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Insects on Plants: Macroevolutionary 
Chemical Trends in Host Use 

Judith X. Becerra 

Determining the macroevolutionary importance of plant chemistry on herbivore host 
shifts is critical to understanding the evolution of insect-plant interactions. Molecular 
phylogenies of the ancient and speciose Blepharida (Coleoptera)-Biyrsera (Burseraceae) 
system were reconstructed and terpenoid chemical profiles for the plant species ob
tained. Statistical analyses show that the historical patterns of host shifts strongly 
correspond to the patterns of host chemical similarity, indicating that plant chemistry has 
played a significant role in the evolution of host shifts by phytophagous insects. 

W h a t factors have directed the evolution 
of host shifts by phytophagous insects? This 
has been a central question in the field of 
plant-insect interactions for the last 30 
years (I) . Ehrlich and Raven (2) postulated 
that shifts to new hosts are mediated by the 
chemical similarity between old and new 
hosts and that host plant chemistry should 
leave its trace on phylogenetic patterns of 
host shifts at a macroevolutionary level 
However, demonstrating a role for plant 
chemistry in the macroevolution of host use 
has been difficult (3). Detailed quantitative 

Department of Ecology and Evolutionary Biology, Univer
sity of Arizona, Tucson, AZ 85721, USA, and Instituto de 
Ecologia, Universidad Nacional Autonoma de Mexico, 
Ciudad Universitaria, 04510 Mexico DF,-Mexico. 

investigations have had to await the devel
opment of modern molecular and phyloge
netic techniques to reconstruct accurate 
host and herbivore trees. Also, an evolu
tionary association of host shifts with plant 
chemistry could be spurious: Related plants 
have similar chemistry, and plant and her
bivore phylogenies may correspond for a 
variety of biogeographic or ecological rea
sons unrelated to chemistry. In fact, some 
studies have shown a close correspondence 
of host and insect phylogenies (4, 5), sug
gesting that the pattern of host cladogenesis 
may be important, and that host chemical 
similarity may be overemphasized. Here, a 
quantitative investigation of the chemical 
trace in the evolution of insects and their 
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plant hosts is presented, using insect and 
plant phylogenies reconstructed from DNA 
seauences. These reconstructions of the an- 
c i e k  and diverse Bursera-Blepharida system 
were used to test the relative importance of 
chemical similarity and host cladogenesis in 
the evolutionary history of host shifts. 

Burseras are the New World frankin- 
cense and myrrh. The genus comprises 
about 100 species distributed from the 
southwestern United States to Peru. It 
reaches its maximum diversity in the trop- 
ical dry forests of Mexico, where about 80 
species occur (6). The New World members 
of the beetle genus Blepharida (Chrysomeli- 
dae: Alticinae) include about 45 species, 
many of them monophagous, which feed 
mainly on Bursera and a few other members 
of Burseraceae and its sister family Anacar- 
diaceae (7). Although New World Blepha- 
nda has been combined with the Afrotropi- 
cal genus Blepharidina, there are well- 
marked morphological differences between 
Old and New World Bkpharida, suggesting 
that the New World Blebharida form a 
monophyletic group (8). The Bursera- 
Blepharida interaction is old. In the New 
and Old World tropics Blepharida feeds on 
Anacardiaceae and Burseraceae, suggesting 
that their interaction probably started be- 
fore the separation of Africa and South 
America, more than 100 million years ago 
(5, 9). 

Bursera produces an array of terpenes, 
including alpha and beta pinene, cam- 
phene, phelandrene, and limonene (lo),  
distributed in a reticulating network of resin 
canals in the cortex of the stems and 
throughout the leaves. In some species 
these resins may be under considerable pres- 
sure and squirt out when leaves are dam- 
aged (1 1). In many plant groups terpenes 
are toxic or repellent to insect herbivores 
(1 2), and in Bursera they decrease Blepha- 
rida survival and growth rate (1 1 ,  13). The 
fact that this is an old and specialized in- 
teraction, with many species in both genera 
and well-known ecology and systematics, 
provides a valuable opportunity for testing 
macroevolutionary hypotheses. 

The molecular phylogenies of Bursera 
and Blepharida (14, 15) are shown in Fig. 1. 
All Blepharida species were collected in the 
field directly from the species they were 
attacking, and their host relationships were 
confirmed by multiple site visits over 3 to 5 
years. A dendrogram of Bursera species 
based on their chemical similarity (chemo- 
gram) was constructed to test the impor- 
tance of host chemistw in host shifts (16) . . 
(Fig. 2A). For reconstruction of the evolu- 
tion of the chemistry of Bursera, chemical 
classes were parsimoniously traced onto 
Bursera's phylogeny (17). Most clades of 
Bursera include plants that are in different 

classes, suggesting that chemical similarity 
is partially independent of plant phylogeny 
(Fig. 2B). 

To investigate whether plant chemical 
similarity facilitated host shifts by Blepha- 
rida, I compared the topology of Bkpharida's 
phylogeny with the topology of the chemo- 
gram. Also, to investigate the importance of 
host cladogenesis in insect shifts, I com- 
pared the topologies of the phylogenies of 
Bursera and Blephanda. Three techniques 

were used for the comuarisons: character 
tracing, which is graphical and not statisti- 
cal (1 7), and tree mapping ( 18) and Farris' 
distortion coefficient (1 9), which are statis- 
tical techniaues. The latter two methods 
were selectei because they do not depend 
on the operational division of clades and 
clusters, and their indices of similarity are 
sensitive even when the topologies com- 
pared are only loosely congruent, an expect- 
ed scenario for phytophagous insects, which 

Fig. 1. Feeding associations of Blepha- 
rida beetles (right) on Bursera hosts 
(left). According to the molecular phy- 
logeny of Bursera (strict consensus 
tree), the genus is monophyletic and 
consists of two principal groups known 
as sections Bullockii and Bursera. The 
four most parsimonious trees differed 
only in resolving the positions of Burs- 
era heteresthes, Bursera palmeri, and 
Bursera mirandae. They had a consis- 
tency index of 0.57 and a retention in- 
dex of 0.74. The two most parsimoni- 
ous Blepharida trees differed in the po- 
sition of Blepharida unknown sp. l l .  
They had a consistency index of 0.58 
and a retention index of 0.72. Beetle 
species were determined by D. Furth of 
the Smithsonian Institution and many of 
them are undescribed. Sequences of 
insects identified as Bursera flavo- 
costata present many genetic diver- 
gences and are very probably different 
species. For clarity, the hosts of 
polyphagous Blepharida alternata are 
not indicated (but see Fig. 3 for its host 
plants). Asterisks indicate outgroups 
and the numbers above the main 
branches of the trees are bootstrap 
percentages. 

. . .- 

HETE 

\ 
Fig. 2 (A) Dendrogram of Bursera based on chemical similarity. 
Numbers and color coding indicate the four main chemii  groups 
according to Ward's clustering method. (8) The four chsses of 
chemically similar species of Bumem are traced onto Bursera's 
phylogeny. Most lineages of Bursera include mixtures of plants that 
are in diient classes, suggesting that chemical similarity is partially 
independent of plant phylogeny. Gray lines indicate that character 
reconstruction is undetermined. 
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disperse rather freely among hosts. Tree 
mapping modifies one of two trees or cla- 
dograms until their differences are recon- 
ciled. In the present case, it modifies the 
plant tree by duplicating branches until a 
"reconciled" tree is obtained. This tech- 
nique provides two measures of fit between 
host and associate trees. "Leaves added" is 
the difference between the number of nodes 
in the insect and reconciled tree, and "loss- 
es" is the number of instances in which an 

insect species is absent where it is predicted 
to occur on the reconciled tree. Both pa- 
rameters decrease with increasing similari- 
ties of plant and insect trees [see (18) for 
details]. Farris' distortion coefficient pro- 
vides a measure of the discordance of the 
branching topology of two trees A and B by 
estimating how distorted each clade of A is 
on B. For each monophyletic cluster of A, 
one counts how many times the cluster is 
fragmented on the B tree. This number is 

I 
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divided by the number of taxa of the cluster 
minus one. For example, if a cluster of A 
includes three taxa, and they are all sepa- 
rate in tree B, then the coefficient for that 
cluster of A is 212 = 1. The distortion 
coefficient is the average of the values for 
all clusters of A. Perfect congruence yields a 
coefficient of 0, and complete distortion, a 
value of 1. Both approaches were tested 
statistically by comparing observed indices 
to the distribution of indices obtained by 
repeatedly randomizing one of the trees 
(Markovian model). 

Tracing the chemical classes onto 
Blepharida's phylogeny shows few shifts of 
Blephmida between chemically dissimilar 
plants (Fig. 3). Subclades of Blepharida ap- 
pear to have colonized species of chemically 
similar plants. For example, the lineage that 
includes Blephmfa sparsa diversified using 
burseras that belong only to one chemical 
group (in blue). Similarly, the lineage of 
Blepharida jluvocostata and Blepharida un- 
known spp. 1 and 2 evolved exploiting burs- 
eras from only two chemical groups. An 
interesting exception is the highly polyph- 
agous Blepharida alternata, which can feed 
on burseras from all the chemical groups. 
The congruence is significant with tree 
mapping ("leaves added," P < 0.006; "loss- 
es," P < 0.0002) and the distortion coeffi- 
cient (0.73, P < 0.05), which do not de- 
pend on the operational delimitation of 
chemical classes used in the figures. Char- 
acter tracing graphically demonstrates that 
Blepharida has shifted host use from one of 
the two major clades of Bursera (the two 
sections of the plant genus) to the other 
several times. Blephmida has also shifted 
between hosts belonging to different sub- 
clades several times (Fig. 4). For example, 
the lineage of B. jluvocostata and Blepharida 
unknown spp. 1 and 2 attacks burseras from 
four terminal clades, and one clade is fairly 
distantly related to the others (pink line). 
With tree mapping, the congruence of the 
two phylogenies is significant for "leaves 
added" (P < 0.05), but not for "losses" (P < 
0.26). The distortion coefficient for Bursera 
and Blephanda cladograms is 0.86 and con- 
gruence is not significant (P = 0.1). 

Because chemical similarity in Bursera is 
partially independent of its phylogeny (Fig. 
2B), it was possible to look at host shifts 
among plant chemical groups that were not 
host shifts among plant clades. In the same 
way, host shifts among plant clades that were 
also host shifts among chemical groups could 
be ignored. To do this, I modified the dis- 
tortion coefficient. As mentioned before, the 
disagreement between trees A and B is mea- 
sured by the number of fragments into which 
each cluster of tree A is broken on tree B. 
The same applies to trees A and C. But now, 
to measure the distortion between tree A 

http://www.sciencemag.org SCIENCE VOL. 276 11 APRIL 1997 



and tree B, for each cluster of A, the value of bootstrap analysis (500 bootstrap searches, 40 ran- flame ionization detector and a 15-m column of 

the distortion coefficient between A and c is dam additions, TBR branch swapping) was per- 0.32-mm internal diameter fused silca caplary c o -  
formed to estimate the relative internal support for umn (J & W Scientific) coated with 0.25-ym DB-5 

added to the value of the distortion coeffi- dfferent elements of the trees. The phylogeny of Fig. I were used for chemical analyses. Nitrogen served as 
cient between A and B. This mathematical includes only speces on which Blepharida was found. the carrier gas wth a linear velocity of 20.8 cm/s at a 

procedure removes shifts among chemical 
groups that are also shifts among plant clades. 
With this modification the coefficient re- 
mained statisticallv significant for the com- 
parison between ~ le~Lr ida ' s  phylogeny and 
the chemoeram (0.84, P < 0.05). However. 
for the coiparisdn of' Blepharida knd ~ursera 
phylogenies, the modified distortion coeffi- 
cient increased to 0.94 (P = 0.25). This sug- 
gests that the relationshiv between the two - 
phylogenies isdue in large part to the corre- 
lation between plant phylogeny and plant 
chemistry, whereas the relationship between 
Blepharida's phylogeny and the chemogram of 
Bursera does not depend on the correlation 
between plant phylogeny and plant chemistry. 
Thus, comparisons ignoring the correlation 
between plant phylogeny and plant chemical 
variation, as well as compaiisons controlling 
for this correlation, indicated a greater influ- 
ence of host plant chemistry than host plant 
phylogeny in the evolution of host use in 
Blebharida and Bursera. 

\ 
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Phylogenetic Analysis of Glycolytic 
Enzyme Expression 

V. A. Pierce* and D. L. Crawford?$ 

Although differences among species in enzyme maximal activity or concentration are 
often interpreted as adaptive and important for regulating metabolism, these differences 
may simply reflect phylogenetic divergence. Phylogenetic analysis of the expression of 
the glycolytic enzymes among 15 taxa of a North American fish genus (Fundulus) 
indicated that most variation in enzyme concentration is due to evolutionary distance and 
may be nonadaptive. However, three enzymes' maximal activities covary with environ- 
mental temperature and have adaptive value. Additionally, two pairs of enzymes covary, 
indicating coevolution. Thus, metabolic flux may be modulated by many different en- 
zymes rather than by a single rate-limiting enzyme. 

Phylogenetic analyses can test for the 
adaptive importance of enzyme variation 
and address the debate concerning the con- 
trol of metabolism. Manv models concern- 
ing metabolic regulatio; have been pro- 
vosed: from classical biochemical theories 
that predict one master regulatory enzyme 
per pathway ( I ) ,  to metabolic control the- 
ories that argue that many enzymes can 
modulate flux (2, 3). Experimental evi- 
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dence suggests that the control of flux shifts 
among enzymes depending on laboratory 
conditions (4, 5). In contrast, a phyloge- 
netic perspective can reveal changes in en- 
zyme amounts or activity produced by nat- 
ural selection and thus are indicative of an 
enzyme's importance over evolutionary 
time. If variation in an enzyme's concentra- 
tion is selectively important, then that vari- 
ation must have functional consequences, 
such as changes in metabolic flux. Thus, 
phylogenetic analyses that identify patterns 
of adaptive variation in particular glycolytic 
enzymes suggest that variations in these 
enzymes are functionally important. Results 
from phylogenetic analyses can be com- 
pared to the predictions of different theories 
on metabolic control. Specifically, if there 
are a few master regulatory enzymes per 
pathway, and other equilibrium (6) enzymes 
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