22.

23.

24,

25.
26.

27.

regions forming the basis for our ROIs with further
support from cerebrocerebellar circuitry. For in-
stance, the lateral neocerebellum sends output to
the prefrontal cortex [F. A. Middleton and P. L. Strick,
Science 266, 458 (1994)]; the right prefrontal cortex
is involved in attention tasks of the type we used [D.
T. Stuss, T. Shallice, M. P. Alexander, T. W. Picton,
Ann. N.Y. Acad. Sci. 769, 191 (1895)]; and cerebellar
input to the right cerebrum is from the left cerebellum
[M. B. Carpenter, Core Text of Neurcanatomy (Wil-
liams & Wilkins, Baltimore, ed. 4, 1891)].

ROl drawing was guided by a human cerebellar atlas [G.
A. Press, J. W. Murakami, E. Courchesne, M. Grafe, J.
R. Hesselink, Am, J. Neuroradiol. 11, 41 (1990)]. The
Motor ROl was drawn from the surface location of the
right primary fissure (pf) to the center of the band of
white matter separating the anterior vermis (AVe) from
the posterior vermis. From there, aline was drawn to the
apex of the AVe. This ROl was completed by a line
drawn along the surface of the cerebellum, back to the
right pf. The Attention ROl was drawn from the surface
location of the left pf to the center of the same white-
matter band. A second line was drawn from this point to
the surface location of the left horizontal fissure (hf). A
line drawn along the surface of the cerebellum back to
the left pf completed this ROI

Because all stimuli were presented at a single spatial
location in the center of foveal vision, eye movement
activation was not predicted to occur. Moreover,
previous work would predict that if eye movements
had occurred, the resulting activation would occur in
the cerebellar vermis [L. Petit et al., J. Neurosci. 16,
3714 (1996)], a region not activated during the At-
tention task. All areas that were active during the
Attention task were also active during the Attention-
with-Motor task, indicating that those behavioral re-
quirements unique to the Attention task—namely,
silent counting and encoding the number of tar-
gets—did not add to the results. Silent counting ac-
tivation has been reported in the inferior cerebellum
[E. Ryding, J. Decety, H. Sjoholm, G. Stenberg, D. H
Ingvar, Brain Res. Cogn. Brain Res. 1, 94 (1993)] and
in a “midline cerebellar region” [J. A. Fiez et al.,
J. Neurosci. 16, 808 (1996)]. In our study, the focus
of attention activity was in the left cerebellar hemi-
sphere, yet the right cerebellar hemisphere is consis-
tently active during verbal tasks (72). Thus, nonver-
bal visual attention activated a side and region in-
consistent with” predicted silent counting effects.
Still, to investigate whether silent counting might
have contributed to these results, we instructed
four subjects to silently count from 1 to 10 repeat-
edly in the absence of any visual stimuli, Examina-
tion of activation during this task revealed no cere-
bellar activation within the Attention VOI. Working
memory activation of the cerebellum has also been
reported (77), and the requirement to encode the
number of targets during the Attention task placed
minor demands on working memory. However, en-
coding the number targets was not required by the
Attention-with-Motor task, and there were no re-
gions of cerebellar activation unigue to the Atten-
tion task as compared with the Attention-with-Mo-
tor task. Thus, like silent counting, working memory
did not contribute to the activation effects ob-
served during the Attention task.

In rats, when cerebellar stimulation occurs in ad-
vance of a sensory stimulus, neural responsiveness
to that stimulus is altered at the brainstem, thalamic,
hippocampal, and cortical levels (4, &), and neural
signal-to-noise enhancement can result (4); such ef-
fects are independent of the engagement of motor
systems. For instance, when background luminance
reduces to noise levels the colliculus response to a
flash, stimulation of vermis lobules VI-VII causes the
colliculus response to that flash to emerge above
noise if stimulation occurs in advance of the visual
stimulus (4).

M. G. Paulin, Brain Behav. Evol. 41, 39 (1993).

J. C. Eccles, M. lto, J. Szentagothal, The Cerebellum
as a Neuronal Machine (Springer-Verlag, Berlin,
1967).

D. Flament, J. M. Ellermann, S.-G. Kim, K. Ugurbil, T.
J. Ebner, Hum. Brain Mapp. 4, 210 (1996); M. E.
Raichle et al., Cereb. Cortex 4, 8 (1994).
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When sensory information is anticipated, attention
is quickly and accurately redirected toward the pre-
dicted source of information. On the basis of neu-
robehavioral and neurophysiological evidence in
patients with cerebellar lesions, it has been hypoth-
esized that the cerebellum, through its connections
with attention systems (2), influences the speed
and accuracy of such attention changes (2, 9).
The cerebellum accomplishes this anticipatory
function by encoding (“learning”) sequences of

29.

30.

multidimensional information about external and in-

ternal events. A large body of evidence shows that
the cerebellum may be involved in such learning [J.
L. Raymond, S. G. Lisberger, M. D. Mauk, Science
272, 1126 (1996)]. Whenever an analogous se-
quence begins to unfold, the cerebellum predicts
what is about to happen, reads out the rest of the
sequence, and triggers changes in the neural re-
sponsiveness of systems expected to be needed in
upcoming moments (2, 9).

31. Anticipation involves predicting the internal conditions
needed for a particular motor or mental operation and
setting those conditions in preparation for that opera-
tion. Complete knowledge of upcoming events is not
necessary; simple exposure to aspects of a stimulus
that may soon arrive will trigger anticipatory responding
of the cerebellum. The anticipatory response is neither a
sensory nor a motor activity, but rather a general re-
sponse that prepares whichever neural systermns may be

{ REPORTS |

necessary in upcoming moments. An example may be
changes in the vestibulo-ocular reflex ( VOR) in anticipa-
tion of changes in vergence observed in the monkey [L.
H. Snyder, D. M. Lawrence, W. M. King, Vision Res. 32,
569 (1992)). A model of how the cerebellum might me-
diate such anticipatory modulation of the VOR has been
proposed [O. Coenenand T. J. Sejnowski, in Advances
in Neural Information Processing 8, D. Touretzky, M.
Mozer, M. Hasselmo, Eds. (MIT Press, Cambridge, MA,
1996), pp. 89-85].

To create functional maps, we interpolated the cor-
relation coefficient images to match the resolution
of anatomical images and registered them to the
anatomical images to reduce warping. Next,
through rotation, translation, and scaling, each
subject's cerebellum was transformed to a stan-
dard anatomical space by normalizing to a single
subject chosen as the standard. All activated vox-
els were then superimposed across subjects for
each task and slice.
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PTEN, a Putative Protein Tyrosine Phosphatase
Gene Mutated in Human Brain, Breast,
and Prostate Cancer

Jing Li,* Clifford Yen,* Danny Liaw,* Katrina Podsypanina,*
Shikha Bose, Steven I. Wang, Janusz Puc, Christa Miliaresis,
Linda Rodgers, Richard McCombie, Sandra H. Bigner,
Beppino C. Giovanella, Michael Ittmann, Ben Tycko,
Hanina Hibshoosh, Michael H. Wigler, Ramon Parsonst

Mapping of homozygous deletions on human chromosome 10923 has led to the isolation
of acandidate tumor suppressor gene, PTEN, that appears to be mutated at considerable
frequency in human cancers. In preliminary screens, mutations of PTEN were detected
in 31% (13/42) of glioblastoma cell lines and xenografts, 100% (4/4) of prostate cancer
celllines, 6% (4/65) of breast cancer cell lines and xenografts, and 17 % (3/18) of primary
glioblastomas. The predicted PTEN product has a protein tyrosine phosphatase domain
and extensive homology to tensin, a protein that interacts with actin filaments at focal
adhesions. These homologies suggest that PTEN may suppress tumor cell growth by
antagonizing protein tyrosine kinases and may regulate tumor cell invasion and metas-
tasis through interactions at focal adhesions.

As tumors progress to more advanced stag-
es, they acquire an increasing number of
genetic alterations. One alteration that oc-
curs at high frequency in a variety of human
tumors is loss of heterozygosity (LOH) at
chromosome 10q23. This change appears to
occur late in tumor development: although
rarely seen in low-grade glial tumors and
early-stage prostate cancers, LOH at 10923
occurs in ~70% of glioblastomas (the most
advanced form of glial tumor) and ~60% of
advanced prostate cancers (I, 2). This pat-
tern of LOH, and the recent finding that
wild-type chromosome 10 suppresses the tu-

morigenicity of glioblastoma cells in mice,
suggest that 10q23 encodes a tumor sup-
pressor gene (3).

To identify this putative tumor suppres-
sor gene, we performed representational dif-
ference analysis (RDA) on 12 primary
breast tumors (4). A probe, CY17, derived
from one of the tumors was mapped to
chromosome 10q23, near markers W1-9217
and WI1-4264, on the Whitehead-MIT ra-
diation hybrid map (5). To map the loca-
tion of CY17 more precisely, we isolated
three yeast artificial chromosomes (YACs)
containing CY17 that are present on the
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sequence tagged site (STS)-based map of
the human genome (6, 7). These YACs
placed CY17 slightly centromeric to the
position determined by radiation hybridiza-
tion and precisely identified its location
(Fig. 1A). Analysis of 32 primary invasive
breast cancers revealed LOH in this region
in about 50% of the samples. No homozy-
gous deletions of CY17 were detected in a
panel of 65 breast tumor cell lines (25) and
xenografts (40) (8), so eight additional
markers were analyzed in the 1023 region
(D10S579, D10s215, AFMAQS6WGO,
D10S541, AFM280WE1, WI1-10275, WI-
8733, WI-6971). We identified homozygous
deletions of AFMAO86WG9 in two xeno-
grafts, Bx11 and Bx38 (Figs. 1B and 2A)
and then screened a bacterial artificial
chromosome (BAC) library with this mark-
er (9). Using new STSs from four indepen-
dent BAC clones, we determined that the
minimal region of deletion was within BAC
C (Fig. 1B) (10). Homozygous deletions of
AFMAQ86WG9 were also detected in two
of eight glioblastoma cell lines, three of 34
glioblastoma xenografts, and two of four
prostate cancer cell lines (I1). One of the
glioblastoma samples, cell line A172, had
the same deletion pattern as the original
breast xenografts; the deletions in the other
samples were larger (Fig. 1B).

To confirm the presence of homozygous
deletions, we hybridized a Southern (DNA)
blot with a 3-kb probe derived from a
genomic clone spanning the region of dele-
tion (12). Xenografts anticipated to have a
homozygous deletion did not hybridize to
this probe; the control xenografts hybrid-
ized to the expected 3-kb band (Fig. 2B).

We identified genes within the 10q23
region by exon trap analysis of BACs C and
D (Fig. 1B) (13). Two trapped exons, ET-1
and ET-Z, had sequences that were perfect
matches to an unmapped UNIGENE as-
sembly of expressed sequence tags (ESTs) as
well as several unassembled ESTs (6).
Clones containing the ESTs were se-
quenced and used to assemble an open read-
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ing frame (ORF) of 403 amino acids (Fig.
3A). To verify the location of this cDNA,
we obtained the intronic sequence around
ET-1 by directly sequencing BAC C. An
STS primer pair (ET-1) was generated that
mapped back to BACs A, B, and C (Fig.
IB). In addition, we screened the Map Pan-
el #2 monochromosome human-rodent hy-
brid panel to confirm the unique location of
this exon on chromosome 10 (14).

Fig. 1. Region of homozy- A
gous deletion on chromo-
some 10g23. (A) The STS-
pased YAC map of the re-
gion surrounding CY17.
Marker locations are taken
from the Whitehead STS-
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pair, and we identified an additional glio-
blastoma cell line (DBTRG-05MG) with a
deletion of 180 base pairs (bp) (Fig. 1B)
(Fig. 2C). Sequence analysis revealed that
the deletion had removed 180 bp of exonic
sequence and the splice donor site from this
225-bp exon. This deletion was not present
in 52 normal blood samples or in more than
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cell lines and xenografts with the deletion. The two breast cancer samples with a deletion are xenografts
Bx11 and Bx38. Glioblastoma line A172 has a deletion encompassing markers JL25 through KP8 and
glioblastoma line DBTRG-05MG has a deletion affecting only ET-1. The glioblastoma samples with a
deletion across the entire region are the cell line U105 and xenografts 2, 3, and 11, and the samples with
deletion of only PTPD, which contains the phosphatase domain, are xenografts 22, 23, 24, 25, and 32.
The prostate cancer cell lines with homozygous deletions are NCI HB60 and PC-3. The 5" end of the
PTEN cDNA was determined to be coincidental with the Not | site 20 kb from the centromeric end of
BAC D by seqguence analysis. These maps are not drawn to scale.

Table 1. Summary of PTEN mutations in tumor cell lines and primary tumors.

Tumor sample Tissue of origin Codon Mutation* Predicted effect
LNCaP Prostate &) AAAto A Frameshift
534T+ Glioblastoma 15 AGA to AGAGA Frameshift
us7MG Glioblastoma 54 49 bp deletion Frameshift
MDA-MB-468 Breast 70 44 bp deletion Frameshift
132T+ Glioblastoma 129 GGA to AGA Gly to Arg
DU145 Prostate 134 ATGto TTG Met to Leu
U373MG Glioblastoma 241 TTTtoTTTTT Frameshift
BT549 Breast 274 GTA AAT to TAA AT Stop
DBTRG-05MGH Glioblastoma 274-342 Delete 204 bp In-frame deletion
134T+ Glioblastoma 337 4 bp deletion Frameshift

"Mutations are indicated in the sense orientation.

mutations in the primary tumors were not found in matched blood DNA.

tPrimary tumors. All other samples are tumor cell lines. The

tDBTRG-05MG has a genomic deletion

of 180 bp within exon ET-1, which includes the splice donor site. Because of this deletion, the transcript contains an
n-frame deletion of codons 274 to 342,
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125 other primary tumors, xenografts, and
cell lines tested.

Sequence analysis of the ORF revealed
a protein tyrosine phosphatase domain
(Fig. 3B) and a large region of homology
(~175 amino acids) to chicken tensin and
bovine auxilin (Fig. 3C). We therefore
call the gene PTEN for Phosphatase and
Tensin homolog deleted on chromosome

Ten. The phosphatase domain of the P-

TEN protein contained the critical (I/V)-
H-C-X-A-G-X-X-R-(S/T)-G motif found
in tyrosine and dual-specificity phospha-
tases (15). The phosphatase domain exon
mapped within all four BACs and was
deleted in all of the samples with homozy-
gous deletions except for DBTRG-05MG.
These results thus placed this exon within
the region of homozygous deletion near
JL25 and AFMAQ86WG9 (Fig. 1B). We
then screened the remaining xenografts and
cell lines for additional homozygous dele-
tions and identified five more glioblastoma
xenografts lacking this exon. These data
indicate that the phosphatase domain en-
coded by PTEN was targeted for mutations
in tumor xenografts and cell lines.

The phosphatase domain of P-TEN is
most related in sequence to those of CDC14,
PRL-1 (phosphatase of regenerating liver),
and BVP (baculovirus phosphatase) (Fig.
3B). CDC14 and BVP are dual-specificity
phosphatases that remove phosphate groups
from tyrosine as well as serine and threonine
(16). These phosphatases can be distin-
guished from the better characterized VHI1-
like enzymes by sequence differences outside
of the core conserved domain. Both PRL-1
and CDC14 are involved in cell growth, and
CDC14 appears to play a role in the initia-
tion of DNA replication (17). In contrast to
P-TEN, these phosphatases do not have ex-
tensive homology to tensin and auxilin. P-
TEN is also homologous to the protein ty-
rosine phosphatase domains of three ORFs
(Y50.2, PTP-IV1, CPTPH) whose protein
products have not been characterized. Of
these hypothetical proteins, only the puta-
tive yeast phosphatase Y50.2 has significant
homology to tensin. Although tensin and
auxilin are not expected to have phospha-
tase activity, they both contain elements of
the protein tyrosine phosphatase signature
sequence (18), which suggests that they may
share a tertiary structure with these enzymes
(19).

If PTEN is a tumor suppressor gene, the
PTEN allele retained in tumor cells with
LOH should contain inactivating mutations.
To search for such mutations, we performed
a protein truncation test on 20 breast, six
glioblastoma, and two prostate tumor cell
lines (20). Two truncating mutations in
PTEN were identified in the breast samples
(Table 1). BT549 cells had a 1-bp deletion of
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Fig. 2. Homozygous deletions in
tumor cell lines and xenografts. (A)
A 6% polyacrylamide sequencing
gel showing the products of PCR
amplification of AFMAO86WG from
breast cancer cell lines (lanes 1 to

l ' l ’ ' 3kb- s Q
o 4) and xenografts (lanes 5 to 8).

M
w Lane 1, MDA-MB-330; lane 2,

= #$.. MDAMB-157; lane 3, MDA-MB-

B Breast
tumors

Brain
tumors

1011 19,38 2 3 #

1.2.3456.7 8

134-Vl; and lane 4, MDA-MB-
435S; lane 5, Bx11; lane 6, Bx15;
lane 7, Bx38; and lane 8, Bx39. (B)
Southern blot analysis of tumor

c xenografts. Genomic DNA was digested with Eco R, the frag-
122 3. 4.5 6,7 8810

ments resolved on a 1% agarose gel, and transferred to a nylon
membrane. The blot was probed with a 3-kb Eco Rl fragment
containing the STS marker JL25, which is within the region of
homozygous deletion (top), or to a second 2-kb Eco Rl fragment
from chromosome 8 (bottom). Lane M, bacteriophage lambda
Hind Il marker. Other lanes contain DNA from breast xenografts
10, 11, 19, and 38 and brain xenografts 2, 3, and 11. Breast
xenografts 10 and 19 were loaded as controls and were not
expected to have homozygous deletions. (C) Homozygous de-
letions of exon ET-1 in glioblastoma cell lines. Genomic DNA
samples were PCR amplified using intronic primers that amplify exon ET-1. The products were resolved
on a 1.2% agarose gel and then stained with ethidium bromide. Lane 1 contains a DNA marker. The
remaining lanes contain PCR products from control templates and seven glioblastoma cell lines: lane 2,
lymphocyte DNA; lane 3, water; lane 4, U118MG; lane 5, A172; lane 6, DBTRG-05MG: lane 7, U373;
lane 8, T-98G; lane 9, U-87MG; and lane 10, U138MG. Full-length products are present for all templates
except water, A172, and DBTRG-05MG.

1000 bp-
500 bp-
300 bp=

1 MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKF 81
82 NCRVAQYPFED ELIKPFCEDLDOWLSEDDNHVAATHCKAGKGRTGVMICAYLLHRGKFLKAQEALDFYGEVRTRD 162
163 KKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEF 243
244 PQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTEND 324
325 LDRANKDKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV* 403

PTEN B2
¥50.2 153
CDC14 243
PRL1 62
PTP-IV1 59
CPTPH 77
BVP 77
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AUXILIN
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Fig. 3. (A) Predicted amino acid sequence of P-TEN. The putative phosphatase domain is under-
lined. The nucleotide sequence has been deposited in GenBank (accession number U93051).
Abbreviations for amino acids are A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; |, lle; K, Lys;
L, Leu; M, Met; N, Asn; P, Pro; Q, Gin; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. (B) Homology
of P-TEN to protein tyrosine phosphatases. The sequence alignment was performed by ClustaiwW
(http://dot.imgen.bcm.tmc.edu:9331/multi-align/Options/clustalw.html). The National Center for
Biotechnology Information (NCBI) ID numbers are P53916 (Y50.2), M61194 (CDC14), A56059
(PRL1), 1246236 (PTP-IV1), 1125812 (CPTPH), and P24656 (BVP). Black boxes indicate amino acid
identities and gray boxes indicate similarities. (C) Homology of P-TEN to chicken tensin and bovine
auxilin. Alignment was performed as in (B) over the region of highest homology. NCBI ID numbers are
A54970 (tensin) and 485269 (auxilin).

1945



a G, leading to the formation of a stop codon
TAA (Fig. 4A), and MDA-MB-468 cells
had a deletion of 44 bp at codon 70, which
resulted in a frameshift on the amino termi-
nal side of the tyrosine phosphatase domain.
Mutations in PTEN were also identified in
three of the six glioblastoma cell lines:
DBTRG-05MG cells had an in-frame dele-
tion of 204 bp caused by the genomically
deleted exon ET-1 (Fig. 4B), U373MG had
a 2-bp insertion at codon 242, and USTMG
had a frameshift at codon 54. Both of the
prostate tumor cell lines had PTEN muta-
tions: LNCaP cells had a 2-bp deletion at
codon 6, leading to a frameshift (Fig. 4C),
and DU145 cells had a Met — Leu substi-
tution at codon 134, within the phosphatase
domain. The latter mutation was detected by
a change in the pattern of in vitro transla-
tion initiation and was not found in >50
other alleles tested. However, Met-134 is not
required for phosphatase activity (Fig. 3B),
so this alteration could be a polymorphism.
With one exception (DU145), all of the cell
lines retained a mutant PTEN allele and lost
the other allele, indicating that these cells
are null for PTEN.

To determine whether PTEN mutations
are present in primary tumors, we screened
genomic DNA: from 18 primary glioblasto-
mas for mutations in three exons (21). Mu-
tations in PTEN were ‘found in three of
these tumors: a 2-bp insertion at codon 15
(534 T), a point mutation resulting in a Gly
—> Arg change at codon 129 (132T), and a
4.bp frameshift mutation at codon 337
(134T) (Table 1 and Fig. 4D). The muta-
tion at codon 129 is within the signature
sequence for tyrosine phosphatases (Fig.
3B). All three tumors appeared to have

LOH in the PTEN region since the wild-
type allele was substantially reduced in in-
tensity. In addition, the tumor mutations
were not detected in paired blood DNA.

In summary, we detected homozygous
deletions, frameshift, or nonsense muta-
tions in PTEN in 63% (5/8) of glioblastoma
cell lines, 100% (4/4) of prostate cancer cell
lines, and 10% (2/20) of breast cancer cell
lines. These frequencies are likely to be
underestimates since the cell lines were not
systematically screened for point mutations.
We screened xenografts only for homozy-
gous deletions in PTEN and detected them
in 24% (8/34) of glioblastoma xenografts
and 5% (2/40) of breast cancer xenografts.
Finally, we detected PTEN mutations in
17% (3/18) of primary glioblastomas; this
frequency is also likely to be an underesti-
mate since the entire coding sequence was
not analyzed. The results of these prelimi-
nary screens suggest that a large fraction of
glioblastomas and advanced prostate can-
cers may harbor PTEN mutations, whereas
the mutation frequency in breast cancer
may be lower. Future systematic analysis of
all tumor types will be of interest.

The likely function of the P-TEN tumor
suppressor as an enzyme that removes phos-
phate from tyrosines is intriguing, given
that many oncoproteins function in the
reverse process—to phosphorylate tyrosines
(22). P-TEN and tyrosine kinase oncopro-
teins may share substrates and the tight
control of these substrates through phospho-
rylation is likely to regulate a critical path-
way that is altered late in tumor develop-
ment. The homology of P-TEN to tensin is
also of interest. Tensin appears to bind ac-
tin filaments at focal adhesions—complex-

es that contain integrins, focal adhesion
kinase (FAK), Src, and growth factor recep-
tors (23). Integrins have been implicated in
cell growth regulation (24) and in tumor
cell invasion, angiogenesis, and metastasis
(25), so it is conceivable that PTEN regu-
lates one or more of these processes. Finally,
the identification of P-TEN as a likely tu-
mor suppressor raises the possibility that
this protein and its substrates will be useful
targets for the development of new thera-
peutics for cancer.
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