2

exp(—Q/k;T)] ™! The comparison between
Figs. 3B and 3C indicates that this theoretical
prediction is in reasonable agreement with
the experimental data. However, there are
significant differences concerning the line
shape that are not understood.

To further support our interpretation, as
well as to provide a quantitative estimate of
the variance (U?), we obtained the absolute
RS cross section by comparing KTaO; with
the standard CaF, using the 514.5-nm laser
line. From these measurements, if we ignore
the dependence of the polarizability on the
wave vector, we find that for the A;, com-
ponent, P, = P,, = P, =a= (6 = 2)
X 10" cmfg, which compares favorably
with the value a = (4 * 1) X 10" cm/e
that we obtain from the pump-probe exper-
iments using Eqgs. 3 and 5. From these val-
ues, we determine the proportionality con-
stant relating 9{U?)/dt to AT/T, and from
the spontaneous RS measurements (20),
we obtain (U?(0)), which corresponds to
the standard quantum limit AP, = QAQ

= (#€}/2)"?. Combining these results and
integrating AT /T, we get (OUVZ( )>/(61L2(O))
In Flg 4, we plot g = [(Uz(t)y/
au? (O))]m, which is 1efelred to as the
squeezing factor (21); u-squeezing cortre-
sponds to ¥ > 0. We notice that, for § <<
1, Egs. 3 and 4 predict that ¥ (<< 1)
should be proportional to the pump energy
density I,. This prediction is well obeyed
for densities in the range I, ~ 5 to 20
w]/cm? (Fig. 4, inset).
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Tyrosine Phosphorylation of Transmembrane
Ligands for Eph Receptors

Katja Brtickner, Elena B. Pasquale, Rudiger Klein*

Axonal pathfinding in the nervous system is mediated in part by cell-to-cell signaling events
involving members of the Eph receptor tyrosine kinase (RTK) family and their membrane-
bound ligands. Genetic evidence suggests that transmembrane ligands may transduce
signals in the developing embryo. The cytoplasmic domain of the transmembrane ligand
Lerk2 became phosphorylated on tyrosine residues after contact with the Nuk/Cek5
receptor ectodomain, which suggests that Lerk2 has receptorlike intrinsic signaling po-
tential. Moreover, Lerk2 is an in vivo substrate for the platelet-derived growth factor
receptor, which suggests crosstalk between Lerk2 signaling and signaling cascades ac-
tivated by tyrosine kinases. It is proposed that transmembrane ligands of Eph receptors
act not only as conventional RTK ligands but also as receptorlike signaling molecules.

The family of Eph-related receptors can be
divided into two subsets based on sequence
similarity and on their preference for a sub-
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set of ligands that are tethered to the cell
surface either by a glycosylphosphatidyl-
inositol (GPI)-anchor or by a single trans-
membrane domain (1—4). GPI-anchored li-
gands and their preferred receptors have
recently been implicated in establishing to-
pographic projections in the chick retino-
tectal system and in early patterning events
of zebrafish and Xenopus brains (5-8). Two
Eph receptors, Nuk/Cek5 (9, 10) and Sek4
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(11), that interact with transmembrane li-
gands (2) have an essential role in the
formation of forebrain commissures (12,
13). In contrast to other regions of the
embryo (9, 14), in the forebrain, transmem-
brane ligands are expressed on the axons of
commissural neurons and the receptors are
expressed in the territories surrounding the
pathway followed by commissural axons
(12, 13). Moreover, axons that form the
anterior commissure are properly guided by
catalytically inactive Nuk receptors (12),
which suggests that signaling by transmem-
brane ligands can actively guide these axons
in the absence of receptor signaling.
Alignment of the amino acid sequences
of the three known transmembrane ligands
of Eph receptors, Lerk2/Elk-L, EIf2/HTK-L,
and Elk-L3/NLerk2 (I, 15-19), reveals
strong sequence conservation of their cyto-
plasmic domains, including five invariant

Anti- Anti-
P Lerk2A HAp
R Rl
Lerk2wt -+ -
Lerk2wt-HA - - A
Lerk2AC-HA - - L
- 202
- 103
- 68
"N
- 44
- 29
B Anti-PY
- 68
[ J
# ® _ u

| M T ——

IB Anti-Lerk2B Anti-HAm

Fig. 1. The Lerk2 cytoplasmic domain is tyrosine-
phosphorylated when expressed in NIH 3T3 fibro-
blasts. NIH 3T3 cell lines expressing untagged
wild-type Lerk2 (Lerk2wt), epitope-tagged wild-
type Lerk2 (Lerk2wt-HA), or epitope-tagged mu-
tant Lerk2 lacking the cytoplasmic domain
(Lerk2AC-HA) were grown to subconfluency,
lysed, and immunoprecipitated with antisera
against Lerk?2 (anti-Lerk2A) or the epitope tag (an-
ti-HAp) (24). Immunoprecipitates (IP) were ana-
lyzed by 10% SDS-polyacrylamide gel electro-
phoresis (SDS-PAGE) and immunoblotted (IB)
with monoclonal antibodies to phosphotyrosine
(anti-PY). Stripped blots were reprobed with a
different Lerk2 antiserum (anti-Lerk2B) or with
monoclonal antibodies to HA (anti-HAm) to visu-
alize expression levels. Phosphorylated forms of
Lerk2 migrate more slowly than does unphospho-
rylated Lerk2 and are poorly recognized by immu-
noblotting with antisera against Lerk2 (bottom
panel). The upshift caused by phosphorylation
can, however, be observed after longer expo-
sures (see also Fig. 3A). The migration positions of
molecular size markers (in kilodaltons) are indicat-
ed at right.
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tyrosine residues, which suggests interaction
with other proteins. Some of these tyrosines
are surrounded by amino acid residues that
may be recognized as substrates by receptor
(20) and nonreceptor tyrosine kinases (21)
and could subsequently serve as motifs for
phosphotyrosine-binding domains, such as
SH2 or PID/PTB domains (22, 23). To test
whether Lerk2 is phosphorylated on ty-
rosine, we expressed wild-type Lerk2 and a
truncated form of Lerk2 lacking the cyto-
plasmic domain (Lerk2AC) in NIH 3T3
fibroblasts (24). Both an untagged and an
epitope-tagged version of wild-type Lerk2,
but not Lerk2AC, were detected by phos-
photyrosine-specific antibodies (anti-PY),
indicating that in growing cells the con-
served tyrosine residues in the cytoplasmic
domain are indeed targets for protein ty-
rosine kinases (PTKs) (Fig. 1).

To investigate whether contact with the
receptor Cek5 also regulates phosphoryl-
ation of Lerk2, we treated Lerk2-expressing
fibroblasts with soluble Cek5 fusion pro-
teins consisting of the Cek5 ectodomain
fused to the Fc portion of immunoglobulin
G (25). Figure 2A shows that stimulation of
Lerk2-expressing fibroblasts with Cek5-Fc,

. REPORTS

but not with Lerk2-Fc, causes efficient phos-
phorylation of Letk2. A time course of
Cek5-Fc—induced Lerk2 phosphorylation
shows detectable phosphate incorporation
after 10 min, with an apparent slow decline
after 1 hour (Fig. 2B). However, the
amounts of precipitable Lerk2 protein de-
creased rapidly over the same time period.
Because similar losses of Lerk2 protein are
observed in immunoblots of total lysates
(26), we conclude that Lerk? is internalized
and rapidly degraded. No tyrosine phospho-
rylation and decrease of Lerk2 protein were
observed in cells expressing the truncated
Lerk2AC form, which indicates a require-
ment for the cytoplasmic domain. Because
the Lerk2 cytoplasmic domain does not
contain intrinsic kinase activity, Lerk2 phos-
phorylation must be mediated by a PTK
that is endogenous to the ligand-expressing
cells. In vitro, the Src tyrosine kinase effi-
ciently phosphorylates the Lerk2 cytoplas-
mic domain expressed as a glutathione-S-
transferase (GST) fusion protein (27) (Fig.
2C). However, kinases of the Src family are
not involved in Lerk2 phosphorylation in
vivo (Fig. 2B).

In addition, we observed a strong effect

Fig. 2. Lerk2 phosphoryl- A e B Anti- Anti-

ation is induced by con- P Lerk2B P Lerk2A HAp

tact with its high-affinity T 1

receptor Nuk/Cek5. (A) Lerik2-Fc + - + - RS
NIH 3T3 cells expressing Ceks-Fc - + > ‘@ﬂ‘ ; @bﬁ
Lerkowt were serum-  Serum itk o iliEs .

starved for 24 hours, then -202 min 0103060 010 3060 Cek5-Fc
either left untreated (—) or o

incubated for an addition- ~103 - 68
al 2 hours in 10% calf se- 1 L .

rum (+) before stimulation - 68 e

for 10 min with Cek5-Fc or LR =¥
Lerk2-Fc fusion proteins. - 44 -
Immunoprecipitation and ® AL
immunoblotting were o= me® -
done as described in Fig. B Anti-PY

1. (B) NIH 3T3 cells ex- B Anti- Anti-
pressing Lerk2wt or Lerk2B HAm
Lerk2AC-HA were incu- P P Anti<cetd

bated with Cek5-Fc (10 e E —

ng/mi) for the indicated B Anti- @,a\

times and subjected to Lerk2B 12
immunoprecipitation and c e - + PDGF
immunoblotting as de-  GST-LerkZcyto. + & - min 01030 60 - Cek5-Fc
scribed  above. The  GST-FynSH3 *

amount of precipitable 5" T oh -l - 14
wild-type, but not truncat- - 44

ed, Lerk2 decreased rap- ' 32p kinase

idly. The same cell lysates reaction

were immunoprecipitated - 29

with an antibody against -

the Src family kinases 1B A}:\’,"

(anti-cst1) (24) and sub-

jected to in vitro kinase assays with the use of [y*2PJATP and enolase as substrate. An equal amount of
lysate from the same cells treated with PDGF was used as a positive control to detect up-regulation of
Src family kinase activity. (C) Src phosphorylates the Lerk2 cytoplasmic domain in vitro. Baculovirus-
produced Src protein was immunoprecipitated with antibody 2-17 (anti-Src). Washed precipitates were
used in an in vitro kinase reaction with the use of cold ATP with added purified GST fusion proteins (500
ng). Reaction products were analyzed by 10% SDS-PAGE, followed by anti-PY immunoblotting.
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Fig. 3. Lerk2 phosphorylation is induced by serum and PDGF. (A) NIH 3T3 cells expressing Lerk2wt,
Lerk2wt-HA, or Lerk2AC-HA were serum-starved for 24 hours, then either left untreated (—) or stimulated
(+) with 20% calf serum or PDGF (25 ng/ml) for 10 min. Cell lysates were immunoprecipitated with
anti-HAp or anti-Lerk2A and immunoblotted with anti-PY. Stripped blots were reprobed with anti-HAm or
anti-Lerk2B as indicated. (B) NIH 3T3 cells expressing Lerk2wt-HA were serum-starved for 24 hours, then
treated with PDGF (25 ng/ml) for the indicated times. Equal aliquots of the cell lysates were immunopre-
cipitated with antibodies against either the endogenous PDGF receptor (anti-PDGFR) or anti-HAp to
precipitate Lerk2wt-HA, then immunoblotted with anti-PY. A third aliquot of the cell lysates was immuno-
precipitated with anti-cst1 and subjected to in vitro kinase reactions to detect Src family kinase activity.
Stripped blots were reprobed with anti-PDGFR or anti-HAm as indicated. Note the identical kinetics of
PDGFR and Lerk2 phosphorylation, in contrast to the delayed activation of Src family kinase activity.
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Fig. 4. Lerk2 is phosphorylated in vivo and
1B Anti-PY suppresses tyrosine kinase-induced focus
) formation in NIH 3T3 cells. (A) Protein lysates
R T _ were prepared from mouse embryo heads
- ‘ ’ " and bodies at embryonic day 12 (E12) and
from NIH 3T3 cells expressing Lerk2wt grown
in 10% calf serum, immunoprecipitated with
preimmune serum or antisera to Lerk2A or
Lerk2B, and immunoblotted with anti-PY.
Stripped blots were reprobed with antibodies to Lerk2B. In vivo—phosphorylated Lerk2 is indicated by
arrowheads. The Lerk2 band is competed with the immunizing peptide. (B) Focus formation in NIH 3T3
cells (35) induced by cotransfection of expression plasmids encoding BDNF and TrkB, PDGF B-B
(causing activation of endogenous PDGF B receptors), or activated forms of Src or H-Ras, in the
presence of vector control (-), Lerk2wt, or Lerk2AC.
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of serum and growth factor stimulation on
the phosphorylation of Lerk2 (Fig. 3A),
which indicates an additional mechanism
for ligand phosphorylation. The rapid ki-
netics of Lerk2 phosphorylation after stim-
ulation with platelet-derived growth factor
(PDGF) (Fig. 3B) suggests that Lerk2 is a
direct target of the PDGF receptor tyrosine
kinase (RTK). Although a nonreceptor ty-
rosine kinase, such as Src, may mediate
Lerk2 phosphorylation, the slower kinetics
of activation of Src family kinases (half-
maximal at 3 to 4 min) argues against this
(Fig. 3B).

Phosphorylated forms of the Nuk/Cek5
receptor are associated with axonal growth
during embryogenesis (28). We found
that, correlating with receptor phosphoryl-
ation, Lerk2 is tyrosine-phosphorylated in
the developing embryo, both in the head
and in peripheral sites (Fig. 4A). These
results indicate that both receptor and
ligand phosphorylation events are physio-
logically relevant.

The cytoplasmic domain of Lerk2 has
been shown to partially suppress focus for-
mation caused by the interaction of Lerk2
with chimeric receptors containing a Nuk/
Cek5 ectodomain fused to the TrkB cyto-
plasmic domain (2). We found that this
inhibitory activity of Lerk2 does not depend
on the interaction with its high-affinity re-
ceptor. Focus formation caused by a number
of activated tyrosine kinases, including
TrkB, PDGF B receptors, and Src, was sup-
pressed in the presence of wild-type Lerk2
(Fig. 4B), which is tyrosine-phosphorylated
under these conditions (26). In contrast,
transformation by activated Ras is only mar-
ginally affected by Lerk2, which suggests that
Lerk2 specifically counteracts signaling
pathways activated by tyrosine kinases.

The transmembrane ligands of Eph re-
ceptors thus play a dual role: As RTK li-
gands, they activate signaling pathways in
receptor-expressing cells; in addition, their
cytoplasmic domains become tyrosine-phos-
phorylated, allowing interactions with oth-
er proteins that may activate signaling
pathways in ligand-expressing cells.

The Eph receptor ligand Lerk2 becomes
phosphorylated on tyrosine residues by two
mechanisms. The first requires interaction
with its high-affinity receptor Nuk/Cek5, a
finding that was also recently reported by
others (29). The identity of the responsible
cytoplasmic tyrosine kinase endogenous to
the ligand-expressing cell is presently not
known. Second, Lerk2 phosphorylation is
induced independently of Eph receptor
contact by stimulation with peptide growth
factors, such as PDGF, that signal through
RTKs. In the case of the PDGF receptor,
this phosphorylation may be direct and may
not involve associated Src family kinases.
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PDGF may be a physiological inducer of
Lerk2 phosphorylation, because many types
of central nervous system neurons express
PDGF B receptors and respond to PDGF,
including neurons of the cerebral cortex,
which are known to express Lerk2 (13, 30).

The suppression of mitogenic signaling by
Lerk? may be part of a negative feedback loop,
which would reduce the cell’s responsiveness
to peptide growth factors. Possible mecha-
nisms of action may involve the recruitment
of cytoplasmic phosphotyrosine phosphatases
(31), which could antagonize signaling path-
ways downstream of RTKs, or of cytoplasmic
tyrosine kinases such as Abl, which mediates
growth inhibitory effects by interacting with
the cell cycle machinery (32) and is implicat-
ed in axonal pathfinding (33). Whatever the
mechanism, the discovery of regulated ty-
rosine phosphorylation of ligands for Eph re-
ceptors will rapidly advance our understand-
ing of axonal guidance and possibly of cell
growth in the developing embryo.
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Spatially and Functionally Distinct Ca?* Stores
in Sarcoplasmic and Endoplasmic Reticulum

Vera A. Golovina and Mordecai P. Blaustein*

The organization of calcium (Ca2?*) stores in the sarcoplasmic and endoplasmic reticulum
(S-ER}) is poorly understood. The dynamics of the storage and release of calcium in the
S-ER of intact, cultured astrocytes and arterial myocytes were studied with high-reso-
lution imaging methods. The S-ER appeared to be a continuous tubular network; nev-
ertheless, calcium stores in the S-ER were organized into small, spatially distinct com-
partments that functioned as discrete units. Cyclopiazonic acid (an inhibitor of the
calcium pump in the S-ER membrane) and caffeine or ryanodine unloaded different,
spatially separate compartments. Heterogeneity of calcium stores was also revealed in
cells activated by physiological agonists. These results suggest that cells can generate
spatially and temporally distinct calcium signals to control individual calcium-dependent

processes.

Activation of most cells evokes diverse
and complex responses that depend on
mobilization of Ca?* from intracellular
stores in the sarcoplasmic (in muscle) or
endoplasmic reticulum (S-ER) (I1). Two
types of S-ER Ca?™ stores have been func-
tionally characterized (1-4) and identified
by immunocyto-chemical localization of
receptors (5). Release of Ca?™ from one of
the stotes requires myo-inositol 1,4,5-
trisphosphate  (IP;) (1). Thapsigargin
(TG) (2-4, 6, 7) and cyclopiazonic acid
(CPA) (3, 7, 8), irreversible and revers-
ible inhibitors of the Ca?* pump in the
S-ER membrane, respectively, deplete this
IP;-sensitive store. Mobilization of Ca’*
from the IP;-insensitive store requires cy-
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tosolic Ca®* in the micromolar range (9)

and can be activated by caffeine (CAF)
(10) and either activated or blocked by
ryanodine (RY), depending on the con-
centration (11). In some cells, neither TG
nor CPA depletes the CAF- and RY-sen-
sitive Ca?* store, suggesting that there is
also a TG- and CPA-resistant S-ER Ca?*
pump (2—4).

The S-ER appears to be a continuous,
interconnected network of tubules (12). It
remains unclear, however, whether the
pharmacologically identified stores are
spatially separate (1-4) because the two
S-ER Ca’™" stores have not been directly
visualized. To perform dynamic high-reso-
lution imaging studies in intact, primary
cultured astrocytes and mesenteric artery
(MA) myocytes (13), we loaded intracel-
lular organelles preferentially (14) with
the Ca?"-sensitive, ratiometric fluoro-
chromes furaptra (Figs. 1 and 2), fura-2FF
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