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ices, can be identified through their funda­
mental bands of vibration, which are seen in 
fluorescence excited by solar radiation. IR 
observations of comets (1-3) from the ground 
are limited to a few atmospheric windows. IR 
spectra of comets above Earth's atmosphere 

The Spectrum of Comet Hale-Bopp (C/1995 01) 
Observed with the Infrared Space Observatory 

at 2.9 Astronomical Units from the Sun 
Jacques Crovisier,* Kieron Leech, Dominique Bockelee-Morvan, 

Timothy Y. Brooke, Martha S. Hanner, Bruno Altieri, 
H. Uwe Keller, Emmanuel Lellouch 

Comet Hale-Bopp (C/1995 01) was observed at wavelengths from 2.4 to 195 microme­
ters with the Infrared Space Observatory when the comet was about 2.9 astronomical 
units (AU) from the sun. The main observed volatiles that sublimated from the nucleus 
ices were water, carbon monoxide, and carbon dioxide in a ratio (by number) of 10:6:2. 
These species are also the main observed constituents of ices in dense interstellar 
molecular clouds; this observation strengthens the links between cometary and inter­
stellar material. Several broad emission features observed in the 7- to 45-micrometer 
region suggest the presence of silicates, particularly magnesium-rich crystalline olivine. 
These features are similar to those observed in the dust envelopes of Vega-type stars. 
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Fig. 1. The 2.5- to 5-km spectrum of Hale-Bopp 
observed with PHT-S on 27 September 1996. 
The aperture is 24 arc sec x 24 arc sec and the 
spectral resolution is hi8h - 90. Conspicuous are 
the bands of H,O at 2.7 km, CO, at 4.25 pm, and 
CO at 4.65 pm. 

have been observed for comet Halley, from 
the VEGA space probes, and from the Kuiper 
Airborne Ohservatory (4-i) ,  but they were 
limited in spectral coverage, resolution, or 
both. Hale-Bopp, an  intrinsically bright long- 
period comet ( P  - 2500 years) that will reach 
perihel~on at 0.91 AU on  1 .4pril 1997, pro- 
vides a rare opportunity to measure the whole 
IR spectrum of a comet with good spectral 
resol~~t ion and sensitivity, by use of the Earth- 
orbiting Infrared Space Observatory (ISO). 

Our observations (8) were performed vr-it11 
the grating spectrometer of the photometer 
(PHT-S, wavelengths of 2.5 to 5 and 6 to 12 
km),  the short-wavelength spectrometer 
(SWS, 2.4 to 45 km) ,  and the long-wave- 
length spectrometer (LWS, 45 to 195 p.m) on 
board I S 0  (9).  The  2.5- to 5 -km spectml 
region covers the most intense fundalnental 
vil~rational bands of cometary volatiles which 
are emitted through tluorescence (1 ). This 
region vr-as observed at low resolution with 
PHT-S. In April, only the v, hand of CO, at 
4.25 k m  was detected (1C). O n  27 September 
and 6 October, vr-e detected the v, band of 
COZ wlth a high signal-to-noise ratio (SNR), 
the H I O  band at 2.7 p.111, and the CO ~ ( 1 - 0 )  
band (Fig. 1)  (1 1). These bands were also 
olxerved at higher spectral resolution with the 
SWS (1 2). The CO and CO, l~ands were seen 
with a lower SNR compared to the PHT-S 
spectra due to the litnited sensitivity of the 
SWS detectors at these \vavelengths. The  3.2- 
to 3.6-km emission, which is a major feature 
of comets observed at -1 AU and is a t t r~b-  
uted to tnethanol (CH,OH),  ethane (CIH6) ,  
and other unidentified species (3,  13), was 
only detected in the SWS spectra. 
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toire de Pars-Meudon, F-92195 Meudon. France 
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5 Fig. 2. (Top) The 2.6- to 2.9-pm 
spectrum of Hale-Bopp observed 
with the SWS, an average of the 27 
September and 6 October 1996 
data. The aperture is 14 arc sec x - 

% 20 arc sec and the spectral resou- 
2 tion IS h!6h - 1500. (Bottom) The - '5 0 synthetic fluorescence spectrum of 
c 
,- water for Q,., = 3.6  x lo2%-', 
- T,,, = 28.5 k, and OPR = 2.45, 

which is the best f ~ t  to the data. All 
the observed lines are due to water, 
except the Ilne at 2.869 krn whch IS 

dentifled to the OH v(1-0) P, (5!2) 
-5 transition. The orlho and para lines 

2.6 2.7 2 8 2.9 of the I,, band of water are tagged. 
Wavelength [ ~ ~ r n ]  

The  gas production rates Q for HIO,  C02,  
and CO nere evaluated assuming resonant 
fluorescence excited by the sun (Table 1)  (1,  
14). W e  assumed optically t h i ~ i  gas florving 
isotropically at constant velocity [0.5 km sp '  
in April and 0.7 km s-' in September (15)] 
and standard photodissociation lifetimes (1 6). 
These parameters are fairly well known, and 
the principal source of error in the gas pro- 
duction rates is probably the -30% uncer- 
tainty in the flux calibration. 

Other determinations of the production 
rates of CO and H 2 0  (from O H )  at radio 
wavelengths and in the ultraviolet with the 
Hubble Space Telescope are similar to our 
estimates (17). The production rates of CO 
and COZ relative to H Z O  at large heliocentric 
distances (rl,) where Hale-Bopp was observed 
may not be representative of the true mixing 
ratios in the nucleus because of the high 
volatility of these species. Numerical simula- 
tions (18) have been used to evaluate this 
fractionation effect, which appears to be itn- 
portant at 7, = 4.6 AU.  A t  r,, = 2.9 AU, the 
[CO]/[HZO] and [COZ]/[H20] measured in 
the coma of Hale-Bopp could be closer to the 
mixing ratios of the nucleus ices, b ~ ~ t  tnay still 
be an  overestimate. In any case, H 2 0 ,  CO, 
and C02 appear to be the tnain olxerved 
constituents of cotnetav ices. Other conatit- 
uents have relative abulldances of the order of 
a few percent, at most (15, 19). In this re- 
spect, the conlposition of cotnetary ice ap- 
pears to be ver\- similar to that of Interstellar 
ice observed by IS0 (20). 

O n  27 September and 6 October, specific 
SK'S observations were dedicated to the 2.6- 
to 2.9-p.m spectral region, which contalns 
bands of water (v , ,  v3, and several hot bands), 
as well as the 0 - H  stretching modes of several 
tnolecules (Fig. 2). The strorg lines observed 
between 2.62 and 2.73 uln belone to the v, 
HZO band, resolved i r k  its ro-Yribrationd 
lines. The  2.73- to 2.90-c~m region shovr-s 
several weak lines. Using a kmrescence mod- 
el of H Z O  (14, 21), we computed a synthetic 
saectrum that takes into account excitation of 
the v, and v3 f~~ndamental  bands and of the vZ 

+ v , - v , , v , + v , - v l , a ~ i d v l + v , - v 3  
hot bands of H 2 0 .  There is a good match with 
the observed weak features (Fig. 2). This c o ~ i -  
firms that the cometary emission around 2.8 
p.m, previously found in Halley and comet 
Wilson ((211986 P I )  (22), is mainly due to 
H,O (21). Ati additional line observed at 
2.869 p.m corresponds to the oil-0) P I  (512) 
transition of O H .  The  tluorescence of this line 
was predicted to be strong, together with the 
v(1-0) Q, (312) line at 2.803 p.m, which 
appears in our spectrum to be blended with 
H Z O  lines (23). 

The  lines of the v, H,O band are observed 
x i th  high SNR. Their relative intensities are 
sensitive to the physical conditions of corn- 
etary water. They allovr- us to measure the 
H,O rotational tetnperature (TIo,) and its or- 
tho-to-para ratio (OPR), a tracer of the origin 
and evolution of comets (24). Using our mod- 
el (14, 21), we solved by a least-square meth- 
od for the proiiuction rate, the OPR and Trot 
which give the best fit to the observed spec- 
trum (Fig. 2). W e  assumed that the rotational 
population distributions for both para and or- 
tho states can be described 177; a single TI,, and 
we took opaclty effects into account (14). The  

Table 1. Molecular producton rates from PHT-S 
spectra. Upper limits are 3-(T. All these results are 
subject to a 30% uncertainty on the callbratlon. 
The band for H,O and CO, is V, and the band for 
CO is v(1-0). The g-factors (fluorescence effcien- 
cy, in s- ' )  are as follows: H,O, 2.9 x GO,, 
2.6 X lo-"; GO, 2.6 X lo-? Molec. indicates 
molecule. 

Molec. Flux Q 
(W m-') (Molec, s-') 

27 Apr. 1996: rh = 4.59 AU, 1 = 4.28 AU 

H z 0  1 2 . 6  x 10-~-i , i  x 1oZ9 

:E2 2.1 x lo- '"  1 .3  x loz8 
1 1 . 2  X 10-'"90 X loz8 

27 Sept. 1996: rh = 2 93 AU, 1 = 2.96 AU 

H,O 2.0 x 10-1" 3 .3  x 1oZ9 
2.7 X lo-;" 7.4 X 10'" 
6 7 x lo-'" 2 .3  x 10'~" 

'subject to baselne uncertainty 
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retrieved T,,, is 28.5 K, in agreement with the 
tetnperatures derived fro111 the radio lines of 
other species (15). The  OPR is 2.45 + (2.10 
and is significantly lower than the statistical 
equilibrium value of 3, achieved for tempera- 
tures exceeding -60 K. Such a value suggests 
that conletary H Z O  molecules forrned at a 
temperature of -25 K and were not subject to 
subsequent re-equilil~ration (25). 

Water \\,as also observed a t  6 p m  by the  
SKfS through the  ro-vibrational lines of its 
v2 band. In  addition, the  far-IR LKfS spec- 
trum (Fig. 3 )  shows e~nission of the 212-1,1 
rotational line of water [the 221-2,2 Hz@ 
line falls a t  a very close \vavelength; its 
intensity in cometary atmospheres is ex- 
pected to be much smaller, however (14)]. 
T h e  3,3-2,2 H,O line is also marginally 
present. These lines are, as predicted ( 1 ,  
14),  the strongest cometary lines in  this 
spectral domain. Acting as coolers, they 
have an itnportant role in  the  thermal bal- 
ance of cometary atmospheres. 

T h e  7- to 45-pm region observed with 
the SLYIS o n  6 October ( the  spectrum ob- 
tained o n  27 September is almost identical) 
shovr-s continuum and strong emisslon fea- 
tures at 10 to 12, 19.5, 23.5, and 33.5 p m ;  
less intense features are also seen at 16 and 
27.5 k m  (Fig. 4) .  T h e  spectrum represents 
thermal etnlssion from the dust grains in  the  
coma. A temperature of 200 K was derived 
by fitting a black-body curve to the spec- 
trum at 7.5 and 13 to 15 k m  (Fig. 4) .  T h e  
fitted black-body temperature is -2091, 
higher than the calculated eq~~i l ibr ium 
black-body temperature of 162 K at  T~ = 2.9 
AU, indicating that the thermal emisslon 
arises from particles that are snlall com- 
pared to the  wavelength. 

T h e  spectral peaks tnay be indicative of 
minerals w l t h ~ n  the dust particles. T h e  
e~nission feature at a wavelength of 9 to 12 
p m  has been observed from the  ground for 
a number of comets a t  spectral resolution 

0 1 " " ' " " ' ~  160 180 

Wavelength [urn] 

Fig. 3. The rotational water lines observed in Hale- 
Bopp with the LWS on 6 October 1996. The ap- 
erture IS 100 arc sec and the spectral resoluton is 
X/6X - 200 The [CII] line at 157.7 p.m, also 
present n the same field observed several days 
later, IS probably due to emlsson or~gnat~ng in the 
background ~nterstellar medum. 

-50 (2 ,  5 ) ,  including Hale-Bopp (26).  This 
band ma\; be due to the  stretching Inode of 
Si-O in  small silicate grains. Several of the 
comets, includi~lg Hale-Bopp, exhibit a dis- 
tinct peak a t  11.3 p m  superimposed o n  a 
broader emission: this neak mav be attri17- 
uted to crystalline olivine (2) .  Anlorphous 
silicates have only l~ road  bands around 10 
and 20 p m  (27).  T h e  broad excess emission 
at 16 to 26 p m  in our spectrum is typical of 
silicates (27-3C), regardless of specific min- 
eralogy. Crystalline olivine (Mg, Fe)_SiO+ 
has additional bands at 16.5, 19.8, 24.0, 
27.6, and 33.9 p m  (23,  29).  Crystalline 
pyroxene (hfg, Fe, C a ) S i 0 3  has bands at 
15.6, 26.5, 29.5, 37.5, and 49 k m  (3C) 
(there is some variation in peak positions 
among the  pyroxenes, but none of the peaks 
are the  same as those of olivine). Thus, all 
the emission features observed In the  6- to  
45-pm spectrum of Hale-Bopp appear to 
correspond to those of crystalline olivine 
rather than Dvroxene. A detailed comoari- 

L ,  

son with the  spectra ol~talned for a series of 
olivines with various Mg/Fe ratios (23) re- 
veals that the peaks of the  Hale-Bopp spec- 
trum match those of the  Mg-rich olivine 
(forsterite) Inore precisely. A Mg-rich com- 
position is consistent with the  wavelength 
of the 11.3-pm peak and with the  dust 
particle colnposition measured duril~g the  
Halley fly-bys (3  1 ). 

Until  now, the  nature of conletarv dust 
has been a debated issue pritnarily on the  
basis of analysis of the shape of the  9- to 
12-pm emlsslon observed from the ground 
(2 ,  5 ,  29).  T h e  only prevlous spectra a t  

longer wavelengths were from air l~orne 
observations of Halley a t  1.2 to  1.4 A U ,  
with a resolution of -100 ( 7 )  or -25 (6 ) .  
A peak at 28.4 k m  is present in  the  first 
spectrum with possible features a t  17, 
19.5, and 23.8 k m  ( 7 ) ;  these peaks are 
hardly visible in  the  other spectra (6 ) .  
They were tentatively attributed to  crys- 
talline silicates. T h e  Hale-Bopp I S 0  spec- 
trum no\v suggests that  the  dust of this 
comet contains crvstalline silicates. and 
particularly Mg-rich olivine. 

Recent I S 0  observations of the circum- 
stellar disks of Vega-type stars have revealed 
that the dust shells around these stars also 
contain crystalline silicates (32, 33). Crystal- 
line silicates were suggested f ro~n analysis of 
the 10- to 12-+tn emission of P Pic (34). 
Indeed, the spectrum of H D  100546 (an ~II -  

ternlediate star betvr-een Herbig he/Be stars 
and \'ega-like objects) shovr-s features sinlilar 
to those in Fig. 4 (32). The  sitnilarity of these 
spectra with our spectra of Hale-Bopp esta17- 
lishes a possible link between the primordial 
solar systetn dust preserved in comets and the 
dust around young stars. It has even been 
suggested that the grains in H D  100546 are 
being released fro111 conletary bodies colliding 
with the central star (35). 
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Fig. 4. Tile 7- to 45-p.m spectrum of Hale-Bopp 
observed with the SWS on 6 October 1996. The 
spectral resolution has been degraded to X:SX - 
500. The r~pples in the 12- to 28-pm reglon are 
instrumental (caused by Interferences at the surface 
of the detectors). The instrumental aperture is 14 arc 
sec x 20 arc sec up to 12 p.m, 14 arc sec X 27 arc 
sec from 12 to 29 pm, and 20 arc sec x 33 arc sec 
aboiie 29 pm. The subspectra obtained n the differ- 
ent bands of the instrument, which were offset with 
respect to one another due to d~fferent ~nstrumental 
apertures and to callbration uncerta~nt~es, iha\ie been 
scaled to the 6- to 12-p.m band to obta~n a contnu- 
ous spectrum. The dotted Ine shows a black-body 
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Ground-Based Thermal Infrared Observations of 
Comet Hale-Bopp (CI1995 0 1 )  During 1996 

T. L. Hayward and M. S. Hanner 

Thermal infrared (IR) imaging and spectroscopy of comet Hale-Bopp (GI1 995 01) during 
June, August, and September 1996 traced the development of the dust coma several 
months before perihelion. Images revealed nightly variations in the brightness of the inner 
coma from 1 to 12 June that were correlated with the appearance of a northward-pointing 
jet. The central IR flux increased by a factor of 8 between 1 June and 30 September, and 
the September data showed IR jets that corresponded to similar structures that were 
visible in reflected sunlight at shorter wavelengths. At all epochs, 8- to 13-micrometer 
spectra of the central coma revealed a strong silicate emission feature, including an 
11.2-micrometer feature indicative of crystalline olivine, even when the comet was at a 
heliocentric distance of 4.1 astronomical units. 

C o m e t  Hale-Bopp (C/1995 0 1 )  has pro- 
viiied a rare opportunity for observation of a 
bright, active comet at large helioce~itric 
iiistances. T h e  comet's hieli illtrinsic 
hrightness is particularly iinportant to  IR 
studies of thermal eniission from cometary 
dust grains because the  thermal l~ackgrounci 
radiation from a \varm ground-based tele- 
scoDe l i ln~ts  sens~tl\-itv. Most comets can 
thus he stuiiied in Lietail only ~ v h e n  they are 
within 1 or 2 astronolllical units ( A U )  of 
the  sun. where their dust eraills are relarive- 
1\- n.arm. Hale-Bopp, however, could be de- 
tected easily in the  thernial IR when it was 
still far from the  sun and its grains were 
relat~vely cool. Also, recent advances in  
t \~o-dimensional array detectors sensitive to 
IR radiation at \vavelengtlis between 5 and 
30 ~ 1 1 1  allow study of comets at an  a~igular 
resolution comparable to that of optical anii 
near-IR observations. Here we present 8- to  
11-p+m iluages and spectra of Hale-Bopp 
that were taken with a lnodern arrav cam- 
era/spectrograph during tlie summer and fall 
of 1996, a h e n  the  comet was still Inore 
than 6 months from perihelion. 

lVe observed Hale-Bopp using the  Spec- 
troCam-10 imaging spectrograph ( 1 ,  2 )  on 
the  5-m Hale telescope at Palonlar Obser- 
vatory (3)  during three ohserving runs: 1 to 
12 June 1996 (when the  comet \\.as a t  a 
heliocentric iiista~ice 7-,, = 4.2 A U  and a 
geocentric distance 1 = 3.3 A U ) ,  4 to 7 
August (7, = 3.5 A U ,  1 = 2.7 A U ) ,  and 28 
to 30 September = 2.9 A U ,  1 = 3.0 
A U ) .  T h e  conlet was observed a t  least hr~ef-  

T L Hay5!!ara, Center 'or Rac'oplil~s~cs and Space 
Research. Corne Unlverslty, thaca, UY 14853, USA. 
E- IT^: hayv!arcDastrosun.tn.corneIl.ecu 
M. S Hanner. Jet Propuson Laborator]. California Instl- 
tute o i  Technology, 4800 3ak G r o e  Dr/e, Pasacena. 
CA 91 I C9, USA Emall: mshBscn1 jpl.nasa.go?, 

ly each night except for 3 June. W e  imaged 
Hale-Bopp through 1 - p n  bandpass filters 
spaced across the  10-pm atlllospheric win- 
dow in order to measure the  comet's overall 
hrightness and morphology (Fig. 1 ) .  A t  
n.avelengtli ( A )  = 10.1 p,m, the  in~ ie r  conia 
region within a circle 1 arc sec in dia~ileter u 

centered o n  tlie nucleus briglitened from 1 
to 8 Janskys (Jy) het~veen 1 June and 30 
September. This change was greater by a 
factor of 2 to  4 than the  approx~mately 1 to 
1.5 rnaenitude increase in the  total visual 
magnitude reported during thls period, due 
in part to tlie increasing temperature of the  
grains. T h e  general brightening was punc- 
tuated hy a n ~ u n b e r  of outbursts; during 
sonie outbursts, the  comet's hr~ghmess  
within [lie 3-arc-sec clrcle ~ncreased by a 
factor of 2. Similar short-term brightness 
illcreases were observed in conlet P/Halley 
(4) .  A short-term change in  the  dust pro- 
duction rate wo~llii be expected to cause a 
larger percentage change in the hrightness 
of tlie inlier few arc seco~ids than in tlie 
hrightness of the  entlre corlia (4) .  

On 2 June, \vhen Hale-Bopp was at a 
typical inter-outburst brightness, the  inner 
conla was nearly symmetric (Fig. 1 A ) .  Dur- 
ing the  first observed outburst o n  4 June, a 
prominent northward-pointing jet appeared 
(Fig. 1B). T h e  jet varied noticeably from 
night to night through the  remainder of the  
June run. By August, tlie jet had evolved 
into the  broader fan that was faniiliar from 
optical images (Fig. 1 C ) .  In September (Fig. 
ID) .  we detected as nianv as flve iets rliat 
appeared to be the  thermAl 1R cou1;terparts 
of jets seen 111 reflected sunlieht in the  

u 

op t~ca l  and near-IR, lncluii~ng a jet poinr- 
ing to the  west, In the  itirectlon of the  sun. 
It1 the  28 September image, the  hrightness 
within synthetic apertures of increasing iii- 
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