
system helps determine the T or physical 
state of the planetary cores. The eutectic T 
determined in this study is 860°C at 18 GPa, 
which is about 500°C less than that extrap- 
olated from (2) .  The extrapolation to higher 
P based on (2) could result in the overesti- 
mation of core T. In fact, such extrapolation 
should not be exercised in the Fe-FeS system 
because of the formation of the intermediate 
compound and changes in physical proper- 
ties of end-member FeS (10) at high P and 
T. Theoretical calculations also showed that 
other Fe-S compounds such as Fe3S could 
form at higher P (1 1 ), and melting relations 
in the Fe-FeS system at the core P of the 
Earth 1135 to 360 GPa) mav be different 
from what we observed atrelatively low P. In 
addition, the wresence of Ni in the svstem 
could fuither ;omplicate the phase relakons. 

Iron sulfides are found in many classes 
of meteorites. If Fe3S, were indeed found 
in a meteorite, it would indicate the min- 
imum size o f ' t h e  parent body and the 
maximum T of the core. The Fe3S2 com- 
pound could only be found in meteorites 
that come from parent bodies with a cen- 
ter P > 14 GPa and T less than the 
eutectic temperature (which is -900°C, 
depending on the pressure). 
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Melting of (Mg,Fe),SiO, at the Core-Mantle 
Boundary of the Earth 

Kathleen G. Holland and Thomas J. Ahrens 

The lower mantle of the Earth is believed to be largely composed of (Mg,Fe)O (mag- 
nesiowustite) and (Mg,Fe)SiO, (perovskite). Radiative temperatures of single-crystal 
olivine [(Mg,,,,Fe,,,),SiO,] decreased abruptly from 7040 i 315 to 4300 L 270 kelvin 
upon shock compression above 80 gigapascals. The data indicate that an upper bound 
to the solidus of the magnesiowiistite and perovskite assemblage at 4300 -c 270 kelvin 
is 130 ? 3 gigapascals. These conditions correspond to those for partial melting at the 
base of the mantle, as has been suggested occurs within the ultralow-velocity zone 
beneath the central Pacific. 

T h e  major minerals of Earth's lower man- 
tle are thought to be (Mgo,,4,Fe,,06)Si03 
perovskite and (Mgo,,4,Feo 1 6 ) 0  magnesio- 
wiistite (1 ). Thus, the melting behavior of 
this assemblage is important for determin- 
ing the temperature of the mantle and the 
origin of the seismically imaged structures 
at the core-mantle boundary (CMB). Re- 
cent studies of the solidi of this mantle 
assemblage are disparate: The melting 
temperature of pure MgSi03 perovskite 
(Pv) at the CMB has been estimated at 
7000 to 8500 K (2)  and 4500 i 350 K (3). 
Measurements of the melting of MgO 
[periclase (Per)] at pressures up to 31.5 
GPa (4000 i 200 K )  (4) imply, when 
extrapolated to 133 GPa, that it melts at 
5100 1 750 K. Phase equilibrium experi- 
ments (5) demonstrate that at lower man- 
tle pressures, the stable high-pressure 
phase (hpp) assemblage for Mg,Si04 [for- 
sterite (Fo)] is MgO (Per) + MgSi03 (Pv);  
thus, Fo can be used as a representative 
starting material in shock experiments. 
Syono and co-workers' (6)  shock-recovery 
experiments on Fo indicate that MgO 
(Per) + MgSiO, (glass that is inferred to 
have been Pv at high pressure and temper- 
ature) is actually recovered from samples 

Llndhurst Laboratory of Experlmental Geophysics, Sels- 
molog~cal Laboratory. Calforna Instltute of Technology, 

that were at high pressure for the short 
( lo- '  S)  time scale of a shock-wave exper- 
iment (6) .  In previous shock experiments 
using olivine crystals, Brown e t  al. (7)  
inferred the onset of melting of the assem- 
blage Per + Pv above -140 GPa on the 
basis of a sharp decrease in longitudinal 
elastic wave velocity. Brown et al. (7)  also 
suggested that the previous shock temper- 
atures measured in Fo in the range of 160 
to 180 GPa (8) are representative of the 
liquid regime of the Fo Hugoniot. Because 
Fo shocked below 160 GPa has a low 
Planck emissivity, temperatures in the 
pressure range where the Hugoniot curve 
crosses the solidus 1-90 to 133 GPa) were 
not measurable. Here, we determine the 
onset of melting at lower pressures using 
higher emissivity olivine samples and a 
more sensitive detector svstern 19). We 
used samples of San ~ a r i o s  and Burma 
peridot [(Mgo,9,Feo,,)2Si04 (1 O)] for 
shock-temperature experiments because 
they are green rather than transparent. 
Their ambient-condition emissivities are 
-0.7 and -1.0 at 560 and 900 nm. More- 
over, their solidi are within 110°C of the 
melting point of Fo at 1 bar (5) .  Using 5 
mm by 5 mm by 2 mm samples, we con- 
ducted measurements from 94 to 192 GPa 
(Table 1)  (1 1 ). As the shock wave prop- 
agated through the sample (1 2) ,  the com- 
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pressed region emitted thermal radiation, 
which then propagated through the ab- 
sorbing unshocked sample (Fig. 1). As the 
shock front propagated through the sam- 
ple, the radiation from the shock front was 
attenuated by successively less unshocked 
sample; thus, radiance increased with time 
(13) (Fig. 2A). For each experiment, sig- 
nals -300 ns long were recorded by pho- 
todiodes in six wavelength bands from 450 
to 900 nm. Data corrected for mineral 
emissivity and system response (14, 15) 
were fitted to a Planck function to obtain 
emissivity and temperature (Fig. 2,  B 
through D).  Shock temperatures were 
nearly constant (Fig. 2C) during propaga- 
tion through the sam~le ,  whereas the ir- 

u 

radiance (Fig. 2A) varied with emissivity 
(Fig. 2C). 

We determined shock temperatures of 
peridot in eight experiments (Table 1 and 
Fig. 3). Between 127 and 133 GPa, we 
measured a change in temperature from 
7041 i 315 to 4292 i 270 K. The data for 
peridot and earlier data (8) for the shock- 
induced melt of the high-pressure assem- 
blage of Fo appear to agree. We infer that 
the difference in shock temoerature ob- 

Our estimate is consistent with a solidus 
attained for (Mgo,,,FeO,,),SiO4 at lower 
pressure reported by Presnall and Walter 
(18). There is the possibility that the onset 
of meltine could be overdriven bv kinetic 

u 

effects (17), so our estimated solidus is an 
umer bound. 

L L 

In analogy to low-pressure data, we sug- 
gest that in the MgO-MgSiO, system, the 
high-pressure lower mantle assemblage 
can undergo eutectic melting and that 
the eutectic composition lies between 
Mg,Si04 and MgSi03. The upper bound 
reported by Sweeney and Heinz (3)  or 
even the higher temperature extrapolation 

Time (ns) 

of the data of Zerr and Boehler ( 2 )  for pure 
MgSiO, (Pv) melting are consistent with 
this sueeestion. uu 

Our results imply that the lower mantle 
of the Earth can be modeled as an intimate 
mixture of Per + Pv; its solidus tempera- 
ture is no hieher than -4300 K at -130 

c 2  

GPa. This temperature would allow partial 
melting in the lowest reaches of mantle, as " 

recently suggested to explain P-wave veloc- 
ities at the base of the mantle (19). Also, this 
temperature agrees with thermal models of 
the core, obtained independently by Boehler 
and by Jeanloz and Morris (20) on the basis 
of melting and Griineisen parameter mea- 

200 300 400 500 600 
Time (ns) 

Voltage photodiodes opti;al fiber 
signal sub-bundles 

served between the 127- and i 3 3 - ~ ~ a  ex- C " " " '  10 D '  

Fig. 1. Schematic diagram of experimental setup 
( I  I ) .  The flyer is shown in flight before impacting 
the sample. The shock front is shown as it would 
appear shortly after impact. The target and the 
turning mirror are attached to the impact tank, but 
the flyer is not. The impact tank is evacuated. 

7000 periments results from our sampling the 
lower pressure, superheated (solid) hpp as- g 
semblage and the onset of melting with 6000 
increasing shock pressure. This behavior is 2 
analogous to that in SiO, and alkali halides % 
(1 6 ,  17). Because a material will not melt if E 5000 

its temperature does not exceed the solidus # 

at the relevant pressure, the observed shock 4000 

Fig. 3. Pressure-temperature phase CMB 
diagram for Mg,SiO, and calculated 
Hugoniot temperature curve for 8000 I I I 

Mg,SiO,. When the Hugoniot inter- - 
sects the solidus, under equilibrium 
conditions, it follows the solidus until 6000 - 
complete melting occurs. However, g 
equilibrium is not achieved, and g - 
Hugoniot states achieved overshoot 2 
the solidus because of kinetic effects, $ 4000 - Per + 

which results in states along a meta- 
stable extension of the solid Hugo- # - 
niot, a phenomena also observed in 2000 
SiO, (16) and KBr and CsBr (17). 
When melting occurs, shock temper- - 
atures lie along the solidus, substan- 
tially below the temperature of the su- 0 
perheated solid. Experimental shock 0 50 100 150 200 
temperatures are shown intersecting Pressure (GPa) 
an inferred solidus. Data for San Car- 
los and Burma peridot are shown as solid triangles, and data for Fo (8) are shown as solid squares. Error bars, 
when not shown, are smaller than symbol size. Mw, magnesiowijstite; Wa, wadsleyite. 

- Shot 245 
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o 
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temperature of 4300 t 270 K represents an 200 300 400 500 600 400 600 800 1000 

upper bound to the solidus at 130 t 3 GPa. Time (ns) Wavelength (nm) 

Fig. 2. (A) Radiance versus time profile, centered at 650 n m ,  from shot 245. The time marked "Enter" is 
the calculated time of arrival of the shock wave at the olivine, and "Fsa" is the calculated time of arrival 

Vacuum impact tank of the shock wave at the free surface of the olivine. (B) Spectral emissivity versus time for shot 245. (C) 
Gray-body temperature versus time for shot 245. (D) Spectral fit at 522 ns for shot 245. 

Flyer Target Turning mirror 



Table 1. Temperatures of shocked olivine (hpp). The ATand A& are root-mean-square uncertainties in 
temperature and emissivity for -100 sample t~mes during the last -100 ns of radiat~ve signal recorded 
for each shot. 

Shot # Flier-dr~ver Pressure Temperature AT Emissivity 
material (GPa) (K) (K) A& 

284 CU-CU 
244 CU-CU 
278 CU-CU 
289 Ti-Ti 
275 CU-CU 
245 Ta-Ta 
302 Ta-Ta 
303 Ta-Ta 

surements of outer core candidate compo- revealed the San Carlos perdot as 

nents and of downward of ( M g ~  907'Feo o,,)zsio, and the Burma ~eridot as 
(Mg, ,,,!Fe, ,,,),SIO,. Hence, we smply quote the 

mantle phase-transition temperatures. compos~t~on of both as (Mg ,,,, Feo,,),S~O,. 
11. R. Jeanloz and T. J. Ahrens, In Hiqh-Pressure Re- 
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