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RANTES, MlP-la, and MIP-lp are B-che-
mokines that inhibit HIV-1 infection in 
vitro (1-4) by interacting with the HIV-1 
coreceptor CCR5 (3, 4). Such coreceptor 
ligands are potentially useful in the treat-
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ment of HIV-infected individuals. Unfortu
nately, although these reagents consistently 
inhibit HIV-1 replication in peripheral 
blood mononuclear cells (PBMCs) (I, 3, 5, 
6), they do not block infection of primary 
macrophage cultures (3, 6, 7), which indi
cates that their use could fail to influence 
HIV replication in nonlymphocyte cell 
types. Moreover, the chemotactic and leuko
cyte-activating properties of these P-chemo-
kines may result in undesirable inflammatory 
responses. Recently, Arenzana-Seisdedos et 
al (5) described a chemokine antagonist 
that inhibited HIV-1 infection of phytohe-
magglutinin (PHA)-activated PBMCs but 
lacked chemotactic and leukocyte-activating 
properties. Here, we tested two other 
RANTES receptor antagonists for their abil
ity to inhibit HIV-1 infection of different 
cell types, including primary human macro-
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phage cultures expressing CCR5. Met- 
RANTES has a n  additional methionine at  
the NH2-terminus and is a potent antag- 
onist of RANTES signaling in a variety of 
cell types (8). Because the side chain of 
methionine is nearly isosteric with the 
n-pentyl group, we decided to prepare an- 
other RANTES derivative (which we 
called AOP-RANTES) by first generating 
an aldehyde-like group at  the NH,-termi- 
nus of RANTES and then reacting with 
aminooxypentane (9). 

AOP-RANTES could not  induce che- 
motaxis of primary human monocytes (I  0) 
and inhibite ' i  monocvte chemotaxis in- 

[AOP-RANTES] (nM) 

yo-4 10.' 10.' lo0 10' lo2 
[Chemokine] (nM) 

Fig. 1. Chemotactic and binding properties of 
RANTES, Met-RANTES, and AOP-RANTES. (A) 
Monocyte chemotaxis Induced by RANTES (@) 
and AOP-RANTES (A). AOP-RANTES elicited no 
significant migration of monocytes onto the lower 
surface of the membrane. (B) AOP-RANTES was 
incubated at various concentrations with 100 nM 
RANTES (@) and 10 mM MIP-I P (4. Median ef- 
fective concentratlon values for these agonists are 
usually 2 to 5 nM. The inhibltlon data shown are 
typical of that seen with five donors. (C) Competi- 
tion of '251-labeled MIP-la bindlng to CCRS. Se- 
rial dilutions of RANTES (@), Met-RANTES (H), 
and AOP-RANTES (4 were tested for their ca- 
pacity to compete with MIP-la binding to CCR5- 
expressing HEK293 cells. 

duced by MIP-1P (Fig. 1, A and B). Be- 
cause MIP-1P only binds CCR5,  this re- 
sult implies that AOP-RANTES acts as a 
functional antagonist o n  primary, CCR5- 
expressing monocytes. In  Fig. 1C,  which 
shows competition of 1251-labeled M I P - l a  
binding to CCR5-expressing HEK293 
cells by RANTES, Met-RANTES, and 
AOP-RANTES (I  I ), RANTES and Met- 
RANTES both displayed clear two-com- 

ponent displacement curves with a high- 
affinity site of 0.022 n M  and a low-affinity 
site of 18 n M  (for RANTES). Thus, not 
even at  100 n M  could RANTES or Met- 
RANTES displace all of the M I P - l a  
bound to the CCR5 receptor. In contrast, 
AOP-RANTES totally displaced M I P - l a  
binding at  1 nM, with a median inhibitory 
concentration (IC,,) of 0.072 nM. In ad- 
dition, its high-affinity competition curve 

Chemokine concentration (nglml) 

Fig. 2. Inhibition of HIV-I infection of PBMCs with RANTES (a), Met-RANTES (H), and AOP-RANTES 
(A). RANTES, Met-RANTES, and AOP-RANTES inhibited the NSI viruses SF-1 62 (left) and E80 (center), 
which use CCR5, but not MI (right), which uses CXCR4. MI infectivity, but not SF-I 62 infectivity, was 
reduced 50% using stromal cell-derived factor 1 at 3.2 p,g/ml. 
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Fig. 3. Effect of AOP-RANTES on HIV-I Infection of primary macrophage cultures and CCRS-express- 
ing CCC-CD4 and HeLa-CD4 cells. (A) AOP-RANTES, but not RANTES or Met-RANTES, inhiblted 
SF-1 62, M23, and E80 infection of prlmary human macrophage cultures. SL-2 infection was blocked by 
both RANTES and AOP-RANTES. (B) AOP-RANTES, but not RANTES or Met-RANTES, inhiblted 
SF-? 62 Infection of CCR5+ CCC-CD4 and HeLa-CD4 cells. CCR5 IS the only coreceptor present on 
CCC-CD4 and HeLa-CD4 for SF-162, which cannot infect the CCR5- parental counterparts. Arrows 
denote columns that do not register on vertlcal scale. The means of triplicate samples from one 
experiment are shown; similar results were obtained in additional experiments ( I  7). 
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was classical antagonist-like, with a Hill 
coefficient of -1.02, which indicates 
binding to a single site. 

We tested RANTES, Met-RANTES, and 
AOP-RANTES for inhibition of HIV-1 rep- 
lication in PBMCs stimulated with PHA and 
interleukin-2 (IL-2) (1 2). The HIV-1 strains 
first tested were SF-162, E80, and LAI. SF- 
162 and E80 are primary nonsyncytium-in- 
ducing (NSI), macrophage-tropic strains 
that use CCR5 as a coreceptor (13), whereas 
LA1 is a prototype T cell line-adapted, syn- 
cytium-inducing (SI) virus that uses CXCR4 
as a coreceptor (14). Relative to RANTES 
or Met-RANTES, AOP-RANTES was up to 
10 times aspotent in blocking infection of 
PBMCs by both SF-162 and E80 (Fig. 2). 
Complete inhibition of both strains was 
achieved with an AOP-RANTES concen- 
tration of <I00 ng/ml, whereas inhibition 
with RANTES and Met-RANTES required 
>200 ng/ml and >400 ng/ml, respectively. 
None of the three ligands inhibited LAI. 

We then compared the effect of 
RANTES, Met-RANTES, and AOP- 
RANTES in inhibiting a wider range of 
HIV-1 strains. Three additional primary NSI 
macrophage-tropic ,strains (M23, M53, and 
SL-2) were blocked by AOP-RANTES, with 
equivalent concentrations of RANTES and 
Met-RANTES showing consistent but 
weaker inhibition. None of these proteins 
blocked infection by HIV-1 strains that can 
use CXCR4, including the T cell line-adapt- 
ed strains LA1 and RF (13, 14) as well as 
2076 and 2044, which are primary viruses 
that infect macrophages as well as T cell 
lines (Table 1). Both 2076 and 2044 can use 
CXCR4, although 2076 can use CCR5 as 
we11 (13). 

Previous studies have reported that 
RANTES (or a mixture of RANTES, MIP- 
l a ,  and MIP-10) does not block infection 
of primary macrophage cultures by mac- 
rophage-tropic HIV-1 strains (3, 6,  7). 
RANTES, AOP-RANTES, and Met- 

Table 1. RANTES and RANTES antagonists inhibit 

RANTES were tested for their effect on 
HIV-1 replication in macrophages. Macro- 
phage cultures were prepared as described 
(1 3,  15, 16). RANTES and Met-RANTES 
(200 and 800 nglml) had little effect on 
macrophage replication by the primary NSI 
macrophage-tropic strains, SF-162, E80, or 
M23 (Fig. 3A), whereas a fourth strain, 
SL-2, was blocked by RANTES but not by 
Met-RANTES. This result indicates that 
particular strains are likely to be more sen- 
sitive to chemokine inhibition than others. 
In contrast, AOP-RANTES efficiently in- 
hibited macrophage replication of all four 
strains tested. Similar results were obtained 
with further macrophage preparations from 
separate donors (1 7). 

It is possible that alternative corecep- 
tors on macrophages could allow HIV to 
bypass CCR5 and escape inhibition by 
RANTES and Met-RANTES on macro- 
phages. We therefore tested the effect of 
RANTES, Met-RANTES, and AOP- 
RANTES on SF-162 infection of cat kid- 
ney CCC cells stably expressing human 
CD4 (18) and transiently expressing 
transfected CCR5 (13, 19), as well as on 
HeLa cells that stably expressed both CD4 
and CCR5 (Fig. 3B) (20). CCC and HeLa 
cells that express CD4 (CCC-CD4 and 
HeLa-CD4 cells) do not usually express 
coreceptors for primary NSI viruses (13); 
therefore, when CCR5 is expressed on 
these cell types, it is the only coreceptor 
available for such strains. Replication of 
SF- 162 in CCR5-expressing CCC-CD4 
cells was efficiently blocked only with 
AOP-RANTES. Similar results were ob- 
tained with HeLa-CD4 cells stably ex- 
pressing CCR5 (20); SF-162 infection was 
efficiently inhibited by AOP-RANTES, 
whereas RANTES and Met-RANTES re- 
duced SF-162 infection by <50%. The 
inability of RANTES and Met-RANTES 
to efficiently block infection of CCR5+ 
HeLa-CD4 or CCC-CD4 cells therefore 

cannot be attributed to the presence of 
alternative SF-162 coreceptors that do not 
bind (and cannot be blocked by) 
RANTES or Met-RANTES. 

We currently do not understand why 
RANTES inhibits HIV-1 NSI infection of 
PBMCs yet does not reliably block infec- 
tion of primary macrophage cultures (3, 6,  
7). Only one of four strains tested here 
(SL-2) was consistently inhibited by 
RANTES, although we have observed weak 
inhibition of other strains if lower amounts 
of input infectivity are used. We recently 
observed a similar phenomenon with a 
CXCR4-specific monoclonal antibody, 
12G5 (21 ). This monoclonal antibody in- 
hibited HIV infection and fusion of 
CXCR4+ RD/CD4 (a rhabdomyosarcoma 
cell line), yet failed to block infection of 
most CD4+ T cell lines and infection of at 
least one cell line expressing CXCR4 as the 
sole coreceptor (22). Together, these re- 
sults indicate that other factors influence 
the presentation of coreceptors at the cell 
surface, and these affect the efficiency with 
which ligands can inhibit virus infection. 

Amino-terminal derivatives of RANTES 
such as AOP-RANTES and Met- RANTES, 
which bind with high affinity to the CCR5 
receptor yet fail to induce chemotaxis signal- 
ing, act as antagonists. Moreover, although 
Met-RANTES has preserved the two-com- 
ponent interaction mode with the CCR5 
receptor (showing even a larger low-affinity 
component than RANTES itself), the AOP 
modification has succeeded in creating a 
classical antagonist with a monocomponent 
high-affinity binding mode. The total occu- 
pancy of CCR5 receptors achieved by the 
AOP-RANTES antagonist, even at nano- 
molar concentrations, is probably the rea- 
son why AOP-RANTES is a more potent 
inhibitor of HIV strains that use CCR5 
than is RANTES. AOP-RANTES or sim- 
ilarly modified chemokines (or even non- 
peptide antagonists) that achieve full re- 

infection of PBMC cultures by NSI, but not SI, HIV-1 strains. 

Supernatant RT (pg/ml) 

Strain RANTES Met-RANTES AOP-RANTES 
No treatment 

200 ng/ml 800 ng/ml 200 ng/ml 800 ng/ml 200 ng/ml 800 ng/ml 

NSI viruses 
SF-1 62 
E80 
M23 
M53 
SL-2 

SI viruses 
LA1 
RF 
2076 
2044 

278 SCIENCE VOL. 276 11 APRIL 1997 http://www.sciencemag.org 



ceDtor occuDancv at low concentrations . , 

are therefore suitable candidates for treat- 
ment of HIV-infected individuals. 
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