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system helps determine the T or physical
state of the planetary cores. The eutectic T
determined in this study is 860°C at 18 GPa,
which is about 500°C less than that extrap-
olated from (2). The extrapolation to higher
P based on (2) could result in the overesti-
mation of core T. In fact, such extrapolation
should not be exercised in the Fe-FeS system
because of the formation of the intermediate
compound and changes in physical proper-
ties of end-member FeS (10) at high P and
T. Theoretical calculations also showed that
other Fe-S compounds such as Fe,;S could
form at higher P (11), and melting relations
in the Fe-FeS system at the core P of the
Earth (135 to 360 GPa) may be different
from what we observed at relatively low P. In
addition, the presence of Ni in the system
could further complicate the phase relations.

Iron sulfides are found in many classes
of meteorites. If Fe;S, were indeed found
in a meteorite, it would indicate the min-
imum size of the parent body and the
maximum T of the core. The Fe;S, com-
pound could only be found in meteorites
that come from parent bodies with a cen-
ter P > 14 GPa and T less than the
eutectic temperature (which is ~900°C,
depending on the pressure).
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Melting of (Mg,Fe),SiO, at the Core-Mantle
Boundary of the Earth

Kathleen G. Holland and Thomas J. Ahrens

The lower mantle of the Earth is believed to be largely composed of (Mg,Fe)O (mag-
nesiowUstite) and (Mg,Fe)SiO, (perovskite). Radiative temperatures of single-crystal
olivine [(Mg, o,Fe, 1),Si0,] decreased abruptly from 7040 + 315 to 4300 = 270 kelvin
upon shock compression above 80 gigapascals. The data indicate that an upper bound
to the solidus of the magnesiowdstite and perovskite assemblage at 4300 =+ 270 kelvin
is 130 = 3 gigapascals. These conditions correspond to those for partial melting at the
base of the mantle, as has been suggested occurs within the ultralow-velocity zone

beneath the central Pacific.

The major minerals of Earth’s lower man-
tle are thought to be (Mgyo4Feg06)SiO;
perovskite and (Mg, g4,Fej 15)O magnesio-
wiistite (1). Thus, the melting behavior of
this assemblage is important for determin-
ing the temperature of the mantle and the
origin of the seismically imaged structures
at the core-mantle boundary (CMB). Re-
cent studies of the solidi of this mantle
assemblage are disparate: The melting
temperature of pure MgSiO; perovskite
(Pv) at the CMB has been estimated at
7000 to 8500 K (2) and 4500 = 350 K (3).
Measurements of the melting of MgO
[periclase (Per)] at pressures up to 31.5
GPa (4000 = 200 K) (4) imply, when
extrapolated to 133 GPa, that it melts at
5100 = 750 K. Phase equilibrium experi-
ments (5) demonstrate that at lower man-
tle pressures, the stable high-pressure
phase (hpp) assemblage for Mg,SiO, [for-
sterite (Fo)] is MgO (Per) + MgSiO; (Pv);
thus, Fo can be used as a representative
starting material in shock experiments.
Syono and co-workers’ (6) shock-recovery
experiments on Fo indicate that MgO
(Per) + MgSiO; (glass that is inferred to
have been Pv at high pressure and temper-
ature) is actually recovered from samples

Lindhurst Laboratory of Experimental Geophysics, Seis-
mological Laboratory, California Institute of Technology,
Pasadena, CA 91125, USA.

that were at high pressure for the short
(1077 s) time scale of a shock-wave exper-
iment (6). In previous shock experiments
using olivine crystals, Brown et al. (7)
inferred the onset of melting of the assem-
blage Per + Pv above ~140 GPa on the
basis of a sharp decrease in longitudinal
elastic wave velocity. Brown et al. (7) also
suggested that the previous shock temper-
atures measured in Fo in the range of 160
to 180 GPa (8) are representative of the
liquid regime of the Fo Hugoniot. Because
Fo shocked below 160 GPa has a low
Planck emissivity, temperatures in the
pressure range where the Hugoniot curve
crosses the solidus (~90 to 133 GPa) were
not measurable. Here, we determine the
onset of melting at lower pressures using
higher emissivity olivine samples and a
more sensitive detector system (9). We
used samples of San Carlos and Burma
peridot  [(Mggo,Feq1),S510, (10)] for
shock-temperature experiments because
they are green rather than transparent.
Their ambient-condition emissivities are
~0.7 and ~1.0 at 560 and 900 nm. More-
over, their solidi are within 110°C of the
melting point of Fo at 1 bar (5). Using 5
mm by 5 mm by 2 mm samples, we con-
ducted measurements from 94 to 192 GPa
(Table 1) (11). As the shock wave prop-
agated through the sample (12), the com-
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pressed region emitted thermal radiation,
which then propagated through the ab-
sorbing unshocked sample (Fig. 1). As the
shock front propagated through the sam-
ple, the radiation from the shock front was
attenuated by successively less unshocked
sample; thus, radiance increased with time
(13) (Fig. 2A). For each experiment, sig-
nals ~300 ns long were recorded by pho-
todiodes in six wavelength bands from 450
to 900 nm. Data corrected for mineral
emissivity and system response (14, 15)
were fitted to a Planck function to obtain
emissivity and temperature (Fig. 2, B
through D). Shock temperatures were
nearly constant (Fig. 2C) during propaga-
tion through the sample, whereas the ir-
radiance (Fig. 2A) varied with emissivity
(Fig. 2C). :
We determined shock temperatures of
peridot in eight experiments (Table 1 and
Fig. 3). Between 127 and 133 GPa, we
measured a change in temperature from
7041 = 315 to0 4292 = 270 K. The data for
peridot and earlier data (8) for the shock-
induced melt of the high-pressure assem-
blage of Fo appear to agree. We infer that
the difference in shock temperature ob-
served between the 127- and 133-GPa ex-
periments results from our sampling the
lower pressure, superheated (solid) hpp as-
semblage and the onset of melting with
increasing shock pressure. This behavior is
analogous to that in SiO, and alkali halides
(16, 17). Because a material will not melt if
its temperature does not exceed the solidus
at the relevant pressure, the observed shock
temperature of 4300 = 270 K represents an
upper bound to the solidus at 130 = 3 GPa.

Vacuum impact tank

Flyer  Target Turning mirror

S

.,
Y~ Window

~+—— Optics

Sample  gpock front

Optical fiber

bundle Optical

o filters

To digital
recording
system )
AN
Voltage Photodiodes Optical fiber
signal sub-bundles

Fig. 1. Schematic diagram of experimental setup
(77). The flyer is shown in flight before impacting
the sample. The shock front is shown as it would
appear shortly after impact. The target and the
turning mirror are attached to the impact tank, but
the flyer is not. The impact tank is evacuated.
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Our estimate is consistent with a solidus
attained for (Mgyg,Fey;),S10, at lower
pressure reported by Presnall and Walter
(18). There is the possibility that the onset
of melting could be overdriven by kinetic
effects (17), so our estimated solidus is an
upper bound.

In analogy to low-pressure data, we sug-
gest that in the MgO-MgSiO; system, the
high-pressure lower mantle assemblage
can undergo eutectic melting and that
the eutectic composition lies between
Mg,SiO, and MgSiO;. The upper bound
reported by Sweeney and Heinz (3) or
even the higher temperature extrapolation
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of the data of Zerr and Boehler (2) for pure
MgSiO; (Pv) melting are consistent with
this suggestion.

Our results imply that the lower mantle
of the Earth can be modeled as an intimate
mixture of Per + Pv; its solidus tempera-
ture is no higher than ~4300 K at ~130
GPa. This temperature would allow partial
melting in the lowest reaches of mantle, as
recently suggested to explain P-wave veloc-
ities at the base of the mantle (19). Also, this
temperature agrees with thermal models of
the core, obtained independently by Boehler
and by Jeanloz and Morris (20) on the basis
of melting and Griineisen parameter mea-

Emissivity

400 500
Time (ns)
10 T T T

Shot 245

Radiance (10'2W m3 sr)

600 800
Wavelength (nm)

0
400 1000

Fig. 2. (A) Radiance versus time profile, centered at 650 nm, from shot 245. The time marked “Enter” is
the calculated time of arrival of the shock wave at the olivine, and “Fsa” is the calculated time of arrival
of the shock wave at the free surface of the olivine. (B) Spectral emissivity versus time for shot 245. (C)
Gray-body temperature versus time for shot 245. (D) Spectral fit at 522 ns for shot 245.

Fig. 3. Pressure-temperature phase
diagram for Mg, SiO, and calculated 00
Hugoniot temperature curve for 80 ! T '
Mg,SiO,. When the Hugoniot inter- L
sects the solidus, under equilibrium
conditions, it follows the solidus until
complete melting occurs. However,
equilibrium is not achieved, and
Hugoniot states achieved overshoot
the solidus because of kinetic effects,
which results in states along a meta-
stable extension of the solid Hugo-
niot, a phenomena also observed in
SiO, (716) and KBr and CsBr (77).
When melting occurs, shock temper-
atures lie along the solidus, substan-
tially below the temperature of the su- 0
perheated solid. Experimental shock
temperatures are shown intersecting

an inferred solidus. Data for San Car-

los and Burma peridot are shown as solid triangles, and data for Fo (8) are shown as solid squares. Error bars,
when not shown, are smaller than symbol size. Mw, magnesiowUstite; Wa, wadsleyite.
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Table 1. Temperatures of shocked olivine (hpp). The AT and Ae are root-mean-square uncertainties in
temperature and emissivity for ~100 sample times during the last ~100 ns of radiative signal recorded

for each shot.

Flier-driver Pressure Temperature AT Lo

Shot # material (GPa) ) ) Emissivity Ae
284 Cu-Cu 93.7 4545 321 0.22 0.15
244 Cu-Cu 107.8 5355 234 0.0132 0.0033
278 Cu-Cu 115.7 6800 201 0.51 0.17
289 Ti-Ti 127.1 7041 315 0.055 0.014
275 Cu-Cu 133.0 4292 270 0.038 0.048
245 Ta-Ta 178.4 6092 310 0.226 0.057
302 Ta-Ta 183.5 6700 213 0.0284 0.0091
303 Ta-Ta 192.0 6510 151 0.298 0.026

surements of outer core candidate compo- revealed the San  Carlos  peridot as

nents and of downward extrapolation of
mantle phase-transition temperatures.
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