct 
Nov 
Dec 
Jan 
Feb 
Mar 
A P ~  

Oct 
Nov 
Dec 
Jan 
Feb 
Mar 
APr 

Oct 
Nov 
Dec 
Jan 
Feb 
Mar 
Apr 

Oct 
Nov 
Dec 
Jan 
Feb 
Mar 
Apr 

Weddell Sea 
0.233 0.953 <0.001 
0.985 0.919 0.001 
1.163 0.900 0.01 6 
1.140 0.844 0.043 
0.674 0.760 0.049 
0.305 0.722 0.027 
0.120 0.719 0.005 

Southern Indian Ocean 
0.188 0.249 0.001 
0.989 0.238 0.002 
1.142 0.191 0.016 
1.158 0.153 0.064 
1.010 0.106 0.069 
0.424 0.066 0.066 
0.1 19 0.055 0.009 

Southwest Pacific Ocean 
0.1 19 0.413 <0.001 
0.623 0.366 0.002 
0.572 0.259 0.008 
0.619 0.198 0.014 
0.450 0.138 0.009 
0.215 0.094 0.001 
0.120 0.090 <0.001 

Ross Sea 
0.239 0.875 <0.001 
0.928 0.855 0.003 
1 .I59 0.712 0.01 5 
0.844 0.370 0.034 
0.377 0.268 0.006 
0.100 0.222 <0.001 
0.054 0.221 <0.001 

Bellingshausen-Amundsen Seas 
0.111 0.474 <0.001 
0.772 0.462 0.002 
0.982 0.442 0.01 2 
0.844 0.395 0.01 1 
0.604 0.296 0.003 
0.170 0.241 <0.001 
0.076 0.233 <0.001 

0.031 0.203 
0.369 0.903 
0.851 1.443 
1.077 1.899 
0.91 0 1.328 
0.656 0.726 
0.21 8 0.177 

Mean = 0.953 

Mean = 1.018 

0.091 0.109 
0.647 0.641 
1.037 0.857 
1.078 0.949 
1.050 0.866 
1 .I43 0.503 
0.678 0.196 

Mean = 0.589 

0.115 0.214 
0.308 0.781 
0.920 1.243 
1.01 7 1.237 
0.947 0.81 1 
0.813 0.266 
0.567 0.106 

Mean = 0.665 

0.031 0.092 
0.261 0.638 
0.732 0.950 
0.91 2 0.992 
0.885 0.850 
0.935 0.595 
0.694 0.292 

Mean = 0.630 

varied spatially by more than 1 month 
(Fig. 3A) because of temperature differ- 
ences. Because of its more restricted nu- 
trient supply, the infiltration layer exhib- 
ited rates of primary production that 
peaked 1 to 2 months later than in the 
freeboard layer (Fig. 3D) (8). In the infiltra- 
tion layer, light availability exceeded de- 

c ' - - Light limitation (Statlo" B) O - Nutrient l~mnal!on (Slatlon 8) 
E 

0.81 - 

Oct Nov Dec Jan Feb Mar Apr 
Date 

Fig. 3. (A) Modeled primary production in the free- 
board layer at station A (71.4"S, 41 W) and station 
B (74.1°S, 42"W) in the first-year ice of the Wed- 
dell Sea. Arrows indicate when air temperature 
dropped below -4.7"C [see (C)], the temperature 
at which brine volume decreases below the thresh- 
old necessary for nutrient exchange within the ice 
sheet. (B) Magnitude of growth limitation induced 
by both light and nutrients (the lowest value deter- 
mines the most limiting resource) in the freeboard 
layer at station B. The gray area denotes the range 
of values and the thick line denotes the mean for 
the nutrient limitation term at the nine grid points 
comprising station B The steep decline in primary 
productii shown in (A) at station B in late Febru- 
ary resulted from the drop in the nutrient limitation 
term to zero in many of the grid points (the mean 
value was 0.42). A similar decline in primary pro- 
ductivity was not observed in late December, when 
the mean nutrient limitation term was similarly low 
(0.41), because the nutrient limitation term in all 
subsectors of station B exhibited values greater 
than zero. (C) Surface air temperatures at stations 
A and B. (D) Primary production in the infiltration 
layer at stations A and B. (E) Magnitude of growth 
limitation induced by light and nutrients in the infil- 
tration layer at station B. 
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mand until early February (Fig. 3E). Conse
quently, primary production was restricted 
to locations that were submerged and suf
fused with nutrients, which amounted to 15 
to 25% of the total ice area (12). The infil
tration layer became light-limited after Feb
ruary as sun elevation decreased and the 
nutrient demand of the diminishing algal 
community declined. 

The annual rate of primary production 
within the Antarctic ice pack was calcu
lated to be —35.7 Tg C year-1 (13), con
sistent with other estimates of 30 to 70 Tg 
C year-1 (9, 14). First-year ice accounted 
for 75% of annual primary production 
within the pack. Nearly 60% of annual 
production took place between November 
(11.5 Tg C), when sea ice was near its 
maximum extent (Fig. 2), and December 
(9.80 Tg C), when the rate of production 
per unit area was near its peak. The Wed-
dell Sea accounted for —50% of the an
nual production (15.8 Tg C) because of its 
extensive ice coverage and high rate of 
carbon fixation (Fig. 2). The most produc
tive region of the Weddell Sea was located 
within the first-year ice near the eastern 
margin of the multiyear ice, along 45°W 
(Fig. 2). Snow remained relatively deep at 
this location throughout the spring and 
summer, resulting in frequent surface 
flooding, which provided nutrients to the 
infiltration algal communities. Together, 
the Weddell Sea, the Ross Sea (7.73 Tg 
C), and the southern Indian Ocean (6.66 
Tg C) accounted for 85% of the annual 
production in Antarctic sea ice. Produc
tion in the Ross Sea was slightly higher 
than in the southern Indian Ocean be
cause of its more extensive multiyear ice. 

Our production estimate of 35.7 Tg C 
year-1 for Antarctic sea ice is about 1 to 
4% of the annual biogenic carbon produc
tion in the Southern Ocean, estimated to 
be 980 to 3620 Tg C year-1 (14, 15). 
However, our estimate of sea ice primary 
production is 9 to 25% of total production 
in the ice-covered Southern Ocean (in
cluding the highly productive marginal ice 
zones), which ranges from 141 to 383 Tg 
C year-1 (9, 15). Although sea ice primary 
production represents a small part of the 
Southern Ocean production, it is impor
tant as a highly concentrated food source 
for zooplankton such as juvenile krill (4), 
whose total carbon biomass in ice-covered 
waters (16) is <10% of the calculated 
annual production in sea ice. 

The ability to resolve primary productiv
ity differences in diverse pack ice habitats 
(for example, first-year versus multiyear ice, 
infiltration versus freeboard layer) is critical 
to assessing the response of the sea ice 
ecosystem to future changes in environ
mental conditions. For example, although 

atmospheric temperature is positively corre
lated with precipitation, it is negatively cor
related with multiyear ice extent (17). Our 
model results suggest that an increase in 
snow cover or a decrease in the proportion 
of multiyear ice in response to climate 
warming would result in enhanced primary 
production within the Antarctic ice pack. 
However, at some point, the light-limiting 
effects of a thickening snow cover would 
outweigh the benefits of an increased nutri
ent supply resulting from flooding. In addi
tion, if warming increased to the extent 
that the amount of first-year ice was re
duced, the sea ice primary production would 
decrease accordingly. 
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