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A Neural Substrate of 
Prediction and Reward 

Wolfram Schultz, Peter Dayan, P. Read Montague* 

The capacity to predict future events permits a creature to detect, model, and manipulate 
the causal structure of its interactions with its environment. Behavioral experiments 
suggest that learning is driven by changes in the expectations about future salient events 
such as rewards and punishments. Physiological work has recently complemented these 
studies by identifying dopaminergic neurons in the primate whose fluctuating output 
apparently signals changes or errors in the predictions of future salient and rewarding 
events. Taken together, these find~ngs can be understood through quantitative theories 
of adaptlve optimizing control. 

A n  adaptive organism must be able to 
predict future events such as the  presence of 
mates, food, and danger. For any creature, 
the  features of its niche strongly constrain 
the  time scales for prediction that  are likely 
to  be useful for its survival. Predictions give 
an  animal time to prepare behavioral reac- 
tions and can be used to improve the  choic- 
es a n  animal makes in the  future. This 
anticipatory capacity is crucial for deciding 
between alternative courses of action be- 
cause some choices may lead to food where- 
as others may result in  injury or loss of 
resources. 

Experiments show that animals can pre- 
dict many different aspects of their environ- 
ments, including complex properties such as 
the  spatial locations and physical character- 
istics of stimuli (1 ) .  O n e  simple, yet useful 
prediction that animals make is the  proba- 
ble time and magnitude of future rewarding 
events. "Reward" is a n  operational concept 
for describing the  positive value that  a crea- 
ture ascribes to an  object, a behavioral act, 

or a n  internal physical state. T h e  function 
of reward can be described according to  the  
behavior elicited (2 ) .  For example, appeti- 
tive or rewarding stimuli induce approach 
behavior that permits a n  animal to con- 
sume. Rewards may also play the  role of 
positive reinforcers where they increase the  
frequency of behavioral reactions during 
learning and maintain well-established ap- 
petitive behaviors after learning. T h e  re- 
ward value associated with a stimulus is not  
a static, intrinsic property of the  stimulus. 
Animals can assign different appetitive val- 
ues to  a stimulus as a function of their 
internal states at t he  time the  stimulus is 
encountered and as a function of their ex- 
perience with the  stimulus. 

O n e  clear connection between reward 
and prediction derives from a wide variety 
of conditioning experiments (1) .  In these 
experiments, arbitrary stimuli with n o  in- 
trinsic reward value will function as reward- 
ing stimuli after being repeatedly associated 
in  time with rewarding objects-these ob- 
iects are one form of unconditioned stimu- 
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with aversive stimuli). In  standard condi- 
tioning paradigms, the  sensory cue must 
consistently precede the  reward in  order for 
a n  association to develoo. After condition- 
ing, the  animal's behavior indicates that the  
sensory cue induces a orediction about the  
likely 'time and magnitude of the  reward 
and tends to elicit aoaroach behavior. It 

L L 

appears that  this form of learning is associ- 
ated with a transfer of an  aooetitive or 

L 

approach-eliciting component of the  re- 
ward back to  the  sensory cue. 

Some theories of reward-dependent 
learning suggest that learning is driven by 
the  unpredictability of the  reward by the  
sensory cue ( 3 , 4 ) .  O n e  of the  main ideas is 
that n o  further learning takes place when 
the  reward is entirely predicted by a sensory 
cue (or cues). For example, if presentation 
of a light is consistently follolved by food, a 
rat will learn that the  light predicts the  
future arrival of food. If, after such training, 
the  light is paired with a sound and this pair 
is consistently followed by food, then some- 
thing unusual haaaens-the rat's behavior 
indicates that  the  light continues to  predict 
food, but the  sound oredicts nothing. This - 
phenomenon is called "blocking." T h e  pre- 
diction-based exolanation is that the  light 
fully predicts the' food that arrives and k e  
oresence of the  sound adds no  new aredic- 
tive (useful) information; therefore, n o  as- 
sociation developed to  the  sound (5). I t  
appears therefore that learning is driven by 
deviations or "errors" between the  predicted 
time and amount of rewards and their ac- 
tual experienced times and magnitudes [but 
see (411. 

Engineered systems that are designed to 
optimi:e their actions in  complex environ- 
ments face the  same challenges as animals, 
except that the  equivalent of rewards and 
punishments are determined hy design 
goals. O n e  established method by which 
artificial systems can learn to predict is 
called the  temporal difference (TD)  algo- 
rithm (6).  This algorithm was originally 
inswired bv behavioral data o n  how animals 
actially learn predictions (7). Real-world 
aoolications of T D  models abound. T h e  . L 
predictions learned by T D  methods can also 
be used to imolement a techniaue called 
dynamic programming, which specifies how 
a system can come to  choose appropriate 
actions. In  this article, we review how these 
computational methods provide a n  inter- 
pretation of the  activity of dopanline neu- 
rons thought to  mediate reward-processing 
and reward-dependent learning. T h e  con- 
nection between the  comoutational theorv 
and the  experimental results is striking and 
arovides a auantitative framework for future 
experiments and theories o n  the  computa- 
tional roles of ascending tnonoaminereic 

u 

systems (8-13). 
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Information Encoded in 
Dopaminergic Activity 

Dopamine neurons of the  ventral tegmental 
area ( V T A )  and substantia nigra have long 
been identified with the  processing of re- 
warding stimuli. These neurons send their 
axons to  brain structures involved in moti- 
vation and goal-directed behavior, for ex- 
ample, the  striatum, nucleus accumbens, 
and frontal cortex. M u l t i ~ l e  lines of evi- 
dence support the  idea that these neurons 
construct and distribute information about 
re l~arding events. 

First, drugs like amphetamine and co- 
caine exert their addictive actions in part by 
prolonging the  influence of dopamine o n  
target neurons (14). Second, neural path- 
ways associated with d o ~ a n l i n e  neurons are 
anlbng the best targets for electrical self- 
stimulation. In these experiments, rats press 
bars to excite neurons at the  site of an  im- 
planted electrode (15). . T h e  rats often 
choose these apparently rewarding stimuli 
over food and sex. Third, animals treated 
with dopamine receptor blockers learn less 
rapidly to press a bar for a reward pellet (1 6 ) .  
All the above results generally implicate 
midbrain dopaminergic activity in reward- 
dependent learning. More precise informa- 
tion about the  role played by midbrain do- 
paminergic activity derives from experiments 
in which activity of single dopanline neurons 
is recorded in  alert monkeys while they per- 
form behavioral acts and receive rewards. 

Fig. 1. Changes in dopamine neurons' 

In  these latter experiments ( IT) ,  dopa- 
mine neurons respond with short, phasic 
activations when monkeys are presented 
with various appetitive stimuli. For exam- 
ple, dopamine neurons are activated when 
animals touch a small morsel of apple or 
receive a small quantity of fruit juice to the  
mouth as liquid reward (Fig. 1). These pha- 
sic activations do  not,  however, discrimi- 
nate between these different types of re- 
warding stimuli. Aversive stimuli like air 
puffs to the  hand or drops of saline to the  
mouth do not  cause these same transient 
activations. Dopamine neurons are also ac- 
tivated by novel stimuli that  elicit orienting 
reactions; however, for most stimuli, this 
activation lasts for only a few presentations. 
T h e  responses of these neurons are relative- 
ly homogeneous-different neurons re- 
spond in  the  same manner and different 
appetitive stimuli elicit similar neuronal re- 
sponses. All  responses occur in  the  majority 
of dopamine neurons (55 to 80%). 

Surprisingly, after repeated pairings of 
visual and auditory cues followed by reward, 
dopamine neurons change the  time of their 
phasic activation from just after the  time of 
reward delivery to the  time of cue onset. In  
one task, a na'ive monkey is required to 
touch a lever after the  appearance of a small 
light. Before training and in the  initial 
phases of training, most dopanline neurons 
show a short burst of impulses after reward 
delivery (Fig. 1, top). After several days of 
training, the  animal learns to reach for the  

Do d0Damine neurons reDort an error 
output code for an error in the predicton of in the prediction of ieward? 
appetitive events. (Top) Before learning, a No prediction 
drop of appetitive fruit juice occurs in the Reward occurs 
absence of predict~on-hence a positive 
error in the prediction of reward. The do- 
pamine neuron is actvated by this unpre- 
dicted occurrence of iuice, (Middle) After 
learning, the conditioned s t l ~ u l u s  predicts 
reward, and the reward occurs accordna 
to the prediction-hence no error in the Reward predicted 

predicton of reward. The d o ~ a m n e  neu- Reward Occurs 

ron is activated by the rewa/d-pred~ctlng 
stimulus but fails to be activated by the 
pred~cted reward (right). (Bottom) After 
Iearnng, the conditioned stmulus predcts 
a reward, but the reward fails to occur be- 
cause of a mistake In the behavioral re- 
sponse of the monkey. The activty of the Reward predicted 

dopamne neuron is depressed exactly at reward occurs 

the time when the reward would have oc- 
curred. The depresson occurs more than 
1 s after the condtioned stimulus without 
any Intervening stimuli, revealing an inter- - 1 0 1 2 s 
nal representaton of the time of the pre- CS (No R) 
dlcted reward. Neuronal activity 1s aligned 
on the electronic pulse that drives the solenoid valve delivering the reward qu id  (top) or the onset of the 
conditioned visual stimulus (mddle and bottom). Each panel shows the peri-event tme  hstogram and 
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-tme intervals. 
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS, 
conditioned, reward-predictng st~mulus; R, primary reward. 

lever as soon as the  light is illuminated, and 
this behavioral change correlates with two 
remarkable changes in  the  dopamine neu- 
ron output: ( i )  the  primary reward n o  longer 
elicits a phasic response; and (ii)  the  onset 
of the  (predictive) light now causes a phasic 
activation in  dopamine cell output (Fig. 1, 
middle). T h e  changes in  dopaminergic ac- 
tivity stronelv resemble the  transfer of an  u ,  

animal's appetitive behavioral reaction 
from the  US to the  CS. 

In  trials where the  reward is not  deliv- 
ered a t  the  appropriate time after the  onset 
of the  light, dopanline neurons are de- 
pressed markedly below their basal firing 
rate exactly a t  the  time that the  reward 
should have occurred (Fig. 1,  bottom). This 
well-timed decrease in  spike output shows 
that the  expected time of reward delivery 
based o n  the  occurrence of the  light is also 
encoded in the  fluctuations in dopaminer- 
gic activity (18) .  In  contrast, very few do- 
pamine neurons respond to stimuli that  pre- 
dict aversive outcomes. 

T h e  language used in the foregoing de- 
scription already incorporates the idea that 
dopaminergic activity encodes expectations 
about external stimuli or reward. This inter- 
pretation of these data provides a link to an 
established body of computational theory (6 ,  
7). From this perspective, one sees that dopa- 
mine neurons do not simply report the occur- 
rence of appetitive events. Rather, their out- 
puts appear to code for a deviation or error 
between the actual reward received and pre- 
dictions of the time and magnitude of reward. 
These neurons are activated only if the time 
of the reward is uncertain, that is, un~redicted , 

by any preceding cues. Dopamine neurons are 
therefore excellent feature detectors of the 
"goodness" of environmental events relative 
to learned predictions about those events. 
They emit a positive signal (increased spike 
production) if an  appetitive event is better 
than predicted, no  signal (no change in spike 
production) if an  appetitive event occurs as 
predicted, and a negative signal (decreased 
spike production) if an  appetitive event is 
worse than predicted (Fig. 1).  

Computational Theory and Model 

T h e  T D  algorithm (6, 7)  is particularly well 
suited to understanding the  filnctional role 
played by the dopamine signal in  terms of 
the  information it constructs and broadcasts 
(8 ,  10, 12).  This work has ~ ~ s e d  fluctuations 
in dopamine activity in  dual roles (i)  as a 
supervisory signal for synaptic weight 
changes (8, 10,  12)  and (ii)  as a signal to 
influence directlv and indirectly the  choice 
of behavioral ackons in humaks and bees 
(9-1 1 ). Temporal difference methods have 
been ~ ~ s e d  in  a wide spectrum of engineering 
applications that seek to solve prediction 
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problems analogous to those faced by living 
creatures 11 9). Teinuoral difference meth- 

Representing a stimulus through time. \Ve 
suggested above that a set of sensory cues 
along with a n  associated set of adaptable 
weights would suffice to estimate V(t) ( the  
discounted sum of fi1t~li-e rewards). It is, 
however, not  sufficient for the reuresenta- 

cues, each would have its own vector rep- 
resentation and ~ t s  own vector of melghts, 
and Eq. 4 would be summed over all the  
CLl2S. 

, , 

ods were introduced into the  psychological 
and biological literature by Richard Sutton 
and Andrew Barto in  the  early 1980s (6, 7). 
It is therefore interesting that this method 

Comparing model and data W e  now turn 
this auuaratus to\! ard the  neural and behav- 

u 

yields some insight into the  output of do- 
uainine neurons in orimates. 

tlon of each sensory cue (for example, a 
llght) to have only one associated adaptable 
weight because such a model would not 
account for the data shown above-lt 
would not  be able to  represent both the  
time of the  cue and the  tllne of reward 
delivery. These experllnental data s h o ~  

L L 

ioral data described above. T o  construct 
and use an  error signal similar to  the  T D  

There are two main assumptions in  TD.  
First, the coinp~~tat ional  goal of learning is 
to use the  sensory cues to predict a dis- 
counted sum of all f i~ture rewards V(t) with- 
in a learning trial: 

u 

error above, a neural system would need to 
possess four basic features: ( i )  access to a 
measure of reward value r ( t ) ;  ( i i)  a signal 
measuring the  temporal derivative of the  
ongoing prediction of reward yV(t + 1 )  - 
V(t);  (iii) a site where these signals could be 
summed; and (iv) delivery of the  error sig- 

that a sensory cue can predict reward deliv- 
ery a t  arbitrary times into the  near future. 
This conclusion holds for both the  inon- 
keys' behavior and the  output of the  dopa- 
mine neurons. If the time of reward delivery 
is changed relative to the  time of cue onset, 
then the  same cue will come to predict the  
new time of reward delivery. T h e  way in 

nal to  areas constructing the  prediction in 
such a way that it can control plasticity. 

It  has been previously proposed that 
midbrain dopamine neurons satisfy features 

where ~ ( t )  is the  reward a t  time t and E[.] 
denotes the expected value of the  sum of 
future rewards up to the end of the trial. 0 5 

Y 5 1 is a discount factor that makes re- 
wards that arrive sooner inore important 
than rewards that arrive later. Predictine 

which such temporal labels $re construkted 
111 neural tlssue 1s not  known, but it 1s clear 
that they exlst (2C). 

Given these facts, we assume that each 

" 
the  sum of future rewards is an  important 
generalization over static conditioning 
models like the Rescorla-Wagner rule for 
classical conditionii~e 11 -4). T h e  second 

P t i o n  
selection 

sensory cue consists of a vector of signals 
x( t )  = {xl(t) ,  xz(t) ,  a a a } that represent the 
light for variable lengths of time into the 
filture, that is, x,(t) is 1 exactly i time steps 
after the  presentation of the light in  the  
trial and 0 otherwise (Fig. 2B). Each com- 
ponent of x( t ) ,  x,(t), has its own prediction 
weight w, (Fig. 2B). This representation 
means that if the light comes o n  a t  time s, 
xl(s + 1)  = 1, xZ(s + 2 )  = 1, . . . represent 
the  light at 1,  2, . . . time steps into the  
future and w l r  w2, . . . are the  respective 
weights. T h e  net prediction for cue x( t )  a t  
time t takes the  simple linear form 

Prediction 
error - Internal 

" .  , 

main assuniption is the  Markovian one, 
that is, the uresentation of future sensorv 
cues and rewards depends only o n  the iin- 
mediate (current) sensory cues and not  the  a 

n states 

past sensory cues. 
As explained below, the strategy is to use 

a vector describing the  presence of sensory 
cues xit)  in the trial along with a vector of - 
adaptable weights w to make an  estimate 
Q(t) of the true V(t). T h e  reason that the 
sensory cue is written as a vector is explained 
belon. The  difficulty in adjusting weights IV 
to estiinate V(t) is that the system (that is, 
the animal) would have to wait to receive all 
its future rewards in a trial r(t  + I ) ,  r(t + 
21, . . . to assess its predictions. This latter 
constraint bvould require the animal to re- 
meinher over time which weights need 
changing and nhich weights do not. 

Fortunately, there is information avail- 
able at each instant in time that can act as 

This form of temporal representation is 
what Sut ton and Barto (7) call a complete 
serial-compound stimulus and is related to  
Grossberg's spectral timing inodel (2  1 ) .  
Unfortunately, virtually nothing is known 
about how t h e  brain represents a stimulus 
for substantial periods of time into the  
future; therefore, all temporal representa- 
tions are underconstrained from a biolog- 

Fig. 2. Constructng and usng a predcton error. 
(A) Interpretation of the anatomca arrangement 
of nputs and outputs of the ventral tegmental area 
(VTA). M I  and M2 represent two different coliical 
modalities whose output is assumed to arrive at 
the VTA In the form of a temporal dervatve (sur- 
prlse signal) ~ ( t ) ,  wh~ch reflects the degree to 
whch the current sensory state differs from the 
prevous sensory state. The hgh degree of con- 
vergence forces V(t) to arrive at the VTA as a 
scalar s~gnal. Information about reward r(t) also 
converges on the VTA. The VTA output,is taken 
as a smple linear sum 6(t) = r(t) + V(t). The 
widespread output connectons of the VTA make 
the predicton error 6(t) simultaneously avaable to 
structures constructing the predctions (B) Tem- 
poral representation of a sensory cue. A cue like a 
light is represented at multpe delays x, from t s  
n ~ t a l  tme of onset, and each delay IS assocated 
with a separate adjustable we~ght w,. These pa- 
rameters w, are adjusted accordng to the correa- 
t~on of activity x, and 6 and through trainng come 
to act as predictions. Thls smple system stores 
pred~ctons rather than correatons. 

a surrogate prediction error. This possibility 
is implicit in the definition of V(t) because 
it satisfies a condition of consistency 
through time: 

ical perspective. 
As  in trial-based models like the  Res- 

corla-Wagner rule, the  adaptable weights w 
are improved according to the  correlation 
between the  stimulus representations and 
the  prediction error. T h e  change in  weights 
froin one trial t o  the  next is 

A n  error in the  estimated predictions can 
now be defined with inforination available 
at successive time steps: 

This S(t)  is called the  T D  error and acts as 
a surrogate prediction error signal that is 
instantly available at time t + 1. As  de- 
scribed below, 6( t )  is used to improve the  
estimates of V(t) and also to  choose appro- 
priate actions. 

where a, is the  learning rate for cue x( t )  
and the  suin over t is taken over the course 
of a trial. It has been shown that under 
certain co~;ditions this update rule (Eq. 5 )  
will cause V(t) to converge to the true V(t) 
(22) .  If there were Inany different sensory 
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(i), (ii), and (iii) listed above (Fig. 2A) (8, 
10, 12). As indicated in Fig. 2, the dopa- 
mine neurons receive highly convergent in- 
put from many brain regions. The model 
represents the hypothesis that this input 
arrives in the form of a surprise signal that 
measures the degree to which the current 
sensory state differs from the last sensory 
state. We assume that the dopamine neu- 
rons' output actually reflects 6(t) + b(t), 
where b(t) is a basal firing rate (1 2). Figure 
3 shows the training of the model on a task 
where a single sensory cue predicted the 
future delivem of a fixed amount of reward 
20 time steps into the future. The predic- 
tion error signal (top) matches the activity 
of the real dopamine neurons over the 
course of learning. The pattern of weights 
that develops (bottom) provide the model's 
explanations for two well-described behav- 
ioral effects-blocking and secondary con- 
ditioning (I ). The model accounts for the 
behavior of the dopamine neurons in a 
variety of other experiments in monkeys 
(1 2). The model also accounts for changes 
in dopaminergic activity if the time of the 
reward is changed (1 8). 

The model makes two other testable pre- 
dictions: (i) in the presence of multiple 
sensory cues that predict reward, the phasic 

Fig. 3. Development of prediction 
error signal through training. (Top) 
Prediction error (changes in dopa- 1 ( 

activation of the neurons will transfer to 
the earliest consistent cue. (ii) After train- 
ing on multiple sensory cues, omission of an 
intermediate cue will be accompanied by a 
phasic decrease in dopaminergic activity at 
the time that the cue formerly occurred. For 
example, after training a monkey on the 
temporal sequence light l j l i g h t  2+re- 
ward, the dopamine neurons should respond 
phasically only to the onset of light 1. At  
this point, if light 2 is omitted on a trial, the 
activity in the neurons will depress at the 
time that light 2 would have occurred. 

Choosing and criticiing actions. We 
showed above how the dopamine signal can 
be used to learn and store predictions; how- 
ever, these same responses could also be 
used to influence the choice of appropriate 
actions through a connection with a tech- 
nique called dynamic programming (23). 
We discuss below the connection to dy- 
namic programming. 

We introduce this use with a simple 
example. Suppose a rat must move through 
a maze to gain food. In the hallways of the 
maze, the rat has two options available to it: 
go forward a step or go backward a step. At  
junctions, the rat has three or four direc- 
tions from which to choose. At each posi- 
tion, the rat has various actions available to 

mine neuron output) aiafunction of S 
time and trial. On each trial, a sen- 5 0.5 

sory cue is presented at time step 
10 and time step 20 followed by 'fi 
reward delivery [dt) = 11 at time step 3 -0.5 

60. On trial 0, the presentation of -1 
the two cues causes no change be- 
cause the associated weights are 
initially set to 0. There is, however, a 
strong positive response (increased 
firing rate) at the delivery of reward 
at time step 60. By repeating the 
pairing of the sensory cues followed 
in time by reward, the transient re- 
sponse of the model shifts to the 
time of the earliest sensory cue 
(time step 10). Failure to deliver the 1 
reward during an intermediate trial 
causes a large negative fluctuation 
in the model's output. This would 
be seen in an experiment as a 
marked decrease in spike output at -0.5 
the timing been time delivered. of reward that reward In delivery this example, should is learned have the 0.~5 -1 0 - 30 40 

well before any response transfers 20 20 
to the earliest sensory cue. (Bot- 
tom) The value function V(t). The *C 

10 #' 
weights are all initially set to 0 (trial 
0). After the large prediction error 
occurs on trial 0, the weights begin 60 

to grow. Eventually they all saturate to 1 so that the only transient is the unpredicted onset of the first 
sensory cue. The depression in the surface results from the error trial where the reward was not delivered 
at the expected time. 

it, and the action chosen will affect its 
future prospects for finding its way to food. 
A wrong turn at one point may not be felt 
as a mistake until many steps later when the 
rat runs into a dead end. How is the rat to 
know which action was crucial in leading it 
to the dead end? This is called the tem~oral 
credit assignment problem: Actions at one 
point in time can affect the acquisition of 
rewards in the future in complicated ways. 

One solution to temporal credit assign- 
ment is to describe the animal as adopting 
and improving a "policy" that specifies how 
its actions are assigned to its states. Its state 
is the collection of sensory cues associated 
with each maze position. To improve a. 
policy, the animal requires a means to eval- 
uate the value of each maze Dosition. The 
evaluation used in dynamic programming is 
the amount of summed future reward ex- 
pected from each maze position provided 
that the animal follows its ~olicv. The . , 
summed future rewards expected from some 
state [that is, V(t)] is exactly what the TD 
method learns, suggesting a connection 
with the dopamine signal. 

As the rat above ex~lores the maze. its 
predictions become more accurate. The pre- 
dictions are considered "correct" once the 
average prediction error s(t) is 0. At  this 
point, fluctuations in dopaminergic activity 
represent an important "economic evalua- 
tion" that is broadcast to target structures: 
Greater than baseline dopamine activity 
means the action performed is "better than 
expected" and less than baseline means 
"worse than expected." Hence, dopamine 
responses provide the information to imple- 
ment a simple behavioral strategy-take [or 
learn to take (24)] actions correlated with 
increased dopamine activity and avoid ac- 
tions correlated with decreases in dopamine 
activity. 

A very simple such use of 6(t) as an 
evaluation signal for action choice is a form 
of learned klinokinesis (25), choosing one 
action while 6(t) > 0, and choosing a new 
random action if 6(t) 5 0. This use of 6(t) 
has been shown to account for bee foraging 
behavior on flowers that yield variable re- 
turns (9, 11). Figure 4 shows the way in 
which TD methods can construct for a mo- 
bile "creature" a useful map of the value of 
certain actions. 

A TD model was equipped with a simple 
visual system (two, 200 by 200 pixel reti- 
nae) and trained on three different sensory 
cues (colored blocks) that differed in the 
amount of reward each contained (blue > 
green > red). The model had three neu- 
rons, each sensitive only to the percentage 
of one color in the visual field. Each color- 
sensitive neuron provides input to the pre- 
diction unit P (analog of VTA unit in Fig. 
2) through a single weight. Dedicating only 
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a single weight to each cue limits this "crea- 
ture" to a one time steu mediction on the 

A A 

basis of its current state. After experiencing 
each type of object multiple times, the 
weights reflect the relative amounts of re- 
ward in each object, that is, wb > wg > w,. 
These three weights equip the creature with 
a kind of cognitive map or "value surface" 
with which to assay its possible actions (Fig. 
4B). 

The value surface above the arena is a 
plot of the value function V(x, y) (height) 
when the creature is  laced in the indicated 
comer and looks at every position (x, y) in 
the arena. The value V(x, y )  of looking at 
each position (x, y) is computed as a linear 
function of the weights (wbr wg, w,) associ- 
ated with activity induced in the color- 
sensitive units. As this "creature" changes 
its direction of gaze from one position (xo, 
yo) at time t to another position (x,, yl) at 
time t + 1, the difference in the values of 
these two positions V(t + 1) - V(t) is 
available as the o u t ~ u t  6(t) of the medic- . , 
tion neuron P. In this example, when the 
creature looks from ~ o i n t  1 to ~ o i n t  2. the 
percentage of blue in its visual field increas- 
es. This increase is available as a positive 
fluctuation ("things are better than expect- 
ed") in the output 6(t) of neuron P. Simi- 
larly, looking from point 2 to point 1 causes 
a large negative fluctuation in 6(t) ("things 
are worse than ex~ected"). As discussed 
above, these fluctuAions cbuld be used by 
some target structure to decide whether to " 
move in the direction of sight. Directions 
associated with a ~ositive   re diction error 
are likely to yield increased future returns. 

This example illustrates how only three 
stored quantities (weights associated with 
each color) and the capacity to look at 
different locations endow this simple "crea- 
ture" with a useful map of the quality of 
different directions in the arena. This same 
model has been given simple card-choice 
tasks analogous to those given to humans 
(26), and the model matches well the hu- 
man behavior. It is also interesting that - 
humans develop a predictive galvanic skin 
response that predicts appropriately which 
card decks are good and which are bad (26). 

Summary and Future Questions 

We have reviewed evidence that supports 
the proposal that dopamine neurons in the 
VTA and the substantia nigra report ongo- 
ing prediction errors for reward. The output 
of these neurons is consistent with a scalar 
prediction error signal; therefore, the deliv- 
ery of this signal to target structures may 
influence the processing of predictions and 
the choice of reward-maximizing actions. 
These conclusions are supported by data on 
the activity changes of these neurons during 

the acquisition and expression of a range of 
simple conditioning tasks. This representa- 
tion of the experimental data raises a num- 
ber of important issues for future work. 

The first issue concerns temporal repre- 
sentations, that is, how is any stimulus rep- 
resented through time? A large body of 
behavioral data show that animals can keep 
track of the time elapsed from the presen- 
tation of a CS and make precise predictions 
accordingly. We adopted a very simple 
model of this capacity, but experiments 
have yet to suggest where or how the tem- 
poral information is constructed and used 
by the brain. It is not yet clear how far into 
the future such predictions can be made; 
however, one suspects that they will be 
longer than the predictions made by struc- 
tures that mediate cerebellar eyeblink con- 
ditioning and motor learning displayed by 
the vestibulo-ocular reflex (27). The time 
scales that are ethologically important to a 

- 
responsibility of these targets to pass out 
information about the degree to which the " 
nondelivery of reward was "punishing." It 
was long ago proposed that rewards and 
punishments represent opponent processes 
and that the dynamics of opponency might 
be responsible for many puzzling effects in 
conditioning (28). 

A third issue raised by the model is the 
relation between scalar signals of appetitive 
values and vector signals with many com- 
ponents, including those that represent pri- 
mary rewards and predictive stimuli. Simple 
models like the one presented above may be 
able to learn with a scalar signal only if the 
scope of choices is limited. Behavior in 
more realistic environmental situations re- 
quires vector signaling of the type of re- 
wards and of the various physical compo- 
nents of the predictive stimuli. Without the 
capacity to discriminate which stimuli are 
responsible for fluctuations in a broadcast 

particular creature should provide good scalar error signal, an agent may learn in- 
constraints when searching for mechanisms appropriately, for example, it may learn to 
that might construct and distribute tempo- approach food when it is actually thirsty. 
ral labels in the cerebral cortex. Do~amine neurons emit an excellent au- 

A second issue is information about 
aversive events. The experimental data sug- 
gest that the dopamine system provides in- 
formation about appetitive stimuli, not 
aversive stimuli. It is possible however that 
the absence of an expected reward is inter- 
preted as a kind of "punishment" to some 
other system to which the dopamine neu- 
rons send their output. It would then be the 

petitive error (teaching) signal without in- 
dicating further details about the appetitive 
event. It is therefore likely that other re- 
ward-processing structures subserve the 
analysis and discrimination of appetitive 
events without constituting particularly ef- 
ficient teaching signals. This putative divi- 
sion of labor between the analysis of phys- 
ical and functional attributes and scalar 

Fig. 4. Simple cognitive maps can A 
be easily built and used. (A) Archi- Visual input 

tecture of the TD model. Three col- 
or-sensitive units (b, g, r) report, re- Reward Biased 
spectively, the percentage of blue, action 

green, and red in the visual field. 
Each unit influences neuron P (VTA - 
amounts of reward with blue $ 
> green > red. After training, the 
weights (w,, w,, wJ reflect this dif- 
ference in reward content. Using 

- 
only a single weight for each senso- 
ry cue, the model can make only 
one-time step predictions; howev- 
er, combined with its capacity to 
move its head or walk about the 
arena, a crude "value-map" is avail- 
able in the output 6(t) of neuron P. 
(B) Value surface for the arena 
when the creature is positioned in 
the comer as indicated. The height 
of the surface codes for the value 
V(x, y) of each location when viewed 
from the corner where the "crea- 
ture" is positioned. All the creature 
needs to do is look from one loca- 
tion to another (or move from one 
position to another), and the differences in value V(t + 1) - V(t) are coded in the changes in the firing rate 
of P (see text). 
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evaluation signals raises a fourth issue- 
attention. 

The model does not address the atten- 
tional functions of some of the innervated 
structures, such as the nucleus accutnbens 
and the frontal cortex. Evidence suggests 
that these structures are important for cases 
in which different atnounts of attention are 
paid to different stimuli. There is, however, 
evidence to suggest that the required atten- 
tional mechanistns tnight also operate at 
the level of the dopatnine neurons. Their 
responses to novel stimuli will decrement 
with repeated presentation and they will 
generalize their responses to nonappetitive 
stimuli 'that are physically similar to appet- 
itive stimuli (29). I11 general, questions 
about attentional effects in dopaminergic 
systems are ripe for future work. 

The suggestions that a scalar prediction- 
error signal influences behavioral choices 
r e c e i v e ~ ~ s u p ~ o r t  from the preliminary work 
on  human decision-making and froin the 
fact that changes in dopamine activity fluc- 
tuations parallel changes in the behavioral 
perfortnance of the monkeys (30). In the 
matnmalian brain, the striatum is one site 
where this kind of scalar evaluation could 
have a direct effect on  action choice. and 
activity relating to conditioned stimul~ is 
seen in the striatutn (31). The  widespread 
project~on of dopamine axons to striatal 
neilrons gives rise to synapses at dendritic 
spines that are also contacted by excitatory 
inuuts frotn cortex 132). This tnav be a site , , 

wkere the dopamine s~gnal influ'ences be- 
havioral choices bv modulatine the level of 
competition in thk dorsal strlatum. Phasic 
dopatnine signals tnay lead to an augtnen- 
tation of excitatory influences in the stria- 
tum 133), and there is evidence for striatal ~ , ,  

plasticity after pulsatile application of do- 
oamine 134). Plastic~tv could mediate the , , 

iearning of appropriate' policies (24). 
The  uoss~bilities in the striatum for using - 

a scalar evaluation signal carried by changes 
in dopam~ne delivery are cotnplemented by 
interesting possibil~ties in the cerebral cor- 
tex. In orefrontal cortex, dooa~nine deliverv 
has a dramatic influence on working mem- 
ory (35). Dopatnine also modulates cogni- 
tive activation of anterior cingulate cortex 
in schizophenic patients (36). Clearly, do- 
pamine dellvery has Important cognitive 
consequences at the level of the cerebral 
cortex. Under the tnodel presented here, 
changes In dopaminergic activity distribute 
prediction errors to widespread target struc- 
tures. It seems reasonable to require that the 
prediction errors be delivered primarily to 
those regions tnost responsible for tnaking 
the predictions; otherwise, one cortical re- 
gion would have to deal with prediction 
errors engendered by the bad guesses of 
another region. From this point of view, 

one could expect there to be a mechanism 
that coupled local activity in the cortex to 
an enhanced sensitivity of nearby dopamine 
tertninals to differences from baseline in 
spike production along their parent axon. 
There is experimental evidence that sup- 
ports this possibility (37). 

Neuromodulatory systems like dopamine 
systems are so named because they were 
thought to tnodulate global states of the 
brain at time scales and temporal resolu- 
tions much poorer than other systems like 
fast glutamatergic connections. Although 
this global modulation function may be ac- 
curate, the work discussed here shows that 
neuroinodulatory systetns may also deliver 
precisely timed information to specific tar- 
get structures to influence a number of im- 
portant cognitive functions. 
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Language Acquisition and Use: 
Learning and Applying 

Probabilistic Constraints 
Mark S. Seidenberg 

What kinds of knowledge underlie the use of language and how is this knowledge ac- 
quired? Linguists equate knowing a language with knowing a grammar. Classic "poverty 
of the stimulus" arguments suggest that grammar identification is an intractable inductive 
problem and that acquisition is possible only because children possess innate knowledge 
of grammatical structure. An alternative view is emerging from studies of statistical and 
probabilistic aspects of language, connectionist models, and the learning capacities of 
infants. This approach emphasizes continuity between how language is acquired and how 
it is used. It retains the idea that innate capacities constrain language learning, but calls 
into question whether they include knowledge of grammatical structure. 

M o d e r n  thlnklng about language has been 
dominated by the views of Noam Chomsky, 
who created the generative paradigm with- 
in which most research has been conducted 
for over 39 years (1) .  Thls approach con- 
tinues to flourish ( 2 ) ,  and although alterna- 
tive theories exlst, they typically share 
Chomsky's assumptions about the nature of 
language and the goals of linguistic theory 
(3). Research on language has arrived at a 
particularly interesting point, however, be- 
cause of important developments outside of 
the linguistic mainstream that are converg- 
ing on a different vie\v of the nature of 
language. These developments represent an 
important turn of events In the history of 
ideas about language. 

The Standard Theory 

The place to begin is with Chomsky's clas- 
sic questions (4): ( i )  what constitutes 
kno\vledge of a language, (ii) how IS this 
knowledge acquired, and (iii) how is it put 

to use! The  standard theory provides the 
following answers (1 -5). 

In answer to the first question, what one 
knows is a grammar, a complex system of 
rules and constraints that allows people to 
distinguish grammatical from ungrammatl- 
cal sentences. The  grammar 1s an ~dealiza- 
tion that abstracts away from a varlety of 
so-called performance factors related to lan- 
guage use. The Competence Hypothesis 1s 
that this idealization will facilitate the  den- 
tification of generalizations about linguistic 
knowledge that lie beneath overt behavior, 
which 1s affected by many other factors. 
Many phenomena that are prominent char- 
acteristics of language use are therefore set 
aside. The  clear cases that are often cited in 
separating competence from performance 
include dysfluencies and errors. In practice, 
however, the competence theory also ex- 
cludes other factors that affect language use, 
including the nature of the perceptual and 
motor systems that are used; memory capac- 
ities that limit the coinplexity of utterances 

along their parent axon. Ths may result from local 
ncreases In nltrlc oxde producton. In this manner. 
baseline dopamne release remains constant In nac- 
tlve corilca areas w h e  actlve cori~cal areas feel 
strongly the effect of ncreases and decreases In 
dopamne devery due to ncreases and decreases 
in spike producton along the parent dopamne axon. 
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ence Foundaton, the McDonne-Pew Foundaton 
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dation pour a Recherche M d c a e  (Paris), the Unt -  
ed Parknson Foundaton (Chicago). the Roche Re- 
search Foundation (Basel), the NIMH (Bethesda), 
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that can be produced or understood; and 
reasoning capacities used In comprehending 
text or discourse. The competence theory 
also excludes informatlon about statistical 
and probabllistlc aspects of language-for 
examule, the fact that verbs differ In ho\v 
often they occur In transltlve and intransi- 
tive sentences ("John ate the candy" versus 
"John ate," respectively), or the fact that 
when the subject of the verb "break" 1s 
anlmate, it is typically the agent of the 
action, but when it IS inanimate, it is typi- 
cally the entity belng broken (compare 
"John broke the glass" with "The glass 
broke"). That thls information should be 
excluded was the point of Chomsky's fa- 
mous sentence "Colorless green ideas sleep 
furlo~~sly" and the accornpanylng observa- 
tion that, "I think that we are forced to 
conclude that . . . probabilistic models glve 
no particular insight into some of the basic 
problems of syntactic structure" (6) .  Finally, 
the conlpetence theory also disregards the 
cornmunicative functions of language and 
how thev are achieved. These asuects of 
language are ackno\vledged as important 
but considered separable from core gram- 
matical knowledge. 

The grammar's essential properties In- 
clude generatlvity ( ~ t  can be used to pro- 
duce and comprehend an essentially infl- 
nite number of sentences); abstractness of 
structure (it uses representations that are 
not overtly marked in the surface fornls of 
utterances); modularity (the grammar is or- 
ganized into components wlth different 
types of representations governed by differ- 
ent  principles); and domain specificity (lan- 
guage exhibits properties that are not seen 
in other aspects of cognition; therefore, it 
cannot be an expression of general capaci- 
ties to think and to learn). 

The  second question regarding language 
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