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Constitutive Transcriptional Activation 
by a P-Catenin-Tcf Complex 
in APC-'- Colon Carcinoma 

Vladimir Korinek," Nick Barker," Patrice J. Morin, 
Dick van Wichen, Roel de Weger, Kenneth W. Kinzler, 

Bert Vogelstein, Hans Cleverst 

The adenomatous polyposis coli (APC) tumor suppressor protein binds to p-catenin, a 
protein recently shown to interact with Tcf and Lef transcription factors. The gene 
encoding hTcf-4, aTcf family memberthat is expressed in colonic epithelium, was cloned 
and characterized. hTcf-4 transactivates transcription only when associated with p-cate- 
nin. Nuclei of APC-'- colon carcinoma cells were found to contain a stable p-catenin- 
hTcf-4 complex that was constitutively active, as measured by transcription of a Tcf 
reporter gene. Reintroduction of APC removed p-catenin from hTcf-4 and abrogated the 
transcriptional transactivation. Constitutive transcription of Tcf target genes, caused by 
loss of APC function, may be a crucial event in the early transformation of colonic 
epithelium. 

T h e  product of the APC tumor suppressor 
gene has been observed to interact with 
p-catenin and has thus been proposed to 
regulate cellular signaling events ( I ) .  
p-Catenin, originally identified on the basis 
of its association with cadherin adhesion 
molecules, is now widely recognized as an 
essential element of the Wingless-YVnt sig- 

naling cascade (2) .  In the absence of Wnt 
signals, APC silnultaneously interacts with 
the serine kinase glycogen synthase kinase 
(GSK)-3P and with p-catenin. Phosphoryl- 
ation of ,4PC by GSK-3P regulates the 
interaction of ,4PC with p-catenin, which 
in turn may regulate the signaling function 
of p-catenin (3) .  Writ signaling appears to 
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antagonize GSK3P activity. Upon Wnt 
signaling, p-catenin is stabilized and exists 
primarily as a cytoplasmic monomer (4). 
Colon carcinoma cells with mutant APC 
contain large amounts of monomeric, cyto- 
plasmic p-catenin. Reintroduction of wild- 
type APC removes this cytoplasmic pool and 
reduces the overall amount of p-catenin (5). 
Recent evidence indicates that mono- 
meric p-catenin can transduce Wnt signals 
by associating with T cell factor (Tcf) and 
lymphoid enhancer factor (Lef) transcrip- 
tion factors (6). We hypothesized that APC 
may regulate the formation of transcription- 
ally competent P-catenin-Tcf complexes. If 
so, loss of APC function would result in 
uncontroYed transcriptional activation of 
Tcf target genes, which might contribute to 
colon tumorigenesis. 

There are four known members of the 
Tcf and Lef family in mammals: the lym- 
phoid-specific factors Tcf-1 and Lef-1 (7,8) 
and the less well characterized Tcf-3 and 
Tcf-4 (9). We performed a qualitative re- 
verse transcriptase-polymerase chain reac- 
tion (RT-PCR) assay for expression of the 
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Fig. 1. Sequence comparison of hTcf-4 and hTcf-1. Two alternative splice 
forms of hTcf-4 were identified, each encoding a different COOH-terminus. 
One form (hTcf-4E) was homologous to hTcf-1 E (7); the other form (hTcf-4B) 
was homologous to hTcf-1 B. The highly ~ 0 n s e ~ e d  NH,-terminal interaction 
domain and the HMG-box DNA-binding region are boxed. Abbreviations for 
the amino acid residues are asfollows: A, Ala; C, Cys; D, Asp; E, Glu; F, We; 
G, Gly; H, His; I ,  Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, 
Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. The nucleotide sequence has been 
deposited in the European Molecular Biology Laboratory database (acces- 
sion number Y11306). Symbols: I , sequence identity; : , sequence similarity. 

four Tcf-Lef genes on 43 colon tumor cell 
lines. Although most colon cell lines ex- 
pressed more than one of the genes, only 
hTcf-4 mRNA was expressed in essentially 
all lines (10). 

We then screened a human fetal cDNA 
library and retrieved clones encoding full- 
length hTcf-4 (I 1 ) (Fig. 1). The predicted 
sequence of hTcf-4 was most similar to that 
of hTcf-1. Alternative splicing yielded two 
COOH-termini that were conserved be- 

tween hTcf-1 and hTcf-4. The NH,-termi- 
nus, which mediates binding to P-catenin 
in hTcf-1, mouse Lef- 1, and Xenopus TCF-3 
(6), was also conserved in hTcf-4. Northern 
(RNA) blot analysis of selected colon car- 
cinoma cell lines (12) revealed extensive 
expression of hTcf-4 (Fig. 2A). As evi- 
denced by in situ hybridization (Fig. 2, B 
and C) (13) and Northern blotting (Fig. 
2A), hTcf-4 mRNA was readily detectable 
in normal colonic epithelium, whereas 

hybridition of healthy human colon tissue to an 
hTcf-4 probs. (C) In situ hybridization to a negativa control probe (a fragment of the Escdwichia cdi 
neornycin resistance gene). Magnificatim, x 166. 
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hTcf-1 and hLef-1 were not detectable. 
To investigate whether hTcf-4 function- 

ally interacts with p-catenin, we used two 
sets of reporter constructs in a p-catenin- 
Tcf reporter gene assay (7, 14). One set 
contained three copies of the optimal Tcf 
motif CCTTTGATC, or three copies of the 
mutant motif CCTTTGGCC, upstream of 
a minimal c-Fos promoter driving luciferase 
expression (pTOPFLASH and pFOP- 
FLASH, respectively). The second set con- 
tained three copies of the optimal motif, or 
three copies of the mutant motif, upstream 
of a minimal herpes virus thymidine kinase 
promoter driving chloramphenicol acetyl- 
transferase (CAT) expression (pTOPCAT 
and pFOPCAT, respectively). Epitope- 
tagged hTcf-4 and a deletion mutant lack- 
ing the NH2-terminal 30 amino acids 
(ANhTcf-4) were cloned into the expres- 
sion vector pCDNA. Transient transfec- 
tions were performed in a murine B cell line 
(IIA1.6) that does not express any of the 
Tcf genes (6). 

The pTOPFLASH reporter was strongly 
transcribed upon cotransfection with the 
combination of p-catenin and hTcf-4 plas- 
mids, but not with the individual plasmids or 
with the combination of P-catenin and 
ANhTcf-4 plasmids. No enhanced transcrip- 
tion was detected in cells transfected with 
the negative control pFOPFLASH (Fig. 
3A). These results show that interaction of 
the NH,-terminus of hTcf-4 with p-catenin 
results in transcriptional activation. 

In three APC1- carcinoma cell lines, 
SW480, SW620, and DLD-1 (IS), the tran- 
scriptional activity of the pTOPFLASH re- 
porter was 5 to 20 times that of pFOP- 
FLASH. Cotransfection of SW480 cells 
with the reporter gene and an APC expres- 
sion vector abrogated the transcriptional 
activity in a dose-dependent manner (Fig. 
3B). In contrast, APC had no effect on a 
cotransfected internal control (pCAT- 

CONTROL) or on the basal transcription 
of pFOPFLASH (Fig. 3B). The use of 
pTOPCAT and pFOPCAT instead of 
pTOPFLASH and pFOPFLASH led to 
comparable observations. The constitutive 
transcriptional activity of Tcf reporter genes 
in APCC colon carcinoma cells was in 
stark contrast to the inactivity of these 
genes in noncolonic cell lines, including 
IIA1.6 B cells (Fig. 3A); the C57MG breast 
carcinoma cell line; the Jurkat and BW5147 
T cell lines; the Daudi and NS1 B cell lines; 
the K562 erythromyeloid cell line; the 
HeLa cervical carcinoma line; the HepG2 
hepatoma cell line; 3T3, 3T6, and Rat-1 
fibroblasts; and the kidney-derived SV40- 
transformed COS cell line (7, 16). 

To investigate whether a functional 
P-catenin-hTcf-4 complex exists constitu- 
tively in APC1- cells, we used HT29-APC1 
colon carcinoma cells (1 7), in which APC 
is controlled by a metallothionein promot- 
er. Induction by Zn2+ restores wild-type 

Fig. 4. Constitutive presence of p-catenin-hTcf-4 
complexes in APW- cells. Gel retardation assays 
were performed on nuclear extracts from the indi- 
cated cell lines before and after a 20-hour expo- 
sure to Zn2+. Samples in lanes 1, 4, 7, and 10 
were incubated under standard conditions. Anti- 
p-catenin (0.25 pg) was added to the samples in 
lanes 2, 5, 8, and 11. A control antibody (human 
CD4,0.25 pg) was added to the samples in lanes 
3, 6, 9, and 12. NS, nonspecmc band also ob- 
served with mutant (nonbinding) probe (lane Mt). 

amounts of APC and leads to apoptosis 
(17). HT29-Gal cells that carry a Zn2+- 
inducible LacZ gene were used as a control. 
The only Tcf family member expressed in 
HT29 is hTcf-4 (Fig. 2A). In nuclear ex- 
tracts from uninduced HT29-derived trans- 
fectants, we readily detected hTcf-4 by gel 
retardation (Fig. 4) (18). An additional 
band of slightly slower mobility was also 
observed. The addition of a p-catenin an- 
tibody resulted in the specific retardation of 
the latter band, indicating that it represent- 
ed a P-catenin-hTcf-4 complex (Fig. 4) 
(1 7). After Zn2+ induction for 20 hours, the 
amount of P-catenin-hTcf-4 complex was 
reduced by five-sixths in HT29-APC1 cells; 
whereas no marked change was observed in 
HT29-Gal cells (Fig. 4). The overall 
amount of cellular p-catenin does not 
change during this induction period in 
HT29-APC1 cells (17). 

On the basis of these data, we propose 
the following model. In normal colonic ep- 
ithelium, hTcf-4 is the only expressed mem- 
ber of the Tcf family. The interaction of 
P-catenin with hTcf-4 is regulated by APC. 
When appropriate extracellular signals are 
delivered to an epithelial cell, p-catenin 
accumulates in a form that is not com- 
plexed with GSK3EAPC and that en- 
ables its nuclear transport and association 
with hTcf-4. The high mobility group 
(HMG) domain of hTcf-4 binds in a se- 
quence-specific fashion to the regulatory 
sequences of specific target genes; P-cate- 
nin supplies a transactivation domain. 
Thus, transcriptional activation of target 
genes occurs only when hTcf-4 is associated 
with p-catenin. The hTcf-4 target genes 
remain to be identified. However, the link 
with APC and P-catenin suggests that these 
genes may participate in the generation and 
turnover of epithelial cells. Upon the loss of 
wild-type APC, monomeric P-catenin ac- 
cumulates in the absence of extracellular 

A NhTd4 + fkatenin L- 
I I 

0 2 4 6 8 10 
lWLlght units (luciferase) 

Fyl. 3. Transactivational properties of p-catenin-hTcf-4. All reporter assays were 
performed as duplicate transfections. For each condition, both values are shown. 
(A) Reporter gene assays in IIAI .6 B cells. Cells were transfected by electropo- 
ration with 1 pg of luciferase reporter plasmid, 5 p&j of p-catenin expression 
plasmid, and 3 pg of hTcf-4 expression plasmids. Empty @DNA was added to 

l0J LlgM units (luciferase) 
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a total of 10 pg of plasmid DNA. (6) Reporter gene assays in SW480 colon 
carcinoma cells. Cells were transfected with 0.3 pg of the indicated luciferase 
reporter gene, 0.7 pg of pCATCONTROL as internal control, the indicated 
amounts of pCMVNeo-APC, and empty pCDNA to a total of 2.5 pg of plasmid 
DNA. Control CAT values (@ATCONTROL) are given in the light panel. 
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stimuli, leading to uncontrolled transcrip- 
tion of the hTcf-4 target genes. The appar- 
ent de novo expression of other members of 
the Tcf family in some colon carcinoma cell 
lines might lead to a further dereeulation of " " 

Tcf target gene expression by the same 
mechanism. The control of P-catenin-Tcf 
signaling is likely to be an important part of 
the gatekeeper function of APC (1 9), and 
its disruption may be an early step in ma- 
lignant transformation. 
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Activation of P-Catenin-Tcf Signaling in Colon 
Cancer by Mutations in p-Catenin or APC 
Patrice J. Morin,* Andrew B. Sparks,* Vladimir Korinek, 

Nick Barker, Hans Clevers, Bert Vogelstein, 
Kenneth W. Kinzlerf- 

Inactivation of the adenomatous polyposis coli (APC) tumor suppressor gene initiates 
colorectal neoplasia. One of the biochemical activities associated with the APC protein 
is down-regulation of transcriptional activation mediated by p-catenin and T cell tran- 
scription factor4 (Tcf-4). The protein products of mutant APC genes present in colorectal 
tumors were found to be defective in this activity. Furthermore, colorectal tumors with 
intact APC genes were found to contain activating mutations of p-catenin that altered 
functionally significant phosphorylation sites. These results indicate that regulation of 
p-catenin is critical to APC's tumor suppressive effect and that this regulation can be 
circumvented by mutations in either APC or p-catenin. 

Mutations of the APC gene are the most 
common disease-causing eenetic events in - "  
humans; about 50% of the population will 
develop colorectal polyps initiated by such 
mutations during a normal life-span (1 ). In- 
dividuals who inherit APC mutations devel- 
OD thousands of colorectal tumors, consistent 
with the tumor suppressor or "gatekeeping" 
role of APC protein in colorectal tumorigen- 
esis (2, 3) .  APC homodimerizes through its 
NH,-terminus (4) and interacts with at least 
six other proteins: p-catenin (5), y-catenin 
(plakoglobin) (6), tubulin (7) ,  EB1 (a),  
hDLG, a homoloe of the Drosobhila Discs " 

Large tumor suppressor protein (9), and gly- 
cogen synthase kinase-3P (GSK-3P) (1 O), a 
mammalian homolog of ZW3 kinase. 
Whether any of these interacting proteins 
communicate APC erowth-controlling sig- " 

nals is unknown. Here, we used a genetic 
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approach to investigate the role of p-catenin 
in APC's tumor suppressor function. 

Although p-catenin was originally dis- 
covered as a cadherin-binding protein, it 
has recently been shown to function as a 
transcriptional activator when complexed 
with members of the Tcf family of DNA 
binding proteins ( 1  1 ). One family member, 
hTcf-4, is expressed in normal and neoplas- 
tic colorectal epithelium, and wild-type 
(WT) APC can suppress signaling by the 
6-catenin-Tcf complex (12). If this inhib- 
itory activity is critical for APC's tumor 
suppressor f~mction, then mutant APC pro- 
teins should be defective in this activity. 

To evaluate this hypothesis, we tested 
four APC mutants (Fig. 1A) for their ability 
to inhibit P-catenin-Tcf-regulated tran- 
scription (CRT) in transfection assays. The 
first mutant, APC331h, represents a type of 
mutation commonly found in the germ line 
of familial adenomatous polyposis patients 
as well as in sporadic tumors (2). The 
APC33 1 h protein is truncated at codon 
331, NH2-terminal to the three 15-amino 
acid (aa) P-catenin-binding repeats be- 
tween codons 1020 and 1169. The second 
mutant, APC1309A, is the most common 
germline APC mutation (Z), a 5-base pair 
(bp) deletion that produces a frameshift at 
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