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The bacteriophage N4 single-stranded DNA binding protein (N4SSB) activates tran- 
scription by the Escherichia coli u70-RNA polymerase at N4 late promoters. Here it is 
shown that the single-stranded DNA binding activity of N4SSB is not required for 
transcriptional activation. N4SSB interacts with the carboxyl terminus of the RNA poly- 
merase p' subunit in a region that is highly conserved in the largest subunits of pro- 
karyotic and eukaryotic RNA polymerases. 

N ~ S S B ,  a single-stranded DNA (ssDNA) 
binding protein encoded by bacteriophage 
N4, activates transcription by the Escherich- 
ia coli u70 RNA polymerase (RNAP) at N4 
late promoters (1). In addition, N4SSB is 
required for N4 replication (2) and recom- 
bination (3). N4SSB does not detectably 
bind double-stranded DNA (dsDNA) (2). 
Therefore, the mechanism of N4SSB tran- 
scriptional activation involves its ssDNA 
binding activity (for example, to facilitate 
isomerization from a closed complex to an 
open one), or protein-protein interactions 
with RNAP, or both. 

In the course of a systematic mutational 

teractions with RNAP. 
To test our hypothesis that N4SSB acti- 

vates transcription by interacting with 
RNAP, we assayed interactions between 
N4SSB and immobilized RNAP holoen- 
zyme (a2pp'u70), RNAP core (a2PP1), and 
the RNAP subassembly a2P (7-9) (Fig. 
2A). Wild-type N4SSB was retained by 
immobilized holoenzyme and core, even in 
the presence of 1.5 M NaC1, but it was not 
retained by immobilized a2P (Fig. 2A). The 
interaction was specific. The interactions of 
N4SSB derivatives functional in transcrip- 
tional activation but defective in ssDNA 

transcriptional activation (A264-265; 
S260A and K264A;K265A) did not inter- 
act with RNAP (Fig. 2B). We conclude 
that N4SSB interacts with RNAP, most 
likely with the P' subunit. 

In previous work, we identified a mutant 
of p' that is defective in N4 propagation (10, 
1 1 ). This mutant, P'AC, lacks the COOH- 
terminal 52 amino acids of P' (amino acids 
1354 to 1407) and has in their place 23 
nonnative amino acids (12). Here we rein- 
vestigated the activity of P'AC RNAP in 
transcription and found that P'AC RNAP is 
defective in N4SSB-dependent transcription 
at N4 late promoters but not defective in 
N4SSB-independent transcription at the 
rmB P1 promoter (13, 14) (Fig. 3A). The 
simplest interpretation of these results is that 
the extreme COOH-terminal region of P' 
(amino acids 1354 to 1407) plays a specific 
role in, and may be the target for, transcrip- 
tional activation by N4SSB. 

To identify directly the target for tran- 
scriptional activation by N4SSB, we per- 
formed site-specific protein-protein photo 
cross-linking (15, 16). We constructed an 
N4SSB derivative with a photoactivatible 

analysis of N4SSB (4 ) ,  we found that its A 
ssDNA binding and transcriptional activa- 
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replication (Fig. 1, B to D) (6, 7). We also 
WT W5A Y128A S260A K265A identified two N4SSB derivatives, A264- A A A - A h 

265;S260A and K264A;K265A ( 3 ,  with . w M  c#l - .  
the reciprocal phenotype, that is, defective U& D 
in trans~riptioial activation (Fig. 1A) but 
fully functional in ssDNA binding, recom- 
bination, and replication (Fig. 1, B to D). 
On the basis of these data, we infer that the 
ssDNA binding activity of N4SSB is not 
required for transcriptional activation. We 
infer further that the residues Ser260, Lys264, 
and Lys265 in the COOH-terminus of 
N4SSB constitute part or all of an "activat- 
ing region" required for transcriptional ac- 
tivation, and we propose that this activat- 
ing region makes direct protein-protein in- 
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Fig. 2. lnteraction of N4SSB with RNAP. (A) lnteraction of wild-type N4SSB in ssDNA binding (Y75A and Y128A) or specifically defective in transcription- 
with RNAP holoenzyme (left), RNAP core (middle), and a,p (right) (8). (B) al activation (A264-265;S260A and K264A;K265A). Arrows indicate RNAP 
Interactions with RNAP holoenzyme of N4SSB mutants specifically defective subunits and N4SSB; arrowheads indicate N4SSB retained by RNAP. 

cross-linking agent incorporated at amino 
acid 251, which is adjacent to the geneti- 
cally defined activating region (17). We 
then incubated the N4SSB derivative with 
RNAP to form the N4SSB-RNAP com- 
plex, irradiated the complex with ultravio- 
let (UV) light to initiate cross-linking, and 
determined the site in RNAP at which 
cross-linking occurred (17). To facilitate 

identification of the cross-linked site, we 
used a photoactivatible cross-linking agent 
that contained a radiolabel and that was 
attached to N4SSB through a disulfide link- 
age (15-17). This permitted, after UV irra- 
diation, cleavage of the cross-link and 
transfer of the radiolabel to the site at 
which cross-linking occurred. Cross-linking 
occurred exclusively within P' (Fig. 3B), 
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Fig. 3. lnteraction of N4SSB with the RNAP p' subunit. (A) Effects of wild-type (WT) RNAP and p'AC 
RNAP on N4SSB-dependent transcription at the N4 late promoter R and N4SSB-independent tran- 
scription at the rrnB PI promoter (73). (B) Site-specific protein-protein cross-linking (7 7). Lane 4, photo 
cross-linking; lane 5, photo cross-linking followed by cleavage and radiolabel transfer; lanes 1 to 3, 
control reactions; lane 6, molecular size markers. (C) Proteolytic mapping. Gel slices containing p' from 
photo cross-linking followed by cleavage and radiolabel transfer (B, lane 5) were digested with hydrox- 
ylarnine (HA) as described in (37), except that digestion was carried out for 6 hours at 45°C at pH 9.3. 
Left lane, Coomassie stained SDS-PAGE analysis; right lane, corresponding autoradiogram; arrowhead 
indicates cross-linking target. (D) HA cleavage sites on p'. Arrows indicate sites of HA cleavage, and 
numbers between the arrows indicate sizes of cleavage products. Boxed areas A to H indicate regions 
of homology in the largest subunits of prokatyotic and eukatyotic RNAP (22). (E) Sequences of E. coli p' 
and Saccharomyces cerevisiae region H. The bar above the p' sequence indicates the region deleted in 
P'AC (12). Vertical bars indicate identical residues, and stacked dots indicate similar residues. 

and limited proteolysis showed that cross- 
linking occurred exclusively within the re- 
gion between amino acids 1296 to 1407 
(Fig. 3C). We conclude that residues within 
the extreme COOH-terminal region of P' 
are in direct physical proximity to the acti- 
vating region of N4SSB in \he N4SSB- 
RNAP complex [within 16 A of Ca of 
amino acid 251 of N4SSB (1 5,  16)]. 

On the basis of the correspondence be- 
tween the genetic results (which implicate 
amino acids 1354 to 1407 of P') and the 
photo cross-linking results (which implicate 
amino acids 1296 to 1407 of P'), we con- 
clude that transcriptional activation by 
N4SSB involves direct protein-protein in- 
teraction between the activating region of 
N4SSB and the extreme COOH-terminal 
region of p'. 

Our results have two general implica- 
tions. First, our results suggest that tran- 
scriptional activation may be possible in the 
absence of DNA binding-both direct 
DNA binding and indirect DNA binding 
with tethering by another DNA binding 
protein (18). Thus, the ssDNA binding ac- 
tivity of N4SSB is not required for tran- 
scriptional activation (Fig. I), and N4SSB 
has no detectable dsDNA binding activity 
(2). (We cannot exclude the possibility that 
N4SSB has a hitherto undetected second 
DNA binding activity; for example, a low- 
affinity DNA binding activity or a cryptic 
DNA binding activity revealed only upon 
interaction with RNAP.) The proposal that 
N4SSB activates transcription without 
DNA binding raises the question of how 
N4SSB achieves specificity for target pro- 
moters. There are several possibilities: 
Specificity for target promoters might be 
achieved by "indirect readout" of the pro- 
moter sequence, with N4SSB preferentially 
recognizing a specific conformation that 
RNAP adopts at N4SSB-dependent pro- 
moters but not at N4SSB-independent pro- 
moters. Alternatively, the specificity might 
be achieved kinetically, with N4SSB affect- 
ing a step in transcription initiation that is 
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limiting at N4SSB-dependent promoters 
but not at N4SSB-independent promoters. 
Finally, N4SSB might have only a limited 
specificity for target promoters. (Although 
limited specificity 1%-ould be unsuitable for 
most activators, it might be suitable for a 
lvtic-viral activator, esueciallv a l a t e -~hase ,  
lytic-viral activator.) T h e  proposal that 
N4SSB activates transcription \vithout 
DNA binding also raises the  question of 
how N4SSB achieves sufficient occupancy 
at target promoters. N4SSB is produced in 
very large amounts during N 4  infection- 
- 11,090 molecules per cell, corresponding 
to 1G-' h1 (2)-and, on  the  basis of our 
protein-protein interaction assays, appears 
to have a high affin~ty for RNAP. If, in fact, 
N4SSB activates transcription without 
DN.4 binding, ~t is likely to f i ~ n c t ~ o i ~  not  hy 
facilitat~ng the b ind~ng  of RN.4P to pro- 
moter DN.4-at least not  by "tethering" 
( 1  9)- hut, rather, by facilitating subse- 
quent steps. Consistent with this view, pre- 
liminary results indicate that N4SSB has n o  
effect on  the binding of RNAP (20).  

Second, our results raise the possibility 
that the COOH-~erminal  region of the larg- 
est suhunit of RXAP may he a n  activation 
target in both prokaryotes and eukaryotes. 
There are now four known activation tar- 
gets mithin prokaryotic RN.4P: ( i )  the a 
COOH-terminal dolllain (21),  (ii) the a 
NH,-terminal domain (161, (iii) the a 
COOH-terminal region (22),  and (iv) the 
p' subunit COOH-terminal region (Fig. 3). 
T h e  target that n-e ha.\.e identified in the P'  
COOH-terminal region contains part of re- 
gion H (residues 1324 to 1362) (23)  and a 
negatively charged segment following re- 
gion H. Region H is conserved in sequence 
and the negatively charged seglnent is con- 
served in charge in the largest subunits of 
prokaryotic RN.4P and eukaryotic RNAP I1 
(23)  (Fig. 3,  D and E). In the largest subunit 
of eukaryotic RNAP 11, region H and the 
negatlr~ely charged segment are immediate- 
ly followed by 17 to 52 copies of a tandelnly 
repeated heptapeptide motif ( C T D )  (24) .  
Structural studies of RNAP I1 show that the 
COOH-terminal end of region H ,  the neg- 
atively charged segment, and C T D  are lo; 
cated at the trailing edge of RNA4P, -80 A 
from the RNAP active site (25).  Several 
lines of evidence suggest that region H, the 
negatively charged segment, and C T D  in- 
teract ~ v i t h  each other and are involved in 
transcriptional activation. First, substitu- 
tions ~v i th in  region H suppress effects of 
deletions within C T D  (24, 26, 27). Sec- 
ond, region H and the negatively charged 
segment interact with transcription factors, 
including TATA-binding protein and 
TFIIB (28) .  Third, C T D  is required for the 
response to serveral activators (24,  26. 29). 
Finally, the phosphorylation state of C T D  is 

important for transcription and is affected 
by activators (23.  30). It will be of interest 
to  determine whether the interaction of 
activators with the COOH-terminal re- 
gions of the largest subunits of prokaryotic 
and eukaryotic R N A  polymerases have sim- 
ilar tuechanistic conseauences. 
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