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The use of molecular phylogenies to examine evolutionary questions has become com- 
monplace with the automation of DNAsequencing and the availability of efficient computer 
programs to perform phylogenetic analyses. The application of computer simulation and 
likelihood ratio tests to evolutionary hypotheses represents a recent methodological de- 
velopment in this field. Likelihood ratio tests have enabled biologists to address many 
questions in evolutionary biology that have been difficult to resolve in the past, such as 
whether h~st-parasite systems are cospeciating and whether models of DNA substitution 
adequately explain observed sequences. 

Evolutionary biology is founded on the 
concept that organisms share a common 
origin and have subsequently diverged 
through time. Phylogenies represent our at- 
tempts to reconstruct this evolutionary his- 
tory, and there is probably more interest in 
phylogenetic reconstruction today than at 
any time in the past. For years phylogenet- 
ics played a relakively minor role in evolu- 
tionary biology, and it is only in the past 
decade that the importance of phylogeny in 
most branches of biology has been fully 
recognized (1,  2). Today it is not uncom- 
mon to see phylogenies applied in fields far 
removed from evolutionary biology. For ex- 
ample, they have found a practical use in 
tracing routes of infectious disease transmis- 
sion and in identifying the relationship of 
pathogens, such as the New Mexico hanta- 
virus (3). 

With the realization that phylogeny can 
provide answers to many questions of inter- 
est in evolutionary biology, there has been 
an  explosion in the number of statistical 
tests that take phylogeny into account. In 
part, this is because an  essentially infinite 
number of possible tests can be applied to 
any biological question. A hypothesis test 
involves calculating a test statistic from the 
data and then determining the probability 
of the observed statistic if the hypothesis 
were true; the probability is obtained from 
the null distribution of the test statistic 
(that is, the distribution if the hypothesis is 
true). For hypothesis tests involving phylog- 
eny, the null distribution is usually gener- 
ated by either permuting data matrices or 
resampling from the original data. Howev- 
er, the statistical properties of many tests 
based on such procedures are known to be 
poor, and although permutation of data ma- 
trices is a common procedure, the null hy- 
pothesis for many such tests is often not 
well defined (4). Similarly, although non- 
parametric bootstrapping is widely used to 
evaluate the support of the data for a par- 

ticular phylogeny, the statistical interpreta- 
tion of bootstrap values remains problemat- 
ic (5). ~, 

The past 5 years have seen remarkable 
advances in the use of ~arametr ic  statistical 
tests of questions involving phylogeny. In 
particular, increased computing speed, more 
realistic models of DNA substitution, and 
improved computer programs have led to 
practical statistical tests using likelihood ra- 
tios and Monte Carlo simulation Droce- 
dures. Although statistical tests can be con- 
structed in many different ways (1,  6), we 
concentrate in this review on likelihood 
ratio tests (LRTs) for several reasons. First, 
LRTs have the same status in hypothesis 
testing as does maximum likelihood in pa- 
rameter estimation. That is, just as maxi- 
mum likelihood estimates (MLEs) are 
known to have desirable statistical proper- 
ties such as consistencv, LRTs are known to 
outperform other hypothesis tests under 
manv conditions. For exam~le ,  LRTs are 
known to be optimal (uniformly most pow- 
erful) when comparing simple hypotheses, 
and LRTs often perform well for cases in 
which no  ootimal test is known (7) .  Sec- 
ond, many applications of LRTs do not 
assume that the phylogeny is known. This is 
an  advance over tests that assume that the 
phylogeny is known without error (I  ) be- 
cause all existing methods of phylogeny re- 
construction are subject to both systematic 
and random errors. In many cases, the error 
in phylogeny estimation can be large (8). 
Third, LRTs provide a unified framework 
for testing hypotheses. 

Maximum Likelihood and 
Hypothesis Testing 

Maximum likelihood estimation of phylo- 
genetic trees was first introduced by Ed- 
wards and Cavalli-Sforza in the early 1960s 
(9). Felsenstein (1 0) implemented the meth- 
od for DNA sequence data, and most recent 

advances have focused on the analysis of 
DNA sequences. Stated simply, the MLE of 
phylogeny is the tree for which the observed 
data are most probable. For the present pur- 
poses, the data are aligned DNA sequences 
for s species. The first step in a likelihood 
analysis is to calculate the probability of the 
observed sequences; this probability depends 
on an  explicit mathematical model of evo- 
lution (1 1 ). The model consists of two parts: 
(i) a phylogenetic tree with branch lengths 
defined in terms of the expected number of 
substitutions per site, and (ii) a model of the 
process of DNA substitution (that is, speci- 
fying the probability of the occurrence of a 
nucleotide substitution at a particular site 
over the length of a branch). For many 
studies the phylogenetic tree is the only pa- 
rameter of interest, but in the course of 
finding the maximum likelihood tree, other 
parameters are estimated that may also be 
of importance (such as the transition rate- 
transversion rate bias). 

Much attention has focused on the ac- 
curacy of the phylogenetic trees recon- 
structed by maximum likelihood. Simula- 
tion studies suggest that maximum likeli- 
hood is typically more accurate (that is, 
more likely to predict the actual evolution- 
ary tree) and robust (that is, less sensitive to 
incorrect models and assumptions) than 
other methods of phylogenetic inference 
(1 2,  13). Moreover, likelihood provides a 
natural means of hypothesis testing (14). 
The LRT statistic for comparing two hy- 
potheses (A) is defined as 

max[L(null hypothesis I data)] 
A = 

max[L(alternative hypothesis I data)] 

The likelihood L is maximized under both 
the null and alternative hypotheses. The 
likelihood ratio provides a measure of the 
support of the data for one hypothesis versus 
another. If A > 1, the data are more prob- 
able under the null hypothesis, and this is 
favored; the alternative hypothesis is fa- 
vored if A < 1. When nested hypotheses are 
examined (that is, the null hypothesis is a 
special case of the more general, alternative 
hypothesis), A will always be < I  and -2 log 
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A i s  approximately X 2  distributed under the 
null hypothesis w i t h  q degrees o f  freedom, 
where q i s  the difference in the number of 
free parameters between the null and alter- 
native hypotheses. Alternatively, the prob- 
ability o f  observing a given A if the n u l l  
hypothesis were correct (the significance 
level) can be calculated by using Monte 
Carlo simulations, as explained below (15). 

A l though LRTs have a long history in 
statistics, they have had only a l imited ap- 
pl icat ion in phylogenetics, w i t h  the first 
application o f  an  LRT (a test o f  the molec- 
ular clock) proposed in 1981 (10). W h y  has 
it taken,s$ long for LRTs to  be applied in 
phylogenktic analysis? One problem con- 

cerns the use o f  topology as a model param- 
eter. I t  i s  known that many o f  the standard 
results for LRTs do n o t  apply to  phyloge- 
netic trees (16). For example, in consider- 
ing nested phylogenetic hypotheses, the 
usual X 2  approximation to  the distribution 
o f  the test statistic often cannot be used to  
determine the significance o f  the LRT sta- 
tistic (16). This ~ r o b l e m  can be avoided. . , 

however, by generating null distributions 
using computer simulation (1 6, 17). In this 
procedure, known as parametric bootstrap- 
ping or Monte  Carlo simulation, the null 
distribution o f  the test statistic i s  calculated 
by simulating many data sets (Fig. 1). M o n -  
te Carlo simulation has been widely used in 

Table 1. Biological questions involving phylogeny that have been addressed using LRTs. 

statistics since the early 1960s (15). Model  
parameters for the simulations are estimated 
from the original data under the null hy- 
pothesis. The  likelihood ratio is calculated 
for each simulated data set, and the propor- 
t i on  o f  the replicates in which the l ikel i -  
hood ratio calculated using the original data 
i s  exceeded for the simulated data repre- 
sents the significance level o f  the test. 

Table 1 l i s t s  several hypotheses involving 
phylogeny for which LRTs are available. 
LRTs have been applied to  problems such as 
the relative fit of models o f  DNA substitu- 
t i on  to sequence data and the evaluation o f  
evidence for the monophyly o f  a taxonomic 
group. For many of the questions posed in 

Question Assumptions Results 

Are DNA substitution rates constant 
among lineages [that is, does a 
molecular clock exist (lo)]? 

Is a DNA substitution model adequate to 
explain the data (16)? 

Are DNA substitution rates biased for 
different nuc~ebtides (16)? 

Are DNA substitution rates constant 
among sites (27)? 

Are DNA substitution rates constant 
among genomic regions [that is, in 
different genes or different codon 
positions (21)]? 

Is the DNA substitution process identical 
among lineages (22)? 

Are the substitutions in stem regions of 
ribosomal DNA sequences correlated 
(34)? 

Is the DNA substitutlon process identical 
among genomic regions (21)? 

Is a prespecified taxonomic group 
monophyletic (35)? 

Are phylogenies estimated from different 
data congruent (31)? 

Are the phylogenies for hosts and 
parasites consistent with a common 
history (25)? 

Are the speciation times for hosts and 
parasites the same (25)? 

H,: Assume that DNA substitution rates are equal 
among lineages. 

H,: Allow substitution rates to vary among lineages. 
H,: Assume a particular model of DNA substitution. 
HI: Assume a multinomial distribution for the 

frequencies of site patterns. 
H,: Assume that substitution rates are equal among 

nucleotides (for example, the transition rate 
equals the transversion rate). 

HI: Allow transition rate-transversion rate bias. 
H,: Assume equal rates among sites. 
H,: Allow among-slte rate heterogeneity. 

H,: Assume that substitutlon rates are the same in 
all data partitions (regions). 

Hi: Assume an independent substitution rate for 
each partition (region). 

H,: Assume a homogeneous substitution process 
among lineages. 

HI: Allow parameters of the substitution model to 
vary among lineages. 

H,: Assume that substitution is independent among 
sites. 

Hi : Allow correlated changes in nucleotide duplets in 
stem regions. 

H,: Assume that the substitution parameters are the 
same among genomic regions. 

Hi: Allow substitution parameters to vary among 
genomic regions. 

H,: Assume that a group is monophyletic. 
H,: Relax the constraint of monophyly. 

H,: Assume that the same phylogeny underlies all 
data partitions. 

Hi: Allow different phylogenies to underlie different 
data partitions. 

H,: Assume an identical phylogeny for associated 
hosts and parasites. 

HI: Allow different phylogenies for hosts and 
parasites. 

H,: Assume that hosts and associated parasites 
speciated at the same time. 

HI: Allow speciation t~mes to vary independently in 
hosts and parasites. 

A molecular clock is most often rejected, 
suggesting that there is rate variation 
among lineages. 

Current models of DNA substitution fit the 
observed data poorly. Sequences from 
pseudogenes show the best fit. 

The addition of unequal rate parameters to 
the substitution matrix usually provides 
an improved fit of the model. 

The addition of parameters allowing 
among-site rate variation typically 
provides a significant improvement to 
the f ~ t  of the model. 

Rates vary significantly among genomic 
regions (for example, at different codon 
positions). 

Base frequencies and the transition 
rate-transversion rate bias varied 
significantly among four of the major 
lineages that gave rise to present-day life 
forms (22). 

A model that allows for correlated 
substitutions at pair-bonded stem sites 
of ribosomal DNA sequences provides 
an improved fit of the model (34). 

Base frequencies and transition rate- 
transversion rate bias significantly varied 
in first, second, third, and transfer RNA 
partitions of mitochondria1 data (21). 

Analysis of partial HIV sequences from the 
patients of a dentist supported the idea 
of multiple sources of infection for one of 
the patients (39). 

This test has not been widely applied. 

For 13 species of gophers and their 
associated lice, the phylogenies appear 
different; for a subset of these species, 
the phylogeny of hosts and parasites 
appears identical (25). 

For five species of cospeciating gophers 
and lice, the speciation times appear to 
be identical (25). 
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Table 1, alternative tests are available, some 
of which are claimed to be nonparametric. 
However, all statistical tests involving phy- 
logeny require assumptions about the evolu- 
tionary process, even though an explicit 
model may not be used. Assumptions about 
the process of evolution are required, for 
example, when estimating a phylogenetic 
tree. One of the advantages of LRTs is that 
model assumptions can themselves be tested 
and potentially improved. 

Tests of Models of DNA 
Substitution 

All phylogenetic methods make assump- 
tions, whether explicit or implicit, about 
the process of DNA substitution. System- 
atists are in an awkward situation in that 

Fig. 1. A diagram illustrating the ap- 
plication of parametric bootstrap- 
ping to determine significance lev- 
els. Parameters from the original 
data are estimated using maximum 
likelihood. The MLEs of parameters 
under the null model are used to 
construct many simulated data sets 
of the same size as the original. For 
each simulated data set, the LRT 
statistic (-2 log A) is calculated and 
compared with the value obtained 
for the original data. 

they know the assumptions of a phyloge- 
netic method are imperfect. Yet they also 
know that the match between the process 
of nucleotide substitution generating the 
sequence variation and the substitution 
model assumed may be critical. The realism 
of substitution models is important because 
methods for inferring phylogeny may be less 
accurate, or may be inconsistent (that is, 
converge to an incorrect tree with increased 
amounts of data), in situations where the 
model is incorrect (8, 13, 18). Evolutionary 
biologists also have an intrinsic interest in 
accurately modeling the processes that pro- 
duce variation in DNA sequences and 
thereby improving our understanding of 
molecular evolution. Molecular systematists 
interested in phylogenetic inference have 
long been troubled by the question of how 
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Table 2. LRT results for the gopher-louse COI data set. LRTs were performed for three hypotheses of 
DNA substitution. The null hypothesis for the test of "equal transition and transversion rates" constrains 
the transition rate to be equal to the transversion rate. The null hypothesis for the test of "equal rates 
among sites" is that all sites have an equal rate of substitution, whereas the alternative hypothesis allows 
rates to be gamma-distributed random variables. The null hypothesis for the test of the molecular clock 
assumes that the rates among lineages are equal. LRTs reject the null hypotheses of an equal transition 
rate-transversion rate bias and equal rates among sites but do not reject the molecular clock null 
hypothesis. F81 indicates maximum likelihood estimation under the F84 model of DNA substitution, but 
with K = 0.0 (40). Analyses were performed with the constraint of a molecular clock (c) or without the 
clock constraint (nc). Single and double asterisks indicate significance at P < 0.05 and P < 0.005, 
respectively. 

Data Model of DNA 
substitution log L, -2 log A 

Gophers (all positions) 
Lice (all positions) 
Gophers (all positions) 
Lice (all positions) 

Gophers (all positions) 
Lice (all positions) 
Gophers (all positions) 
Lice (all positions) 

Gophers (all positions) 
Lice (all positions) 
Gophers (all positions) 
Lice (all positions) 
Gophers (all positions) 
Lice (all positions) 

Test of equal transition/transversion rate 
F81 vs. F84 (nc) -2227.98 
F81 vs. F84 (nc) -2776.18 
F81 VS. F84 (c) -2243.26 
F81 vs. F84 (c) -2782.23 

Test of equal rates among sites 
F84 vs. ~ 8 4 + r  (nc) -2102.14 
F84 vs. ~ 8 4 + r  (nc) -2637.1 1 
~ 8 4  VS. ~ 8 4 + r  (c) -21 14.91 
~ 8 4  VS. ~ 8 4 + r  (c) -2643.62 

Test of molecular clock 
F81 (c vs. nc) -2243.26 
F81 (c vs. nc) -2782.23 
F84 (c vs. nc) -21 14.91 
F84 (c vs. nc) -2643.62 
~ 8 4 + r  (c vs. nc) -1 923.01 
~ 8 4 + r  (c vs, nc) -2352.55 

to choose the optimal substitution model 
for a varticular data set. Maximum likeli- 
hood provides a rational method for choos- 
ing substitution models for phylogenetic 
analysis through the use of LRTs. 

Current models implemented in phylo- 
genetic inference using maximum likeli- 
hood (and several other methods as well) 
assume that DNA substitutions follow a 
Poisson process. The most general model 
allows each type of nucleotide substitution 
to have an independent rate parameter 
(there are 12 rate parameters in total) (19). 
Also, rate heterogeneity among sites can be 
accommodated by assuming that rates are 
distributed among different sites according 
to some probability distribution (usually a 
gamma, Bernoulli, or log-normal distribu- 
tion), or by assigning sites to different rate 
classes (for example, first, second, and third 
codon positions) and then estimating the 
substitution rate for each class (20). The 
models implemented in likelihood have 
also been modified to allow parameters to 
be estimated separately for different data 
partitions or for different branches of the 
phylogenetic tree (21, 22). In short, the 
substitution models used in a phylogenetic 
analysis can be made arbitrarily complex by 
the addition of Darameters, each of which 
can be estimated using likelihood niethods. 

One approach to the choice of models in 
phylogenetic analysis is to use a very com- 
plicated (parameter-rich) model for which a 
large number of free parameters will result 
in a high likelihood. However, this ap- 
proach has several disadvantages. First, be- 
cause a large number of parameters must be 
estimated for com~licated models. the anal- 
ysis becomes computationally difficult. Sec- 
ond, the error associated with each param- 
eter estimate is higher for more complicated 
models than for simple ones. This decrease 
in accuracy appears to apply to all parame- 
ters of the phylogenetic model, including 
the topology; in certain cases, the accuracy 
of the estimated phylogeny may be im- 
proved by using a simpler model (although 
this is not universal) (1 2, 13). Finally, an 
overly complicated model may not be need- 
ed to account for the observed data. Oc- 
cam's razor provides a principle for choosing 
among hypotheses that explain a set of 
observations equally well; the simpler (most 
parsimonious) hypothesis is preferred. Al- 
though a complicated model may make the 
observed data more probable, it will not 
necessarily provide a significant improve- 
ment in the likelihood over a model with 
fewer parameters. 

How can the model be chosen that best 
fits the data without introducing superflu- 
ous parameters? One approach is to com- 
pare the likelihoods of different models us- 
ing an LRT (1 0, 16, 23). The significance 
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of the LRT statistic (A) can be approximat- 
ed using simulation or, if the models are 
nested, by comparing -2 log A to a X2 
distribution, with q degrees of freedom, 
where q is the difference in the number of 
free parameters between the null and alter- 
native models of DNA substitution. 

For illustrative purposes, we applied this 
procedure to mitochondria1 cytochrome ox- 
idase I (COI) DNA sequences gathered by 
Hafner et al. (24) for 13 species of gophers 
and their associated lice (Table 2). First, we 
examined the molecular clock hypothesis 
(10). This hypothesis is satisfied if DNA 
substitutions follow a Poisson process and 
the mean rate of substitution has remained 
constant in different lineages. The log like- 
lihood calculated under the clock hypothe- 
sis is log L = -2243.26 for the gophers and 
log L = -2782.23 for the lice when a simple 
model of DNA substitution is used. A more 
general model assumes that each branch of 
the phylogenetic tree has a unique uncon- 
strained rate of substitution. This introduc- 
es s - 2 additional parameters; the likeli- 
hood for this latter model is therefore high- 
er than that under the molecular clock 
hypothesis (log L = -2227.98 for the go- 
phers and log L = -2776.18 for the lice). 
Because the models are nested (that is, 
equal rates among lineages are a special case 
of the unrestricted model) and the phylo- 
genetic tree is held constant, the statistic -2 
log A can be compared with a x2 distribu- 
tion with s - 2 degrees of freedom to deter- 
mine the significance of the test (10). In 
this case, the molecular clock hypothesis 
cannot be rejected for either the gophers or 

the lice. The same LRT procedure applied 
to the models of DNA substitution shows 
that the best-fitting model for the gophers 
and the lice allows for different rates for 
transitions and transversions, unequal base 
frequencies, and among-site rate heteroge- 
neity (25). 

The ability to choose among models in 
performing a phylogenetic analysis is one of 
the great strengths of a likelihood approach. 
For many widely used phylogenetic meth- 
ods, there are no generally accepted criteria 
for choosing among possible evolutionary 
models [but see (26)l. For example, the 
maximum parsimony method allows many 
types of data to be analyzed under a large 
class of substitution models or "weighting 
schemes," but few criteria exist for choosing 
among weighting schemes. Methods for 
choosing models are important because dif- 
ferent models may lead to different conclu- 
sions about phylogeny. Much of the arbi- 
trary nature of model choice is eliminated 
by using a likelihood framework; when dif- 
ferent substitution models ~rovide different 
estimates of phylogeny, the tree associated 
with the best-fitting model is preferred. 

The study of substitution models using 
LRTs has also ~rovided molecular evolu- 
tionists with insights about how the process 
of DNA substitution operates. Application 
of LRTs indicates that some of the param- 
eters of models of DNA substitution, which 
reflect the biology, are very important. For 
example, accounting for among-site rate 
heterogeneity almost always provides an 
improved fit of the model to the data [there 
is not as significant an improvement for 

0. undenvoodi - G. setzeri 

0. c a v a t o r  G. panamensis 

0. cherriei - G. cherriei 

0. heterodus G. costaricensis 

rl 0. hispidus - G. c h a p i n i A  

I P bulleri G. perofensis- 

Z. trichopus 

/ 71- c castanops- G. expansus I 
G. personatus - G. fexanus 

G. breviceps - G. ewingi 

G. b. majusculus- G, geomydis 

G. b. halli G .  oklahomensis 

Fig. 2. The MLEs of phylogeny for 13 gopher and louse species for COI sequence data (13 pocket 
gopher species in the genera Cratogeomys, Geomys, Orfhogeomys, Pappogeomys, and Zygogeomys 
and 13 louse species in the genera Geomydoecus; Geomys bursarius is abbreviated as G. b.). Maxi- 
mum likelihood trees were estimated using the program PAUP*, version 4.0 (37). The substitution model 
assumed in the analysis allows unequal transition and transversion rates, unequal base frequencies, and 
among-site rate heterogeneity (38). The log likelihoods for the gopher and louse trees are log L = 
- 1923.01 and log L = -2352.55, respectively. 

pseudogenes, for which selection has been 
relaxed (27)l. The improvement in the like- 
lihood obtained by adding among-site rate 
heterogeneity is usually so great that formal 
consideration of the significance level is 
unnecessary. However, LRTs also allow 
tests of much more subtle hypotheses, such 
as the way in which the process of substi- 
tution differs across the genome (21). 

Tests for Phylogenetic 
Association 

One of the most innovative and useful av- 
plications of phylogenies involves the com- 
parison of topologies estimated for different 
partitions of a data set (for example, differ- 
ent genes) for different species. If the par- 
titioned data share a common evolutionary 
history, then the topologies estimated from 
each should be congruent. A comparison of 
topologies from different data partitions has 
been used to identify horizontal gene trans- 
fer in bacteria and fungi (28); horizontal 
gene transfer may be suspected if the tree 
estimated using one gene is different from 
the tree estimated using another gene for 
the same set of species. Similarly, compari- 
son of tree to~oloeies has been used to . - 
examine the rate of reassortment of the 
RNA segments in the hantavirus (29). The - . . 
hantavirus has three negative sense RNA 
segments; when more than one virus infects 
a cell, the opportunity exists for reassort- 
ment of the infecting viral segments among 
the progeny. If genetic reassortment plays 
an important evolutionary role in the han- 
tavirus. then the trees estimated for the 
same set of viruses from different segments 
should be [and are (29)] different. Finally, a 
comparison of the phylogenies for hosts and 
parasites is a critical step in determining 
whether they have cospeciated. Cospecia- 
tion of hosts and associated parasites is in- 
voked if the branching patterns and specia- 
tion times of the host and parasite trees 
agree (30). 

Although many important questions can 
be addressed in the areas of evolutionary 
biology and epidemiology by comparing 
phylogenetic trees for different species or 
different genes, until recently there have 
been few statistical criteria for decidine - 
whether the trees are in agreement. A like- 
lihood approach uses a LRT of the hypoth- 
esis that trees estimated for different data 
partitions, or different species, are congru- 
ent [that is, the phylogenetic history is the 
same (31)l. The null hypothesis for the 
LRT of congruence is that the same topol- 
ogy underlies different data partitions; the 
likelihood is maximized under this con- 
straint, but other parameters of the evolu- 
tionary model (such as the branch lengths 
or the transition rate-transversion rate ra- 
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tio) are estimated independently for each 
data wartition. The likelihood under the 
alternative hypothesis relaxes the con- 
straint that the same towoloev underlies all 

L 0 ,  

data partitions, although all other aspects of 
the model are the same. 

The  LRT of congruence has been suc- 
cessfully used to explore questions of host- 
parasite cospeciation (25). In closely asso- 
ciated host-parasite systems, an allopatric 
speciation event in a host lineage might be 
expected to isolate parasite populations as- 
sociated with each incipient host species, 
thereby producing a simultaneous allopatric 
speciation evept among parasites. A history 
of cos~eciation in host and ~aras i te  lineages 
should then be reflected byLcongruent phy- 
logenies for hosts and their associated par- 
asites. What  does application of the LRT of 
congruence indicate about cospeciation in 
the gopher-louse system? The LRT statistic 
for the null hypothesis (that the phylog- 
enies for gophers and l ~ c e  are congruent) is 
much smaller than would be expected if the 
null hypothesis were true (32). Hence, al- 
though the trees for the gophers and lice are 
similar (24, 25, 33), the gophers and lice 
did not strictly cos6eciate; host-switching 
by the lice, persistence of multiple ancestral 
louse l~neages, or both must be invoked to 
explain the differences between the phylo- 
genetic trees. 

Are there any portions of the gopher- 
louse tree that are congruent and suggest 
cosoeciation? Analvsis of a subset of the 
associated gopher aAd louse species (the top 
five gopher and louse species of Fig. 2) sug- 
gests that these gopher and louse species 
have cospeciated. A more refined LRT sug- 
gests that the speciation times of the associ- 
ated gopher and louse specles are also iden- 
tical. The null hypothesis for a LRT of "tem- 
 oral cos~eciation" assumes that the tree 
and the relative branch lengths for host and 
parasite phylogenies are the same but that 
the overall rate of substitution for the two 
trees may differ (25). The alternative hy- 
pothesis relaxes the constraint that the 
branch lengths for the host and ~aras i te  - 
trees are proportional. The null hypothesis 
that the branchine times are identical can- " 
not be rejected, which is consistent with a 
model of cos~eciation for five of the associ- 
ated gopher and louse species. Because these 
species appear to have cospeciated, we can 
also examine whether the substitution rate 
differs between gophers and lice (24, 25, 
33). A n  LRT of the null hypothesis that the 
substitution rates are identical in hosts and 
parasites reveals that the substitution rate is 
much higher in lice than in gophers [3.01 2 
0.53 times the rate for gophers (25)l. This 
rate difference may have several biological 
explanations, including a higher mutation 
rate in lice or a shorter generation time (24). 

Prospects for Likelihood Ratio 
Tests in Phylogenetics 

The field of phylogenetics has seen remark- 
able advances in the past 40 years; the 
principal aim has progressed from recon- 
structing phylogenies, with little concern 
for sources of error, to  evaluating the reli- 
ability of trees and (more recently) address- 
ing biological questions using phylogenies. 
Maximum likelihood and LRTs have played 
an important role in the development of 
phylogenetics and should continue to pro- 
vide a source for advances. In many ways, 
testing evolutionary hypotheses that are de- 
pendent on phylogeny presents an  unusual 
and difficult statistical problem to the evo- 
lutionary biologist. However, it appears that 
standard statistical approaches may be ap- 
plied successfully. We  have shown that 
LRTs can be used to study a wide range of 
biological questions, such as the fit of a 
substitution model to sequence data and the 
agreement of phylogenies estimated from 
different data sets. However, the applica- 
tion of LRTs in phylogenetics is a relatively 
recent phenomenon, and the range of ques- 
tions that can be addressed by LRTs is 
currently limited (Table 1). For example, 
several questions of general interest in biol- 
ogy, such as whether two or more characters 
are correlated ( I ) ,  can be addressed using 
LRTs only in restricted circumstances (34). 
Moreover, questions concerning morpho- 
logical evolution are difficult to address us- 
ing LRTs because realistic models of mor- 
phological evolution are generally lacking. 

Although LRTs have proven useful for 
studying a variety of biological hypothe- 
ses, several unresolved questions remain 
concerning the general utility of the ap- 
proach. Few studies have examined the 
power of LRTs for testing particular phy- 
logenetic hypotheses, or whether such 
tests are biased ( 1  6 ,  35). Another problem 
involves the computational expense of the 
hypothesis testing procedure; the likeli- 
hood is repeatedly maximized for many 
simulated data sets, and this can quickly 
stress the computer resources of most re- 
search laboratories. A potential solution 
to this problem is to perform a small num- 
ber of replicates and then fit a probability 
distribution, such as a XZ or gamma, to the 
simulated likelihoods. Also, simple LRTs 
may not  be appropriate in all situations. 
Methods of sequential analysis are needed 
when a hypothesis is originally tested us- 
ing one data set and later reexamined 
using additional data (36). 

Explicit model-based methods are a re- 
cent innovation in phylogenetics. One ad- 
vantage of these approaches is that the 
exact hypothesis being tested is clear if the 
test is properly formulated. These methods 

also offer the possibility that evolutionary 
models may be gradually improved as new 
biological processes are discovered and in- 
corporated into the models used for phylo- 
genetic analysis. Statistical approaches to 
phylogenetic inference have led to many 
improvements in our understanding of the 
process of DNA substitution over the past 
decade, allowing a much broader range of 
biological questions to be examined in a 
rigorous way. 
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