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To provide information about dynamic sensory stimuli, the pattern of action potentials
in spiking neurons must be variable. To ensure reliability these variations must be related,
reproducibly, to the stimulus. For H1, a motion-sensitive neuron in the fly’s visual system,
constant-velocity motion produces irregular spike firing patterns, and spike counts
typically have a variance comparable to the mean, for cells in the mammalian cortex. But
more natural, time-dependent input signals yield patterns of spikes that are much more
reproducible, both in terms of timing and of counting precision. Variability and repro-
ducibility are quantified with ideas from information theory, and measured spike se-
quences in H1 carry more than twice the amount of information they would if they
followed the variance-mean relation seen with constant inputs. Thus, models that may
accurately account for the neural response to static stimuli can significantly underes-
timate the reliability of signal transfer under more natural conditions.

The nervous system represents signals by
sequences of identical action potentials or
spikes (1), which typically occur in an
irregular temporal pattern (2). The details
of this pattern may just be noise that
should be averaged out to reveal meaning-
ful signals (3). Alternatively, if the precise
arrival time of each spike is significant,
then temporal variability provides a large
capacity for carrying information (4, 5).
This issue has been debated for decades
(6) and is receiving renewed attention (5,
7). In fact, different views of the neural
code may be appropriate to different con-
texts—in an environment where signals
vary slowly, the brain may neither need
nor use the full information capacity of its
neurons, but as sensory signals become
more dynamic the demands on coding ef-
ficiency increase (5, 8). Here we show
that in H1, a motion-sensitive neuron in
the fly visual system (9), variability of
response to constant stimuli coexists with
extreme reproducibility for ‘more natural
dynamic stimuli, and that this reproduc-
ibility has a direct impact on the informa-
tion content of the spike train.

Figure 1 shows results of an experiment in
which a fly (Calliphora vicina) views a pattern
of random bars that moves across the visual
field at constant velocity (10). After a tran-
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sient, the H1 neuron settles to a steady state,
spiking at a constant rate that depends on
velocity. Such results are well known for H1
(9) and have parallels in many experiments
on sensory neurons. Spike sequences appear
irregular, and interspike intervals are distrib-
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uted almost exponentially (Fig. 1D), so that
the coefficient of variation (CV) is near
unity (11). If we count the spikes in a fixed
window of time during the steady response,
then by repeating the stimulus many times
we can measure both the mean count and
the variance across trials. Figure 1E shows
that, counting spikes for different stimulus
strengths and different size time windows,
the variance grows almost in proportion to
the mean, both for H1 and for cells in the
mammalian visual cortex (12). There is also
a tendency for excess variance in large time
windows (13).

In Fig. 2 we show the spike trains gener-
ated when the fly views the same pattern of
random bars, but now moving along a dy-
namic, and presumably more naturalistic
(14), trajectory. This stimulus modulates the
spike rate rapidly over a wide range (Fig.
2C). Integrating the rate over a fixed time
window gives the mean spike count (5), and
we also measure the variance of the spike
count in that window. If we do this for all
possible locations of the window (with 1-ms
resolution), we obtain, by analogy with Fig.
1E, the relation between variance and mean
(Fig. 2, E and F). In 100-ms windows, mean
counts up to 15 occur with a variance close
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The fluctuations are due
to finite sampling. (D) Interval histogram describing the probability density, P(t), of finding an interspike
interval of length 7. (E) Scatter plot of spike count variance as a function of mean count. Open circles are
data for the fly’s H1 neuron, stimulated with a wide field pattern moving at several constant velocities (0°,
0.007°, 0.014°, 0.022°, 0.029°, and 0.058°/s) For each velocity, spikes are counted in windows of
different sizes (3, 10, 30, 100, 300, and 1000 ms). The variance of these counts is plotted against the
mean for each combination of velocity and window size. Points obtained at the same velocity are
connected by lines. The data plotted here are for average rates below 80 spikes per second. For large
counting windows, the variance grows faster then the mean. The filled circles [redrawn from Tolhurst et
al. (12)] are data from simple cells in cat visual cortex analyzed in the same way (but with either 250- or
500-ms counting windows). Comparison of the data shows that for constant stimuli, the neurons from
fly and cat are very similar in their counting statistics. Furthermore, they both approximately follow the
Poisson behavior, variance = mean, given by the dashed line.
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to unity. In 10-ms windows, the variance
drops to nearly zero for windows that contain
one or two spikes on average. Spikes are
discrete events, so there must be variation
from trial to trial if, for example, the average
count is 0.5. The variance is minimized if
half the trials have one spike and the other
half have none, in which case o? = 0.25.
Generally, if the mean count is an integer
plus a fraction f, the minimum variance is
o2, = f(1 — f). The plot of minimum
variance versus mean is scalloped, repeating
with period one. Figure 2E shows that the
data points cluster near this curve of mini-
mum variance (I5), far from the relation
variance =~ mean found with static stimuli.

Spike counts in response to dynamic
stimuli have smaller variances than those in
response to static stimuli, but interspike
intervals seem more variable (see Figs. 1D
and 2D). Interspike interval distributions,
however, confound variations across time
with variations across trials. To characterize
the reproducibility across trials, we measure
the distribution of interspike intervals that
bracket a fixed time in the stimulus; typi-
cally, these “stimulus-locked” interval dis-
tributions have a CV ~ 0.1. This indicates
that, although the responses to dynamic
stimuli are variable across time, they are
reproducible from trial to trial.

The spike patterns seen, for example, in
Fig. 2B, are complex: Short interspike inter-
vals come in bursts, a specific event in the
stimulus may fail to elicit a spike on some
trials, and isolated spikes may occur with low
probability. It might be interesting to under-
stand how each feature arises, but here it is
more important to ask whether all these
different features can be quantified in the
same units, summarizing the variability and
reproducibility of the spike train. Shannon
proved that the only measure of variability
consistent with certain intuitive require-
ments is the entropy (16). We need two
different entropies, each of which can be
estimated directly from experiment (17): the
total entropy of the spike train, which quan-
tifies the variations across time and sets the
capacity of the spike train to carry informa-
tion, and the noise entropy, which measures
the irreproducibility from trial to trial. Both
quantities depend on the size of the time
windows T and on the time resolution At
with which we observe the spike train.

To observe the full range of temporal
variability, we deliver a stimulus chosen
from the same probability distribution as in
the experiments of Fig. 2, but continuing
for 9000 s without repeating. In time win-
dows of size T we digitize the spike train
with a precision AT, so that possible spike
trains are labeled by K-letter “words,” with
K = T/At (Fig. 3); a complete analysis
requires that we explore a range of T and At
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form shown in (A). (C) Averaged rate (PSTH) for the same segment. The rate is strongly modulated, but its
time average is very close to that in Fig. 1C. (D) Interval histogram for the nonrepeating part of the
experiment. It is clearly nonexponential, with CV = 1.94, and very different from the interval distributions in
Fig. 1D. (E and F) Scatter plots of variance versus mean count. Here, in contrast to Fig. 1E, each figure
shows the mean and the variance for only one size of counting window—10 ms in (E), 100 ms in (F). Each
point is a variance-mean combination for counts across all 900 trials in a fixed time window relative to the
onset of the repeated stimulus. The first window starts 100 ms after onset of the repeated waveform,
spanning 100 to 110 ms in (E) or 100 to 200 ms in (F). Successive windows overlap as they are stepped
in 1-msincrements [for example, 101to 111 ms, 102to 112ms, . . . and so on for (E)], and altogether 9000
time windows are analyzed. For comparison, the variance for the Poisson distribution is given by the

dashed lines.

(17). Searching through the entire experi-
ment we estimate the probability P(W) of
each possible word W and then compute
the entropy of this distribution,

Seorl = — 2, P(W)log,P(W) bits

w

(1)

To assess the reproducibility of the respons-
es, we return to the experiment in which a
single dynamic stimulus waveform is pre-
sented many times and examine the proba-
bility of occurrence P(W|t) for words W at
a particular time ¢t relative to the stimulus.
These distributions (one for each t) also
have entropies, and the average of these
entropies over time is the noise entropy,

Snoise = <_E P(Wlt)logZP(W|t)> bitS (2)

w

where ( =+ ), denotes the average over all
possible times ¢, with resolution At (I8).
The average information I that the spike
train provides about the stimulus is precise-
ly the difference between these two entro-
pies, I = S = Spoue- This characteriza-
tion of variability, reproducibility, and in-
formation transmission is independent of
any assumptions about which features of the

stimulus are being encoded or about which
features of the spike train are most impor-
tant in the code (17, 19).

With windows of T = 30 ms— compa-
rable to the behavioral reaction times
(14)—and a time resolution of AT = 3 ms,
we find S, = 5.05 = 0.01 bitsand S__, .
= 2.62 = 0.02 bits. Thus, the average
information about the stimulus conveyed
in 30 ms is 2.43 *= 0.03 bits, and this is
increased slightly if we sample with At =
1.5 or even 0.7 ms (20). Hence, down to
millisecond time resolution, half of the
total variability of the spike train is used
to provide information about the stimulus
(21).

Information transmission is clearly en-
hanced by rapid modulations of the spike rate
(Fig. 2C). Are these rapid rate variations the
only important feature of the response! Con-
sider a model neuron that has the correct
dynamics of the firing rate, but follows the
variance-mean relation observed in response
to static stimuli. If the variance-mean relation
is given by the dashed line in Fig. 1E, then
neural firing is a modulated Poisson process
(5, 22). We simulate spike trains that result
from a Poisson process with the rate modula-
tions observed in Fig. 2C and then repeat the
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Fig. 3. Word frequency distributions and information transfer. (A) Two segments from 100 response
traces of H1, starting at about 600 and 1800 ms, respectively, after onset of the repeated stimulus of Fig.
2. (B) Construction of local word frequencies. We start with a set of spike trains in response to a repeated
random velocity sequence. Beginning at 600 ms these spike trains are divided in 10 contiguous 3-ms
bins, as indicated by the array of vertical lines. For each trial, the spikes in each of the 10 bins are
counted, and this set of 10 numbers forms a word, W. Here almost all words are binary strings, as two
spikes occur only very rarely within 3 ms. This procedure gives us as many words as there are trials (here
900). From this set we compute the probability for each word, and the resulting distribution is depicted
in the histogram, P(W|t) = 600 ms, where the words are ordered according to their probability. (C) As
in (B), but now starting at 1800 ms. (D) Distribution, P(W), of all words throughout the experiment. Words
are definedin the same way as in (B) and (C). However, here they are taken from the long (900 times 10 s)
nonrepeated part of the stimulus sequence in order to obtain a large number of independent stimulus
samples. Thus, stepping in 3-ms bins, ~3 X 10° words are sampled, and the distribution shown here
describes their ranked frequencies. In these windows, by far the most likely word is 0000000000, and

roughly 1500 different words are observed.

analysis of Fig. 3. The total entropy (S, =
5.17 bits) is almost the same as that of the real
spike trains, whereas the noise entropy (S, ...
= 4.22 bits) is substantially larger: Real spike
trains are almost as variable as possible given
the mean spike rate, but they are much more
reproducible than Poisson trains. H1 thus
transmits more than twice as much informa-
tion (2.43 versus 0.95 bits in a 30-ms window)
about these stimuli as would be the case if the
neuron exhibited the noisiness found with
constant inputs (23).

Several mechanisms may contribute to
the reproducibility of responses. First, to
achieve millisecond precision in the spiking
of H1, the fly’s visual system must resolve
events in the motion stimulus on this time
scale; more detailed analysis suggests that
this is close to the limit set by photoreceptor
noise. Second, neural computation and en-
coding must be adaptive in order to follow
rapid modulations of the stimulus over a
wide dynamic range (24). Finally, refractori-
ness regularizes spike trains at high firing
rates (I1), enforcing a more deterministic
relation between stimulus and response (25).

In summary, during stimulation dynam-
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ic H1 makes efficient use of its capacity to
transmit information. This efficiency is
achieved by establishing precise temporal
relations between individual action poten-
tials and events in the sensory stimulus.
These observations on the encoding of
naturalistic stimuli cannot be understood
by extrapolation from quasistatic experi-
ments, nor do such experiments provide
any hint of the timing and counting accu-
racy that the brain can achieve. Just as H1
resembles cortical neurons in its noisy re-
sponse to static stimuli, many systems may
resemble H1 in their reproducible re-
sponse to dynamic stimuli (26).
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