variance matrices indicated strong sex linkage for
genetic variation in age and size at maturity.

25. The P and G matrices were sampled from a multi-
variate normal distribution using the estimates of P
and G as means and their sampling variance-covari-
ance matrix as variance. The values for R, the vector
of responses to selection, were sampled from a mul-
tivariate normal distribution with means equal to R
( Table 1) and a sampling variance-covariance matrix
obtained from the multivariate analysis of variance
that compared the control and experimental popu-
lations. Vectors of 1000 values of B and S were
calculated, and the distributions of B and S were
inferred from these. Some of the sampled G matrices
were not positive definite and hence could not be
inverted. In these cases, the implied estimates of B
and S were either positive or negative infinity, de-
pending on the associated value of R, and were
retained as such in our set of 1000 B and S vectors.
If more than 25 of the 1000 estimates were positive

infinity, the confidence interval was deemed to have
no upper bound. Consequently, there are four differ-
ent ways of reporting the results, depending on the
nature of the G matrix and the results of the 1000
simulations: (i) One-sided confidence intervals are
reported when singularity of more than 2.5% of the
sampled G set the upper confidence limit at infinity.
The one-sided value equals the 25th value of 1000
simulations (rank ordered from smallest to largest)
and hence is equivalent to the lower bound of a 95%
confidence interval. (i) Confidence intervals with low-
er and upper bounds are reported when the simula-
tions allowed us to set both an upper and lower limit
to the distributions. The reported values are the 25th
and 975th values of the 1000 simulations. (jii) Bivari-
ate estimates of B and S were only possible for the
males from both experiments. The only data set for
which we could estimate the confidence limits for the
bivariate analysis was the El Cedro males, for both
the 4- and 7.5-year results. Here the limits mark the

Local Hormone Networks and Intestinal
T Cell Homeostasis

Jin Wang, Michael Whetsell, John R. Klein*

Neuroendocrine hormones of the hypothalamus-pituitary-thyroid axis can exert positive
or negative immunoregulatory effects on intestinal lymphocytes. Small intestine epithelial
cells were found to express receptors for thyrotropin-releasing hormone (TRH) and to
be a primary source of intestine-derived thyroid-stimulating hormone (TSH). The gene
for the TSH receptor (TSH-R) was expressed in intestinal T cells but not in epithelial cells,
which suggested a hormone-mediated link between lymphoid and nonhematopoietic
components of the intestine. Because mice with congenitally mutant TSH-R (hyt/hyt
mice) have a selectively impaired intestinal T cell repertoire, TSH may be a key immu-

noregulatory mediator in the intestine.

The intestine constitutes an important
host barrier to foreign antigen entry. This is
reflected in the extensive complexity of the
intestinal immune system, which is charac-
terized by novel lymphocyte subsets (1) and
by bidirectional intercellular communica-
tion between lymphocytes and epithelial
cells (2). We recently demonstrated a role
for neuroendocrine hormones in the devel-
opment and regulation of intestinal T cells,
in particular the TCRa, CD8af intraepi-
thelial lymphocytes (IELs) (3, 4). Here, we
describe a pathway of hormone synthesis
and use mediated by thyrotropin (TSH),
which links components within the small
intestine and is used in local IEL immune
regulation.

Freshly extracted small intestine cells
(5) were characterized by flow cytometric
analysis (6, 7). Populations of epithelial
cells and lymphocytes were enriched to
>97% purity, as verified by reactivity with
monoclonal antibody (mAb) G8.8, a
marker of murine epithelial cells, and a
mADb to the CD45 leukocyte-common an-
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tigen (LCA), a marker of nucleated hema-
topoietic cells (8-10) (Fig. 1). Purified
IELs and epithelial cells were assayed for
expression of the TSHB gene by reverse
transcriptase—polymerase chain reaction
(RT-PCR) (11). This yielded PCR products
of the predicted size from both the IEL-
enriched fraction and the epithelial cell-
enriched fraction (Fig. 2), which were con-
firmed (12) by DNA sequence analyses
(11). Because TSH production is controlled
in part by TRH, purified [ELs and epithelial
cells were assayed for TRH receptor (TRH-
R) gene expression by RT-PCR (I11). A
PCR product of the anticipated size was
obtained from intestinal epithelial cells,
whereas no PCR product was obtained from
intestinal IELs (Fig. 2). The PCR product
identified in epithelial cells was verified by
reamplification using a nested upstream
TRH-R primer located within the amplifi-
cation region (11); this resulted in a single
band of the anticipated 146—base pair size
with sequence homology to murine TRH-R
(11, 13).

Secretion of TSH by IELs and epithelial
cells was measured by enzyme-linked immu-
nosorbent assay (ELISA) (14) using super-
natants of cells cultured with and without
TRH according to published protocols (15).

REPORTS

two-dimensional range of the 950 simulated values
closest (in Euclidean distance) to the estimates. (iv)
Standard errors were not estimable for the bivariate
estimates of B and S for males from the Aripo River
because of the near singularity of the G matrix. In this
case, the difference between B values for age and
size at maturity are more pronounced in the bivariate
analysis, which takes the high genetic correlation
between them into account, than in the univariate
analysis.
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Although TSHR was produced by both IELs
and epithelial cells, epithelial cells pro-
duced considerably more TSHP than did an
equivalent number of IELs (Fig. 3A), with
maximal secretion occurring at 1077 to 10~°
M TRH. This secretion pattern, including
the high-dose prozone effect of TRH, is
similar to previous reports of TRH-induced
TSH secretion (15). TSH was detected in
epithelial cell supernatants as early as 1
hour after stimulation (Fig. 3B), implying
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LCA_ LCA
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/Gg.a !“\ ngcs/s.s
m AWAN
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Fig. 1. One-color flow cytometric analyses, show-
ing reactivities of LCA and epithelial cell antigen
(G8.8) mAbs for IEL and epithelial cell populations.
C, isotype-species—matched control mAb.

Intestinal
IEL (euthymic)  epithelial cells IEL (nude)
123456 1284586 1.2 34586
- -
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Fig. 2. RT-PCR analyses of gene expression in
intestinal IELs and intestinal epithelial cells from
euthymic mice and intestinal IELs from congeni-
tally athymic nude mice. Lane 1 (in each panel),
base pair standards; lanes 2 to 4, RT-PCR-ampli-
fied gene products for TRH-R, TSHB, and TSH-R,
respectively; lane 5, primer controls in the ab-
sence of cDNA templates; and lane 6, controls for
DNA contamination of RNA (that is, PCR analyses
of RNA preparations after treatment with deoxyri-
bonuclease but before cDNA construction).
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that TSH produced by those cells is proba-
bly regulated at the posttranscriptional
stage from preexisting transcripts. Unlike
epithelial cells, there was a slight but not
statistically significant (P > 0.05) increase
in TSH production by IELs in response to
TRH (Fig. 3B), which could reflect cross-
reactivity of TRH on receptors other than
TRH-R (16). Although some epithelial
cells and [ELs appear to produce TSH con-
stitutively (Fig. 3, A and B), those cells also
may have been activated in situ by TRH or
perhaps by endotoxin (16, 17).

To determine which cells in the small
intestine were responsive to TSH, we stud-
ied the expression of the TSH receptor
(TSH-R) gene (11, 14) in purified prepa-
rations of IELs and epithelial cells. A PCR
product with sequence homology to the
murine TSH-R gene (I4) was obtained
from intestinal IELs (Fig. 2) (11); no PCR
product was obtained from intestinal epi-
thelial cells. Because previous studies have
demonstrated that IELs from congenitally
athymic nude mice do not respond to ex-
ogenous TSH therapy (3), TRH-R, TSH,
and TSH-R gene expression was studied in
IELs from nude mice. Similar to euthymic
mice, IELs from nude mice expressed the
TSHP gene and did not express the TRH-R
gene (Fig. 2); however, they failed to ex-
press the TSH-R gene, which explains why
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Fig. 3. (A) TSH secretion by IELs and epithelial
cells after 48 hours of culture in the absence of
TRH. (B) TSH secretion by IELs (J) and epithelial
cells (O) in the presence of varying concentrations
of TRH; values are means = SEM of three exper-
iments assayed at 1, 6, and 48 hours after stimu-
lation. (C and D) Relative binding of 2°|-labeled
TRH (C) and '2%I-labeled TSH (D) to splenic T cells,
peripheral lymph node T cells (LNC), euthymic (eu)
and nude (nu) mouse IELs, intestinal epithelial
cells, and the MODE-K murine small intestine cell
line. Values are means plus the range of radioac-
tive hormone binding of triplicate cultures from
four or five mice. Statistical analyses were done by
Student’s t test for unpaired observations.
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[ELs in these animals fail to respond to
TRH-TSH therapy (3). The experiments
described above were reproducible in three
euthymic and two athymic BALB/c or
C57BL/6 mice, and the RT-PCR pattern
obtained for epithelial cells was observed
using the MODE-K murine small intestine
cell line (I8).

To study the surface expression of TRH
and TSH receptors on IELs and epithelial
cells as well as on lymphoid cells outside the
intestine, we used !?°I-labeled TRH and
TSH binding assays (19-21). TRH did not
bind appreciably to T cells from the spleen,
peripheral lymph nodes, or IELs; however,
compared to those cells, there was a >15-
fold increase in TRH binding to freshly
extracted small intestine epithelial cells and
MODE-K cells (Fig. 3C) (18). No differ-
ences were noted in the pattern of TRH
binding to nude mouse IELs or epithelial
cells relative to that seen in euthymic mice.
In contrast, binding of '**I-labeled TSH to
T cells from I[ELs was ~50 times the
amount of binding to intestine epithelial
cells or MODE-K cells and was significantly
greater (P < 0.01) than TSH binding to T
cells from the spleen or peripheral lymph
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Fig. 4. (A) Numbers of CD8aa*, CD8af3*, CD4 ™,
CD4-87, TCRaB™, and TCRy3™" IELs per small
intestine, and (B) numbers of CD4%8~, CD4~8",
CD8aB ™", and TCRaB™ cells per spleen, of +/+
and hyt/hyt mice at 8, 12, and 16 weeks of age
calculated from flow cytometric analyses and total
numbers of cells isolated. P values indicate statis-
tically significant differences in the numbers of
cellsin hyt/hyt mice relative to normal mice at each
time point as determined by Student’s ¢ test for
unpaired observations. Values are means plus the
range of numbers of cells obtained from three to
seven +/+ or hyt/hyt mice analyzed separately.

nodes (Fig. 3D). Unlike euthymic mice,
[ELs from nude mice did not bind TSH.
These findings demonstrate a differential
pattern of hormone use by distinct cell pop-
ulations in the small intestine and identify a
hormone defect associated with IELs in
congenitally athymic mice.

To explore the extent to which TSH is
functionally involved in IEL immunoregu-
lation, we studied T cell populations in
hyt/hyt mice, which have a congenital point
mutation in the TSH-R gene resulting in a
Pro— Leu substitution in the TSH-R poly-
peptide (22, 23). Because hyt/hyt mice have
elevated levels of biologically active serum
TSH but are unable to use TSH (22, 23),
these mice permit a comparison between
the [ELs in animals with minimal capacity
to use TSH and those of mice that use TSH
normally. Relative to normal mice, hyt/hyt
mice had one-third to one-fourth as many
total [ELs, a slight decrease in CD8aa™ and
TCRy3™" IELs, and only 3.3 to 4% as many
TCRafB™ and CD8af ™ IELs (P < 0.001),
as calculated from the proportion of cell
staining by flow cytometry and the total
number of cells recovered per mouse (Fig.
4A). These changes in hyt/hyt mice were
similar to the hormone-associated IEL per-
turbations in neonatally thymectomized
mice (3); in both, CD4 "8~ [ELs were large-
ly unaffected. The numbers of CD4-8" IELs
in hyt/hyt mice were the same as in normal
mice (Fig. 4A), suggesting that the TSH-
related developmental defect of hyt/hyt mice
restricts the ability of some immature
CD478" IELs (24) to proceed to maturity.
Outside the intestine, T cell numbers in
hyt/hyt mice were about half those of normal
mice, as shown in Fig. 4B for spleen cells.
CD8" T cells in the spleen were exclusively
CD8aB™, indicating that the reduction in
CD8af IELs in hyt/hyt mice was not the
result of a defect in CD8 B-chain expres-
sion. These patterns held true for T cells in
the peripheral lymph nodes, Peyer’s patch-
es, and thymus of hyt/hyt mice tested be-
tween 8 and 20 weeks of age, and were
independent of environmental factors asso-
ciated with animal housing (5).

The paracrine-autocrine network de-
scribed here explains how intestinal T cells
can be regulated locally by hormones, be-
cause it places the source, induction, and
use of TSH within the intestine itself. Al-
though lymphoid cells outside the intestine
are capable of binding TSH (Fig. 3) (25),
the finding of greater TSH binding to IELs
than to extra-intestinal T cells suggests that
differences exist in the use of TSH between
those populations, which also may involve
variations in hormone-mediated signaling.
The restricted ability of both hyt/hyt and
nude mice to use TSH, in combination with
the differences in IELs between these mice
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and normal mice, suggests that TSH is an
essential component of IEL homeostasis.
Although our studies do not exclude the
possibility that TSH activates secondary
hormone responses such as thyroid hor-
mones or corticosteroids, this is unlikely
because hyt/hyt mice have normal levels of
corticosteroids (26) and because we found
no increases in the numbers of TCRaf or
CD8af IELs in hyt/hyt mice supplemented
with thyroxine for 3 weeks starting at 3 or 6
weeks of age (4, 26). Given that TSH can
be stored in secretory granules (27, 28), is
released from epithelial cells shortly after
TRH stimulation (Fig. 3B), and has a short
half-life in vivo (28), a TSH-mediated sig-
nal used for IEL immunoregulation would
occur rapidly. A dynamic interactive hor-
mone system such as this could efficiently
adjust the distribution of IELs in selected
regions of the intestine under normal con-

di

tions and may explain the localized na-

ture of intestinal immunopathologies in
various disease states.

o~
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