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To provide information about dynamic sensory stimuli, the pattern of action potentials 
in spiking neurons must be variable. To ensure reliability these variations must be related, 
reproducibly, to the stimulus. For H1, a motion-sensitive neuron in the fly's visual system, 
constant-velocity motion produces irregular spike firing patterns, and spike counts 
typically have a variance comparable to the mean, for cells in the mammalian cortex. But 
more natural, time-dependent input signals yield patterns of spikes that are much more 
reproducible, both in terms of timing and of counting precision. Variability and repro- 
ducibility are quantified with ideas from information theory, and measured spike se- 
quences in H I  carry more than twice the amount of information they would if they 
followed the variance-mean relation seen with constant inputs. Thus, models that may 
accurately account for the neural response to static stimuli can significantly underes- 
timate the reliability of signal transfer under more natural conditions. 

T h e  nervous system represents signals hy sient, the H I  neuron settles to a steady state, 
sequences of identical action potentials or spiking at a constant rate that depends o n  
spikes ( I ) ,  w h ~ c h  typ~cal ly  occur in  an  velocity. Such results are \\ell known for H1 
irregular temporal pattern (2 ) .  T h e  details (9)  and have parallels In many experiments 
of t h ~ s  pattern may just he noise tha t  o n  sensory neurons. Splke sequences appear 
should he averaged out to  reveal mea~l ing-  irregular, and interspike intervals are distrih- 
f ~ 1 1  signals (3).  Alternatively, if t he  precise 
arrival t m e  of each spike is significant, 
then temporal variability provides a large 
capacity for carrying 11lformation ( 4 ,  5 ) .  
This  issue has heen debated for decades 
(6)  and is receiving renewed attention ( 5 ,  
7). I n  fact, different viexvs of the  11ei1ral 
code may he appropriate to  different con-  
texts-in a n  env i ronme~l t  where signals 
vary slo\vly, the  brain may neither need 
nor use t h e  full information capacity of its 
neurons, hut as sensory signals hecome 
more dynamic the  demands o n  coding ef- 
ficienc\: increase ( 5 .  8).  Here we &om. 
tha t  in H I ,  a motio11-sensitive neuron in  
the  f ly  visual system (9), variability of 
response to  constant stimuli coexists with 
extreme renroducihilitv for more natural 
dynamic stimuli, and that  this reproduc- 
~b i l i ty  has a direct lnlnact o n  t h e  informa- 
t ~ o n  content  of the  spike train. 

Figure 1 shoxvs results of an  experilnent in 
Ivhich a fly (Calliphora vicina) views a pattern 
of ralldom bars that lnoves across the visual 
field at constant velocity (10). After a tran- 
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Fig. 1. Sp~ke statistics 
for constant stlmul. (A) A 
random bar pattern (10) 
moves across the vlsual 
field at constant speed 
(0.022"/s) and in the H I  
neuron's preferred dl- 
rectlon. (B) Fifty re- 
sponse traces to the 
stimulus In (A), each ast- 
n g  1 s, and taken 20 s 
apari. The occurrence of 
each spike 1s shown as a 
dot. The traces are taken 
from a segment of the 
experiment where tran- 
slent responses have 
decayed. (C) The peri- 
stlmulus tlme h~stogram 
(PSTH; bln width 3 ms, 
96 presentations), which 
describes the rate at 
whlch spikes are gener- 
ated In response to the 
st~mulus shown In (A). 
The fluctuations are due 

uted almost exponentially (Fig. ID) ,  so that 
the coefficient of var~ation (CV)  is near , , 

unity (1 1 ). If \ve count the spikes in a fixed 
\vindo\v of time Jurmg the steady response, 
then by 'epeating the stimulus lnany times 
\ve can measure both the  mean count and 
the variance across trials. Fitrure 1E shows 
that, coiunt~ng spikes for different stimulus 
strengths and dlfferellt size time windows, 
the variance grows allnost in proportloll to 
the mean, both for H1 and for cells in the 
~na~nmal ian  visual cortex (1 2 ) .  There 1s also 
a tendency for excess varlance 111 large tlme 
windoxvs (1 3). 

In  Fig. 2 we show the  spike trams gener- 
ated when the fly vielvs the same pattern of 
randoln bars, but now moving along a dy- 
namic, and presu~nahly lnore naturalist~c 
(14),  trajectory. This stimulus modulates the 
splke rate rapidly over a wide range (Fig. 
2C). Integrating the rate over a fixed time 
windo\v glves the mean splke count (5),  and 
we also measure the variance of the spike 
count In that xvindom.. If we do this for all 
nossihle locatio~ls of the  \vlndo\v ixvith I-ms 
resolution), we obtain, by analogy with Fig. 
lE,  the relation betxveen variance and mean 
(Fig. 2,  E and F).  In  10C-rns \vinJo\vs, lnean 
counts up to 15 occur w t h  a variance close 
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to f n te  sampling. (D) Interval histogram describing the probability densty. P(T). of flnding an nterspke 
interval of length T.  (E) Scatter plot of spike count variance as afunction of mean count. Open circles are 
data for the fly's H1 neuron, stimulated with a widef~eld pattern movng at several constant veoctes  (Oo, 
0.007", 0.014", 0.022", 0.029", and 0.058"is) For each velocity, spikes are counted In w~ndows of 
different sizes (3, 10, 30, 100, 300, and 1000 ms). The variance of these counts IS plotted against the 
mean for each comb~nation of veloclty and window s~ze Polnts obtained at the same veloclty are 
connected by lines. The data plotted here are for average rates below 80 spikes per second. For large 
counting windows, the variance grows faster then the mean. The filled circles [redrawn from Tohurst et 
a/. (12)] are data from s m p e  cells in cat vlsual cortex analyzed In the same way (but with elther 250- or 
500-ms countng wndows) Comparson of the data shows that for constant stimuli, the neurons from 
fly and cat are very similar In their counting statistics. Furthermore, they both approximately follow the 
Poisson behavior, variance = mean, given by the dashed line. 
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Fig. 2. Spike statistics 
for dynamic stimuli. (A) 
The fly views the same 
spatial pattern as in Fig. 
1A, but now moving 
with a time-dependent 
velocity, part of which is 
shown. The motion ap­
proximates a random 
walk with diffusion con­
stant D «* 14 degrees2/ 
s. For illustration, the 
waveform shown is low-
pass filtered. In the ex­
periment, a 10-s wave­
form is presented 900 
times, every 20 s. During 
the second half of this 
20-s period the fly sees 
the same pattern, but 
now for each trial 
we draw a new—inde­
pendent—velocity wave­
form from the same dis­
tribution. (B) A set of 50 
response traces to the 
repeated stimulus wave­
form shown in (A). (C) Averaged rate (PSTH) for the same segment. The rate is strongly modulated, but its 
time average is very close to that in Fig. 1C. (D) Interval histogram for the nonrepeating part of the 
experiment. It is clearly nonexponential, with CV = 1.94, and very different from the interval distributions in 
Fig. 1D. (E and F) Scatter plots of variance versus mean count. Here, in contrast to Fig. 1E, each figure 
shows the mean and the variance for only one size of counting window—10 ms in (E), 100 ms in (F). Each 
point is a variance-mean combination for counts across all 900 trials in a fixed time window relative to the 
onset of the repeated stimulus. The first window starts 100 ms after onset of the repeated waveform, 
spanning 100 to 110 ms in (E) or 100 to 200 ms in (F). Successive windows overlap as they are stepped 
in 1 -ms increments [for example, 101 to 111 ms, 102 to 112 ms,. . . and so on for (E)], and altogether 9000 
time windows are analyzed. For comparison, the variance for the Poisson distribution is given by the 
dashed lines. 
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to unity. In 10-ms windows, the variance 
drops to nearly zero for windows that contain 
one or two spikes on average. Spikes are 
discrete events, so there must be variation 
from trial to trial if, for example, the average 
count is 0.5. The variance is minimized if 
half the trials have one spike and the other 
half have none, in which case a2 = 0.25. 
Generally, if the mean count is an integer 
plus a fraction /, the minimum variance is 

°"min = /U ~~ / ) • Th e plo t °f minimum 
variance versus mean is scalloped, repeating 
with period one. Figure 2E shows that the 
data points cluster near this curve of mini­
mum variance (15)> far from the relation 
variance ^ mean found with static stimuli. 

Spike counts in response to dynamic 
stimuli have smaller variances than those in 
response to static stimuli, but interspike 
intervals seem more variable (see Figs. ID 
and 2D). Interspike interval distributions, 
however, confound variations across time 
with variations across trials. To characterize 
the reproducibility across trials, we measure 
the distribution of interspike intervals that 
bracket a fixed time in the stimulus; typi­
cally, these "stimulus-locked" interval dis­
tributions have a CV ~ 0.1. This indicates 
that, although the responses to dynamic 
stimuli are variable across time, they are 
reproducible from trial to trial. 

The spike patterns seen, for example, in 
Fig. 2B, are complex: Short interspike inter­
vals come in bursts, a specific event in the 
stimulus may fail to elicit a spike on some 
trials, and isolated spikes may occur with low 
probability. It might be interesting to under­
stand how each feature arises, but here it is 
more important to ask whether all these 
different features can be quantified in the 
same units, summarizing the variability and 
reproducibility of the spike train. Shannon 
proved that the only measure of variability 
consistent with certain intuitive require­
ments is the entropy (16). We need two 
different entropies, each of which can be 
estimated directly from experiment {17): the 
total entropy of the spike train, which quan­
tifies the variations across time and sets the 
capacity of the spike train to carry informa­
tion, and the noise entropy, which measures 
the irreproducibility from trial to trial. Both 
quantities depend on the size of the time 
windows T and on the time resolution AT 
with which we observe the spike train. 

To observe the full range of temporal 
variability, we deliver a stimulus chosen 
from the same probability distribution as in 
the experiments of Fig. 2, but continuing 
for 9000 s without repeating. In time win­
dows of size T we digitize the spike train 
with a precision AT, so that possible spike 
trains are labeled by K-letter "words," with 
K = T/AT (Fig. 3); a complete analysis 
requires that we explore a range of T and AT 

(17). Searching through the entire experi­
ment we estimate the probability P{W) of 
each possible word W and then compute 
the entropy of this distribution, 

Stota, = - X P(W)log2P(W) bits (1) 
W 

To assess the reproducibility of the respons­
es, we return to the experiment in which a 
single dynamic stimulus waveform is pre­
sented many times and examine the proba­
bility of occurrence P(W\t) for words W at 
a particular time t relative to the stimulus. 
These distributions (one for each t) also 
have entropies, and the average of these 
entropies over time is the noise entropy, 

Snoise = ( - 2 P ( W l t ) l o g 2 P ( W | t)\ bitS ( 2 ) 
\ W It 

where ( ••• )t denotes the average over all 
possible times t, with resolution AT {18). 
The average information I that the spike 
train provides about the stimulus is precise­
ly the difference between these two entro­
pies, I = Stotal - Snoise. This characteriza­
tion of variability, reproducibility, and in­
formation transmission is independent of 
any assumptions about which features of the 

stimulus are being encoded or about which 
features of the spike train are most impor­
tant in the code (17, 19). 

With windows of T = 30 ms—compa­
rable to the behavioral reaction times 
{14)—and a time resolution of AT = 3 ms, 
we find S total = 5.05 ± 0.01 bits and Snoise 

= 2.62 ± 0.02 bits. Thus, the average 
information about the stimulus conveyed 
in 30 ms is 2.43 ± 0.03 bits, and this is 
increased slightly if we sample with AT = 
1.5 or even 0.7 ms (20). Hence, down to 
millisecond time resolution, half of the 
total variability of the spike train is used 
to provide information about the stimulus 
(21). 

Information transmission is clearly en­
hanced by rapid modulations of the spike rate 
(Fig. 2C). Are these rapid rate variations the 
only important feature of the response? Con­
sider a model neuron that has the correct 
dynamics of the firing rate, but follows the 
variance-mean relation observed in response 
to static stimuli. If the variance-mean relation 
is given by the dashed line in Fig. IE, then 
neural firing is a modulated Poisson process 
(5, 22). We simulate spike trains that result 
from a Poisson process with the rate modula­
tions observed in Fig. 2C and then repeat the 
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Fig. 3. Word frequency distrbutions and informaton transfer. (A) Two segments from 100 response 
traces of H I .  starting at about 600 and 1800 ms, respectively, after onset of the repeated stmulus of Fig. 
2. (B) Construction of local word frequencies. We start with a set of spke trains n response to a repeated 
random veloc~ty sequence. Begnnng at 600 ms these spike trans are divided n 10 contiguous 3-ms 
bins, as Indicated by the array of vertical nes.  For each tral, the sp~kes in each of the 10 bins are 
counted, and this set of 10 numbers forms a word, W. Here almost all words are binary str~ngs, as two 
spkes occur only very rarely with~n 3 ms. This procedure gves us as many words as there are trials (here 
900). From this set we compute the probabty for each word, and the resulting distrbution is depcted 
n the hstogram, P ( w I ~ )  = 600 ms, where the words are ordered according to their probabi~ty. (C) As 
n (B), but now startng at 1800 ms. (D) Distrbuton, P(W), of a words throughouttheexperiment. Words 
are defned n the same way as in (6) and (C) However, here they are taken from the long (900 times 10 s) 
nonrepeated part of the stmuus sequence in order to obtain a large number of independent stimulus 
samples Thus, steppng in 3-ms bins, -3 x 1 O6 words are sampled, and the dlstrbution shown here 
describes their ranked frequencies. In these w~ndows, by far the most likely word is 0000000000. and 
roughly 1500 different words are observed. 

analysis of Fig. 3. The  total entropy (St,,,, = 
5.17 bits) is almost the same as that of the real 
spike trains, whereas the noise entropy (S,,,,,, 
= 4.22 bits) is substantially larger: Real spike 
t r a m  are almost as variable as possible given 
the mean spike rate, but they are much more 
reproducible than Poisson trains. H 1  thus 
transmits more than twice as much informa- 
tion (2.43 versus 0.95 bits in a 30-ms window) 
about these stimull as would be the case if the 
neuron exhtbited the noisiness found with 
constant inputs (23). 

Several mechanisms may contribute to 
the reproducibility of responses. First, to 
achleve lnillisecond precision in the spiking 
of H I ,  the fly's visual system must resolve 
events in the motion stimulus o n  this time 
scale; more detailed analysis suggests that 
this is close to the limit set by photoreceptor 
noise. Second. neural com~uta t ion  and en- 
coding must de adaptive iA order to follow 
r a ~ i d  modulations of the stimulus over a 
wide dynamic range (24). Finally, refractori- 
ness regularizes spike trains at high firing 
rates (1 I ) ,  enforcing a more deterministic 
relation between stimulus and response (25).  

In  summary, during stimulation dynam- 

ic H 1  makes efficient use of its capacity to  
transmit information. This  efficiency is 
achieved by establishing precise temporal 
relations between individual action poten- 
tials and events in the  sensory stimulus. 
These  observations o n  t h e  encoding of 
natural~st ic  stimull cannot  be understood 
by extrapolation from quasistatic experi- 
ments,  nor do  such experiments provide 
any h in t  of the  timing and counting accu- 
racy tha t  the  brain can  achieve. Just as H 1  
resembles cortical neurons in  its noisy re- 
sponse to static stimuli, many systems may 
resemble H 1  in  their reproducible re- 
sponse to  dynamic stimuli (26) .  
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