
p888, which contains a Bam HI to Not I fragment 
encoding a full-length profilin cDNA (16); p989, 
which encodes a mutant form of profilin, Pfylp-3, 
lacking the last three amino acids (18); p890, which 
contains the B g  II to Stu I fragment from p l 8 2  (26), 
encoding Bnil p(1227-1397); p813, which con- 
tains the Bgl II to Not I fragment from p l  82, encod- 
ing Bnilp(1414-1953); and p951, which contains 
the Hpa I to Not I fragment from p182, encoding 
Bnil p(1647-1953). The pJG4-5-derived plasmids 
were p561, which contains the Bam HI to Not I 
fragment from p532 (26), encoding Bnil p(1-1953); 
p717, which contains the Bam HI to Eco47 Ill frag- 
ment from p532, encoding Bnil p(1-1214); p558, 
which contains the Eco 47111 to Not I fragment from 
p1 82, encoding Bnil p(1215-1953); p913, which 
contains the B g  I to Stu I fragment from p182, 
encoding Bnil p(1227-1397); p929, which con- 
tains the B g  I to Not I fragment from p l  82, encod- 
ing'Bnilp(l414-1953); p952, which contains the 
Hpa I to Not I fragment from p182, encoding 
Bnilp(1647-1953); and p887, which contains the 
Bam HI to Not I fragment encoding a full-length 
profilin cDNA (76). The PACT-derived plasmid was 
p1124, encoding full-length Act1 p as isolated in a 
catch and release screen (22). The pGAD-C-de- 
rived plasmid was p688, encoding the COOH-ter- 
minal 31 1 amino acids (478-788) of BudGp, as 
isolated in a catch and release screen (22). 

29. For localization of Bnil p, SY2625 (7 7) cells carrying a 
muticopy plasmid encoding either HA-tagged Bnilp 
IpY39tetl (9)j or nontagged Bnilp were induced to 
form mating projections (72). HA-Bnil p was localized 
by immunofluorescence with monoclonal antibody 
HA.11 (Berkeley Antibody Company) as described [J. 
R. Pringle,A:'E. M.Adams, D. G. Drubin, B. K. Haarer, 
Methods Enzymoi. 194, 565 (1 991)l. For localization 
of BudGp, SY2625 cells expressing GFP-Bud6p (23) 
or containing the control plasmid pRS316 (26) were 
induced to form mating projections (72), then ob- 
sewed by fluorescence microscopy with the use of a 
fluorescein isothiocyanate filter set. 

30. Yeast cells of strain 85459 (MATa pep4::HiS3 
prb 7 A 7-6R ura3 trp 7 iys2 leu2 his3A200 can 7) car- 
rying p1025 (26) were grown to mid-og phase in 
raffinose medium, and galactose was added to 
induce the production of HA-tagged Bnil p( l215- 
1953). After 1 hour, extracts were prepared by 
grinding cells with glass beads in ysis buffer [0.6 M 
sorbitol, bovine serum albumin (1 %), 140 mM 
NaCI, 5 mM EDTA, 50 mM tris-HC (pH 7.6), 0.06% 
Triton X-100, 2 mM phenylmethylsulfonyl fluoride, 
aprotinin (10 bg/ml)] as described (2). Escherichia 
coii strain BL 21 (Novagen) was transformed with 
pGEX-3X (Pharmacia) or p907 (26) and induced for 
expression of GST or GST-profilin, respectively. 
GST proteins were purified on glutathione-sepha- 
rose (Pharmacia) and washed twice with phos- 
phate-buffered saline (PBS) [ I40 mM NaCI, 2.7 
mM KCI, 10 mM Na2HP04, 1.8 mM KH2P04 (pH 
7.3)]. Gutathione-Sepharose beads with GST or 
GST-profilin bound were then added to the yeast 
extract containing HA-Bnil p(1215-1953) and in- 
cubated on ice. After 45 min, the beads were col- 
lected and washed twice with PBS. The GST pro- 
teins and associated proteins were eluted with gu-  
tathione [ I 0  mM glutathione, 50 mM tris-HC (pH 
8.0)] and subjected to immunoblot analysis with 
antibodies to GST (Pharmacia) or the HA epitope 
(29) as described (27). 
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A General Model for the Origin of Allometric 
Scaling Laws in Biology 

Geoffrey B. West, James H. Brown,* Brian J. Enquist 
Allometric scaling relations, including the 3/4 power law for metabolic rates, are char- 
acteristic of all organisms and are here derived from a general model that describes how 
essential materials are transported through space-filling fractal networks of branching 
tubes. The model assumes that the energy dissipated is minimized and that the terminal 
tubes do not vary with body size. It provides a complete analysis of scaling relations for 
mammalian circulatory systems that are in agreement with data. More generally, the 
model predicts structural and functional properties of vertebrate cardiovascular and 
respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution 
networks. 

Biological diversity is largely a matter of 
body size, which varies over 21 orders of 
magnitude (1). Size affects rates of all bio- 
logical structures and processes from cellu- 
lar metabolism to population dynamics (2,  
3) .  The dependence of a biological variable 
Y on body mass M is typically characterized 
by an  allometric scaling law of the form 

where b is the scaling exponent and Yo a 
constant that is characteristic of the kind 
of organism. If, as originally thought, these 
relations reflect geometric constraints, 
then b should be a simple multiple of 
one-third. However, most biological phe- 
nomena scale as auarter rather than third 
powers of body mass (2-4): For example, 
metabolic rates B of entire organisms scale 
as M3I4; rates of cellular metabolism, 
heartbeat, and maximal population 
growth scale as M-'I4; and times of blood 
circulation, embryonic growth and devel- 
opment, and life-span scale as MIi4. Sizes 
of biolo~ical  structures scale similarlv: For " 
example, the cross-sectional areas of mam- 
malian aortas 'and of tree trunks scale as 
M3I4. NO general theory explains the ori- 
gin of these laws. Current hypotheses, 
such as resistance to elastic buckling in 
terrestrial organisms (5) or diffusion of 

u . , 

materials across hydrodynamic boundary 
layers in aquatic organisms ( 6 ) ,  cannot 
explain why so many biological processes 
in nearly all kinds of animals ( 2 ,  3 ) ,  plants 
(7), and microbes (8) exhibit quarter-pow- 
er scaling. 

W e  propose that a common mechanism 

underlies these laws: Living things are sus- 
tained by the transport of materials 
through linear networks that branch to 
supply all parts of the organism. We  de- 
velop a quantitative model that explains 
the origin and ubiquity of quarter-power 
scaling; it predicts the essential features of 
transport systems, such as mammalian 
blood vessels and bronchial trees, plant 
vascular systems, and insect tracheal 
tubes. It  is based on  three unifying princi- 
ples or assumptions: First, in order for the 
network to supply the entire volume of 
the organism, a space-filling fractal-like 
branching pattern (9)  is required. Second, 
the final branch of the network (such as 
the capillary in the circulatory system) is a 
size-invariant unit (2) .  And third, the en- 
ergy required to distribute resources is 
minimized (10); this final restriction is 
basically equivalent to minimizing the to- 
tal hydrodynamic resistance of the system. 
Scaling laws arise from the interplay be- 
tween physical and geometric constraints 
implicit in these three principles. The  
model presented here should be viewed as 
an  idealized representation in that we ig- 
nore complications such as tapering of 
vessels, turbulence, and nonlinear effects. 
These play only a minor role in determin- 
ing the dynamics of the entire network 
and could be incorporated in more de- 
tailed analyses of specific systems. 

Most distribution systems can be de- 
scribed by a branching network in which 
the sizes of tubes regularly decrease (Fig. 
1) .  One  version is exhibited by vertebrate 
circulatory and respiratory systems, anoth- 
er bv the "vessel-bundle" structure of mul- 
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tracheae, and osmotic and vapor pressure 
in the plant vascular system). In spite of 
these differences, these networks exhibit 
essentially the same scaling laws. 

For convenience we shall use the lan- 
guage of the cardiovascular system, name- 
ly, aorta, arteries, arterioles, and capillar- 
ies; the correspondence to other systems is 
straightforward. In the general case, the 
network is composed of N branchings from 
the aorta (level 0 )  to  the capillaries (level 
N,  denoted here by a subscript c)  (Fig. 
1C). A typical branch at some intermedi- 
ate level k has length lk, radius rk, and 
pressuse drop Apk (Fig. ID).  The  volume 
rate of flow is Q k  = 'TTT& where Ek is the 
flow velocity averaged over the cross sec- 
tion and, if necessarv, over time. Each , , 
tube branches into nk smaller ones (1 2), so 
the total number of branches at level k is 
Nk = non, . . . nk. Because fluid is con- 
served as it flows through the system 

which holds for any level k. We  next intro- 
duce the important assumption, the second 
above, that the terminal units (capillaries) 
are invariank, so r,, l,, LC, and, consequently, 
Ap, are independent of body size. Because 
the fluid transports oxygen and nutrients for 
metabolism, Qo rn B; thus, if B cr Ma (where 
a will later be determined to be 3/4), then 
Qo M% Equation 2 therefore predicts that 
the total number of capillaries must scale as 
B, that is, N, cc Ma. 

To  characterize the branching, we in- 
troduce scale factors Pk = yk+ ,/yk and yk = 
lk+l/lk. We  shall prove that in order to 
minimize the energy dissipated in the sys- 
tem in the sense of the third principle 
above, the network must be a convention- 
al self-similar fractal in that Pk = P, yk = 
y ,  and nk = n, all independent of k (an 
important exception is Pk in pulsatile sys- 
tems). For a self-similar fractal, the num- 
ber of branches increases in geometric pro- 
portion (Nk = nk) as their size geometri- 
cally decreases from level 0 to level N. 
Before proving self-similarity, we first ex- 
amine some of its consequences. 

Because N, = nN, the number of gener- 
ations of branches scales only logarithmi- 
cally with size 

N =  
a  ln(M/M,) 

In n (3)  

where Mo is a normalization scale for M 
(13). Thus, a whale is lo7 times heavier 
than a mouse but has only about 70% more 
branchings from aorta to capillary. The to- 
tal volume of fluid in the network ("blood" 
volume Vb) is 

A B Fig. 1. Diagrammatic examples of 
segments of biological distribu- 
tion networks: (A) mammalian cir- 
culatory and respiratory systems 
composed of branching tubes; 
(B) plant vessel-bundle vascular 
system composed of diverging 
vessel elements; (C) topological 
representation of such networks, 

D where k spec~fies the order of the 
A P k  level, beginning with the aorta 
- (k = 0) and ending with the capil- 

lary (k = N); and (D) parameters of 

Zk --+ a typical tube at the kth level. 

= 0 1 2 3 4 . . . . .  N 

Model Parameters 

where the last expression reflects the fractal 
nature of the system. As shown below, one 
can also prove from the energy minimiza- 
tion principle that Vb cc M. Because nyP2 < 
1 and N >> 1, a good approximation to Eq. 
4 is Vb = Vo/(l - nyp2) = V,(yp2)-N/ 
(1  - nyp2). From our assumption that cap- 
illaries are invariant units, it therefore fol- 
lows that (yp2)-N M. Using this relation 
in Eq. 3 then gives 

In n 
a = - -  

ln(rPz)  
(5)  

To  make further progress requires knowl- 
edge of y and p. We  shall show how the 
former follows from the space-filling fractal 
requirement, and the latter, from the energy 
minimization principle. 

A space-filling fractal is a natural struc- 
ture for ensuring that all cells are serviced 
by capillaries. The network must branch so 
that a group of cells, referred to here as a 
"service volume," is supplied by each capil- 
lary. Because rk << lk and the total number 
of branchings N is large, the volume sup- 
plied by the total network can be approxi- 
mated by the sum of spheres whose diame- 
ters are that of a typical kth-level vessel, 
namely 4 / 3 ' ~ ~ ( 1 ~ / 2 ) ~ N ~ .  For large N,  this es- 
timate does not depend significantly on the 
s~ecif ic  level, although it is most accurate 
fhr large k.   his condvition, that the fractal 
be volume-preserving from one generation 
to the next, can therefore be expressed as 
4/3~(1, /2)~N, = 4 /3~ (1 ,+ , / 2 )~N~+ , .  This 
relation gives = (lk+1/lk)3 = NdNk+'  = 
lln, showing that yk = n-'I3 = y must be 
independent of k. This result for yk is a 
general property of all space-filling fractal 
systems that we consider. 

The 314 power law arises in the simple 
case of the classic rigid-pipe model, where 
the branching is assumed to be area-pre- 

servine. that is. the sum of the cross-sec- -, 

tional areas of the daughter branches equals 
that of the parent, so nr; = n ' ~ ~ r i + ~  Thus, 
Pk = rk+,/rk = n-'I2 = p, independent of k. 
When the area-preserving branching rela- 
tion, p = n-'I2, is combined with the 
space-filling result for y ,  Eq. 5 yields a = 
314, so B cc M3I4. Many other scaling laws 
follow. For example, for the aorta, r = 
PPNrc = NC1nyc and lo = y-Nrc = N>I,, 
yielding ro rn M3I8 and lo rn M1I4. This 
derivation of the a  = 314 law is essentially a 
geometric one, strictly applying only to sys- 
tems that exhibit area-preserving branch- 
ing. This property has the further conse- 
quence, which follows from Eq. 2, that the 
fluid velocity must remain constant 
throuehout the network and be i nde~en -  - 
dent of size. These features are a natural 
conseauence of the idealized vessel-bundle 
structure of plant vascular systems (Fig. lB),  
in which area-preserving branching arises 
automatically because each branch is as- 
sumed to be a bundle of nNPk elementary 
vessels of the same radius (1 1). Pulsatile 
mammalian vascular systems, on the other 
hand, do not conform to this structure, so 
for them, we must look elsewhere for the 
origin of quarter-power scaling laws. 

Some features of the simple pipe model 
remain valid for all networks: (i) The quan- 
tities y and p play a dual scaling role: they 
determine not only how quantities scale 
from level 0 (aorta) to N (capillary) within 
a single organism of fixed size, but also how 
a given quantity scales when organisms of 
different masses are compared. (ii) The frac- 
tal nature of the entire svstem as ex~ressed, 
for example, in the summation i i  Eq. 4 
leads to a scaling different from that for a - 
single tube, given by an individual term in 
the series. These network svstems must 
therefore be treated as a complete integrat- 
ed unit: thev cannot realisticallv be mod- , , 
eled by a single or a few rep;esentative 
vessels. (iii) The scaling with M does not 
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depend on the branching ratio n. 
We  next consider the dynamics of the 

network and examine the consequences of 
the energy minimization principle, which is 
particularly relevant to mammalian vascu- 
lar systems. Pulsatile flow, which dominates 
the larger vessels (aorta and major arteries), 
must have area-preserving branching, so 
that p = n-'i2, leading to quarter-power 
scaling. The smaller vessels, on the other 
hand, have the classic "cubic-law" branch- 
ing ( lo ) ,  where p = n-'I3, and play a 
relatively minor role in allometric scaling. 

First consider the simpler problem of 
nonpulsatile~flow. For steady laminar flow 
of a Newtonian fluid, the viscous resistance 
of a single tube is given by the well-known 
Poiseuille formula Rk = 8p,lk/.rrr;, where p. is 
the viscosity of the fluid. Ignoring small 
effects such as turbulence and nonlineari- 
ties at junctions, the resistance of the entire 
network is given by (14) , 

Now, nP4/y < 1 and N >> 1, so a good 
approximation is 2 = Rc/(l - nP4/y)Nc. 
Because R, is invariant, Z cc N,-' cc M-a, 
which leads to two important scaling laws: 
blood pressure Ap = QOZ must be indepen- 
dent of body size and the power dissipated 
in the system (cardiac output) W = QoAp cc 
Ma, so that the power expended by the 
heart in overcoming viscous forces is a size- 
indeuendent fraction of the metabolic rate. 
Neither of these results depends on detailed 
knowledge of n, P, or y, in contrast to 
results based on V, cc M, such as Eq. 5, a = 

314, and ro cr M3/'. From Eq. 2, Q0 = nr$iO, 
which correctly predicts that the velocity of 
blood in the aorta & MO (2). However, an 
area-preserving scaling relation P = nPli2 
also implies by means of Eq. 2 that Uk = Ug 
for all k. This relation is valid for fluid flow 
in ulant vessels (because of the vascular bun- 
dl; structure) ( i  1 ,  15) and insect tracheae 
(because gas is driven by diffusion) (16); 
both therefore exhibit area-preserving 
branching, which leads to 314 power scaling 
of metabolic rate. Branching cannot be en- 
tirely area-preserving in mammalian circula- 
tory systems because blood must slow down 
to allow materials to diffuse across capillary 
walls. However, the pulsatile nature of the 
mammalian cardiovascular system solves the 
problem. 

Energy minimization constrains the net- 
work for the simpler nonpulsatile systems. 
Consider cardiac output as a function of all 
relevant variables: W(rk, I,, n,, M). To  sus- 
tain a given metabolic rate in an organism 
of fixevd mass M with a given volume of 

blood Vb(rk, lk, nk, M),  the minimization 
principle requires that the cardiac output be 
minimized subject to a space-filling geome- 
try. T o  enforce such a constraint, we use the 
standard method of Lagrange multipliers (A, 
Ak, and AM) and so need to minimize the 
auxiliary function 

Because B cc Qo and W = ~ ~ ' 2 ,  this prob- 
lem is tantamount to minimizing the im- 
pedance Z, which can therefore bk used in 
Eq. 7 in place of W. First, consider the case 
where nk = n, so that we can use Eqs. 4 and 
6 for Vb and Z, respectively. For a fixed mass 
M, the auxiliary Lagrange function F, 
which incoruorates the constraints, must be 
minimized with respect to all variables for 
the entire system (r,, Ik, and n). This re- 
quires aF/dlk = aF/ark = aF/an = 0, which 
straightforwardly leads to Pk = n-li3. More 
generally, by considering variations with 
respect to n,, one can show that nk = n, 
independent of k. The result, Pk = n-'I3, is 
a generalization of Murray's finding (1 7), 
derived for a single branching, to the com- 
plete network. Now varying M and mini- 
mizing F in Eq. 7 (dF/aM = 0) leads to V, 
cr M, which is just the relation needed to 
derive Eq. 5. Although the result Pk = n-'I3 
is independent of k, it is not area-preserving 
and therefore does not give a = 314 when - 
used in Eq. 5; instead, it gives a = 1. It does, 
however, solve the problem of slowing 
blood in the capillaries: Eq. 2 gives Ec/EO = 
(,pZ)-N = N -1i3 . F or humans, N, - lo1', 

so </Eo = in reasonable agreement 
with data (18). O n  the other hand. it leads ~, 

to an  incorrect scaling law for this ratio: - 
u,/EO M-'I4. Incorporating pulsatile flow 
not only solves these problems, giving the 
correct scaling relations (a = 314 and </i& 

MO), but also gives the correct value for - - 
u-1%. 

L, 

complete treatment of pulsatile flow 
is complicated; here, we present a simpli- 
fied version that contains the essential 
features needed for the scaling problem. 
When an  oscillatory pressure p of angular 
frequency w is applied to a n  elastic (char- 
acterized by modulus E) vessel with wall 
thickness h, a damped traveling wave is 
created: p = pOel('"' '"z~'). Here, t is time, 
z is the distance along the tube, A is the 
wavelength, and p0 is the amplitude aver- 
aged over the radius; the wave velocity 
c = 27roA. Both the impedance Z and the 
dispersion relation that determines c are 
derived by solving the Navier-Stokes 
equation for the fluid coupled to the 
Navier equations for the vessel wall (19). 

In the linearized incompressible-fluid, 
thin-wall approximation, this problem can 
be solved analytically to give 

2 j ,312 
2(1 a )  cip (3 - r p i i i  and 2 - - m 2 c  (8)  

Here a 4 (op/p,)li2r is the dimensionless 
Womersley number (13), and c0 = (Ehl 
2pr)li2 is the Korteweg-Moens velocity. In 
general, both c and 2 are complex functions 
of o, so the wave is attenuated and disperses 
as it propagates. Consider the consequences 
of these formulas as the blood flows through 
progressively smaller tubes: For large tubes, 
a is large (in a typical human artery, a = 
5),  and viscosity plays almost no role. Equa- 
tion 8 then gives c = co and 2 = pco /~ r2 ;  
because both of these are real quantities, 
the wave is neither attenuated nor dis- 
persed. The r dependence of 2 has changed 
from the nonpulsatile rP4 behavior to r-'. 
Minimizing energy loss now gives hk/rk (and, 
therefore, ck) independent of k and, most 
importantly, an area-preserving law at the 
junctions, so Pk = n-li2. This relation en- 
sures that energy-carrying waves are not 
reflected back up the tubes at branch points 
and is the, exact analog of impedance 
matching at the iunctions of electrical - 
transmission lines (1 8). As k increases, the 
sizes of tubes decrease, so a + 0 (in human 
arterioles, for example, a = 0.05), and the 
role of viscosity increases, eventually dom- 
inating the flow. Equation 8 then gives c - 
i'i2aco/4 + 0, in agreement with observa- 
tion (18). Because c and, consequently, A 
now have imaginary parts, the traveling 
wave is heavily damped, leaving an almost 
steadv oscillatorv flow whose imuedance is, 
from Eq. 8, given by the Poiseuille formula; 
that is, the rP4 behavior is restored. Thus, 
for large k, corresponding to small vessels, 
Pk = nP1i3. We  conclude that for pulsatile 
flow, Pk is not independent of k but rather 
has a steplike behavior (Fig. 2). This picture 

- -  - - -  - - - _ 
0 I 

F N 
Branching level k 

Fig. 2. Schematic variation of the Womersley num- 
ber a, and the scaling parameters p, and y, with 
level number (k) for pulsatile systems, Note the 
steplike change in p, at k = kfrom area-preserving 

pulse-wave flow in major vessels to area-increasing 
Poiseuille-type flow In small vessels. 
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is well supported by empirical data (18, 20, 
21 ). The  crossover from one behavior to the 
other occurs over the region where the wave - 
and Poiseuille impedances are comparable in 
size. The app~oximate value of k where this 
occurs (say, k) _is g&en by rt/li; = 8p,Ipc0, 
leading to N - k - N = ln(8p,lc/pc0rc2)/ln n, 
,independent of M. Thus, the number of 
generations where Poiseuille flow dominates 
should be independent of body size. O n  the 
other hand, the cros_sover point itself 
grows logarithmically: k N2 In M. For 
humans, with n = 3 (21), N .=: 15 and 
N = 22 (assumkg N ,  ---- 2 X 101°), where- 
as with n ='g, N .=; 24 and N = 34. These 
values mean that in humans Poiseuille 
flow begins to  compete with the pulse 
wave after just a few branchings, dominat- 
ing after about seven. In a 3-g shrew, 
Poiseuille flow begins to dominate shortly 
beyond the aorta. 

The derivation of scaling laws based on Pk 
derived from Eqs. 7 and 8 (Fig. 2) leads to the 
same results as before. For simolicitv, assume . ,, 
that the crossover is sharp; using a gradual 
transition does not cha_nge the resulting scal- 
ing laws. So, for k - .  k, define Pk r p ,  = 

n-'I3 and, for It < k, Pk - p ,  = n-'I2. This 
predicts that area preservation only persists 
in  the oulsatile region from the aorta - 
through the large arteries, a t  most until k - 
k. First consider the radius of the aorta rO: its 
scaling b-ehavior is now- given by r, pk -N k - n113N+116k = nl/2N-1/6N, 

c >  p < -  c 

which gives r0 M3I8 and, for hEmans, rO/rc 
---- lo4, in  agreement with data (2)  . Using 
Ea. 3 we obtain. for the ratio of fluid 
velocity in  the aorta to that i t t h e  capil- 
lary, &/iic = Nc(rc/ro)2 = nNi3iiO/iic = 
250, independent of M, again in  agree- 
ment with data. Because y reflects the 

space-filling geometry, it remains un- 
changed, so we still have lo ac MIi4. Blood 
volume V,,, however, is more complicated 

This formula is a generalization of Eq. 4 
and is dominated by the first term, which 
represents the contribution of the large 
tubes (aorta and arteries). Thus, Vb 
nNtli3L cx n413N, which, because it must 
scale as M, leads, as before, to  a = 314. As 
size decreases, the second term, represent- 
ing the cubic branching of small vessels, 
becomes increasingly important. This be- 
havior predicts small deviations from 
quarter-power scaling ( a  2 3/4), observed 
in the smallest mammals (2).  A n  expres- 
sion analogous to Eq. 9 can be derived for 
the  total impedance of the system 2. It is 
dominated by the small vessels (arterioles 
and capillaries) and, as before, gives Ap 
and iiO cx MO. 

In order to understand allometric scal- 
ing, it is necessary to formulate a n  integrat- 
ed model for the entire system. The  present 
model should be viewed as a n  idealized 
zeroth-order approximation: it accounts for 
many of the features of distribution net- 
works and can be used as a point of depar- 
ture for more detailed analyses and models. 
In addition, because it is quantitative, the 
coefficients, Yo of Eq. 1, can also, in prin- 
ciple, be derived. It accurately predicts the 
known scaling relations of the mammalian 

cardiovascular svstem (Table 1): data are 
needed to test oiher predictions. For exam- 
ple, the invariance of capillary parameters 
implies Nc cx M3I4 rather than the nalve 
expectation Nc ac M, so the volume serviced 
by each capillary must scale as M1I4, and 
capillary density per cross-sectional area of 
tissue, as Mp'1l2. 

A minor variant of the model describes 
the mammalian respiratory system. Al- 
though ~ u l s e  waves are irrelevant because - 
the tubes are not elastic, the formula for Z is 
quite similar to Eq. 8. T h e  fractal bronchial 
tree terminates in N, ac M3I4 alveoli. The  
network is space-filling, and the alveoli play 
the role of the service volume accounting " 
for most of the total volume of the lung, 
which scales as M. Thus, the volume of a n  
alveolus V, MIi4, its radius r, M1/12, 
and its surface area A, rA2 M1I6, SO the 
total surface area of the lung AL = NAAA 
M'l1l2. This explains the paradox (22) that 
A, scales with an exponent closer to 1 than 
the 314 seemingly needed to supply oxygen. 
The  rate of oxygen diffusion across a n  alve- 
olus, which must be independent of M, is 
proportional to Ap,,A,/r,. Thus, Apo2 
Mp'Il2, which must be compensated for by a 
similar scaling of the oxygen affinity of he- 
moglobin. Available data support these pre- 
dictions (Table 1). 

Our model provides a theoretical, mech- 
anistic basis for understanding the central 
role of body size in  all aspects of biology. 
Considering the many functionally inter- 
connected parts of the organism that must 
obey the constraints, it is not surprising that 
the diversity of living and fossil organisms is 
based on  the elaboration of a few successful 
designs. Given the need to redesign the 
entire system whenever body size changes, 

Table 1. Values of allometric exponents for variables of the mammalian with empirical observations. Observed values of exponents are taken from (2, 
cardiovascular and respiratory systems predicted by the model compared 3); N D  denotes that no data are available. 

Cardlovascular Respiratory 

Exponent 
Variable 

Predicted Observed 

Exponent 
Variable 

Predicted Observed 

Aorta radius r, 
Aorta pressure Ap, 
Aorta blood velocity u, 
Blood volume V, 
Circulation time 
Circulation distance i 
Cardiac stroke volume 
Cardiac frequency w 
Cardiac output E 
Number of capillaries N, 
Service volume radius 
Womersley number a 
Density of capillaries 
0, affinity of blood P,, 
Total resistance Z 
Metabolic rate B 

Tracheal radius 
Interpleural pressure 
Air velocity in trachea 
Lung volume 
Volume flow to lung 
Volume of alveolus V, 
Tidal volume 
Respiratory frequency 
Power dissipated 
Number of alveoli N, 
Radius of alveolus r, 
Area of alveolus A, 
Area of lung A, 
0, diffusing capacity 
Total resistance 
0, consumption rate 
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either during ontogeny or phylogenetic di- 
versification, small deviations from quarter- 
power scaling sometimes occur (3,  23). 
However, when body sizes vary over many 
orders of magnitude, these scaling laws are 
obeyed with remarkable precision. More- 
over, the predicted scaling properties do not 
depend on most details of system design, 
including the exact branching pattern, pro- 
vided it has a fractal structure (24). Signif- 
icantly, nonfractal systems, such as combus- 
tion engines and electric motors, exhibit 
geometric (third-power) rather than quar- 
ter-power scaling (1 ). Because the fractal 
network m p t  still fill the entire D-dimen- 
sional volume, our result generalizes to a = 

D/(D + 1). Organisms are three-dimension- 
al, which explains the 3 in the numerator of 
the 314 power law, but it would be instruc- 
tive to examine nearly two-dimensional or- 
ganisms such as bryozoans and flatworms. 
The model can potentially explain how 
fundamental constraints'at the level of in- 
dividual organisms lead to corresponding 
quarter-power allometries at other levels. 
The constraints of body size on the rates at 
which resources can be taken up from the 
environment and' transported and trans- 
formed within the body ramify to cause 
quarter-power scaling in such diverse phe- 
nomena as rate and duration of embryonic 
and postembryonic growth and develop- 
ment, interval between clutches, age of first 
reproduction, life span, home range and 
territory size, population density, and max- 
imal population growth rate (1 -3). Because 
organisms of different body sizes have dif- 
ferent requirements for resources and oper- 
ate on different spatial and temporal scales, 
quarter-power allometric scaling is perhaps 
the single most pervasive theme underlying 
all biological diversity. 
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Flexibility in DNA Recombination: Structure of 
the Lambda lntegrase Catalytic Core 

Hyock Joo Kwon, Radhakrishna Tirumalai, Arthur Landy,* 
Tom Ellenberger* 

Lambda integrase is archetypic of site-specific recombinases that catalyze intermolec- 
ular DNA rearrangements without energetic input. DNA cleavage, strand exchange, and 
religation steps are linked by a covalent phosphotyrosine intermediate in which Tyr342 
is attached to the 3'-phosphate of the DNA cut site. The 1.9 angstrom crystal structure 
of the integrase catalytic domain reveals a protein fold that is conserved in organisms 
ranging from archaebacteria to yeast and that suggests a model for interaction with target 
DNA. The attacking Tyr342 nucleophile is located on a flexible loop about 20 angstroms 
from a basic groove that contains all the other catalytically essential residues. This 
bipartite active site can account for several apparently paradoxical features of integrase 
family recombinases, including the capacity for both cis and trans cleavage of DNA. 

T h e  integrase protein (Int) of Escherichia tween DNA sequences with little or n o  
coli phage lambda (A) belongs to a large sequence homology to each other (4-8). 
family of site-specific DNA recombinases Like A Int, many of these recombinases 
from archaebacteria, eubacteria, and yeast function in the integration and excision of 
(1-3) that catalyze rearrangements be- viral genomes into and out of the chromo- 

somes of their respective hosts. Others 
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