motor EPSP, cells surrounding the sensory neuron
and the motor neuron were labeled with Fast Green
[D. V. Buonomano and J. H. Byrne, Science 249,
420 (1990)]. The ganglia were incubated in L15
culture medium (Sigma) at 15°C. The culture me-
dium contained 430 mM NaCl, 27 mM MgSO,, 11
mM CaCly,, 27 mM MgCl,, 10 mM KCl, streptomy-
cin sulfate (0.10 g/liter), penicillin-G (0.12 g/liter),
and Hepes (7.15 g/liter). The pH of the culture
medium was adjusted to 7.65. At 24 and 48 hours,
the same sensory and motor neurons were reim-
paled and EPSPs were reexamined. In each test
period, three EPSPs were elicited by injecting brief
suprathreshold depolarizing currents into a senso-
ry neuron at an interstimulus interval (ISl) of 10 s.
The mean values at 24 and 48 hours were normal-
ized to that of the baseline test. All experiments
were performed in a blind fashion. The experiment-
er did not know the composition of the solutions
that were applied until after the sequence of exper-
iments was completed.

12. Human TGF-B (TGF-B1, R&D Systems) was used in
the experiments. Lyophilized recombinant human
TGF-B1 samples were reconstituted with BSA solu-
tion. The final concentration of BSA was adjusted to
10 pg/mlin all the experiments. In control experi-
ments, only BSA solution was used. In pilot experi-
ments, no effects were observed when TGF-B1 was
used at 10 ng/ml. The relatively high dose of TGF-B1
required to induce long-term facilitation could be at-
tributable to a difference in potency of the species-
specific forms. However, the concentration of TGF-
B1 in human serum is >30 ng/ml [I. E. Eder et al.,
J. Urol, 156, 953 (1996)]. There are currently no
known data from Aplysia or other systems regarding
the effective duration of TGF- application. There-
fore, TGF-B1 was applied for 24 hours to provide
sufficient time to induce long-term facilitation.

13. Excitability of a sensory neuron (separate from the one
used for the EPSP test) was measured as the number
of action potentials elicited during a constant-current
pulse (1 s, 2 nA). In the TGF-B1 group, the number of
action potentials was 144 = 22% of baseline at 24
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values were not significantly different (F; o, = 0.35)
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data not shown.
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line [M. Stopfer and T. J. Carew, J. Neurosci. 16,
49383 (1996); F. Zhang and J. H. Byrne, unpublished
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19. TGF-B sRIl (R&D Systems) is a polypeptide contain-
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tor type Il [H. Y. Lin, X. F. Wang, E. Ng-Eaton, R. A.
Weinberg, H. F. Lodish, Cell 68, 775 (1992)]. This is
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TGF-B1, TGF-B3, and TGF-B5 with sufficient affinity
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dose (EDsp) of ~30 ng/ml [M. L.-S. Tsang et al.,
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immunoglobulin does not penetrate well through the
neuropil of the isolated ganglion preparation.

20. F. Zhang and J. H. Byrne, data not shown. Nerves
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Isolation of a Common Receptor for Coxsackie
B Viruses and Adenoviruses 2 and 5

Jeffrey M. Bergelson,” Jennifer A. Cunningham,
Gustavo Droguett, Evelyn A. Kurt-dones, Anita Krithivas,
Jeong S. Hong, Marshall S. Horwitz, Richard L. Crowell,

: Robert W. Finberg

A complementary DNA clone has been isolated that encodes a coxsackievirus and
adenovirus receptor (CAR). When transfected with CAR complementary DNA, nonper-
missive hamster cells became susceptible to coxsackie B virus attachment and infection.
Furthermore, consistent with previous studies demonstrating that adenovirus infection
depends on attachment of a viral fiber to the target cell, CAR-transfected hamster cells
bound adenovirus in a fiber-dependent fashion and showed a 100-fold increase in
susceptibility to virus-mediated gene transfer. Identification of CAR as a receptor for
these two unrelated and structurally distinct viral pathogens is important for under-
standing viral pathogenesis and has implications for therapeutic gene delivery with

adenovirus vectors.

Adenoviruses and coxsackieviruses are
common human pathogens. Adenoviruses
are nonenveloped DNA viruses that cause
respiratory and gastrointestinal infections
(I) as well as infections of the heart (2).
Adenoviruses have also been adapted for
use as vectors for vaccination and gene
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therapy (3). Coxsackie B viruses are non-
enveloped RNA viruses belonging to the
picornavirus family. They cause meningo-
encephalitis (4), are implicated in acute
pancreatitis (5) and as triggering agents in
childhood-onset diabetes (6), and are the
viruses most frequently identified in acute
infections of the heart (7).

Coxsackievirus B3 forms a detergent-sta-
ble complex with a 46-kD HeLa cell surface
protein (8). We have used a monoclonal
antibody (mAb) raised against this complex
(9) to isolate and clone a 46-kD protein
that mediates attachment and infection by
coxsackie B viruses. The same receptor also
functions in adenovirus attachment and ad-
enovirus-mediated gene transfer.

The coxsackievirus and adenovirus re-
ceptor (CAR) protein was purified from
HeLa cell lysates by immunoaffinity chro-
matography (10) with mAb RmcB (9), the
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transfection of CHO cells with CAR
cDNA (13), a cell line (CHO-CAR) was
selected that, as determined by indirect

flow cytofluorometry, showed homogeneous
expression of antigen recognized by RmcB
(Fig. 1A). Untransfected CHO cells and

sequences of four tryptic peptides were de-
termined (11), and a cDNA clone was iso-
lated from a HeLa cell library (12). After

Fig. 1. CAR protein ex-
pression and sequence.

CHO-al 2

control cells transfected with the human-
integrin a2 subunit (CHO-al 2) (14) did
not express antigen detectable by RmcB.

A = o
<
Hy h 2 8 w RmcB immunoprecipitated a 46-kD cell-

MMUNOTIUOrEscence. J e surface protein from detergent lysates of
Control CHO cells trans- M & o s T ;
fected with CHO-al 2, ! \ = e = 1qdmated CHO-CAR transfectants, as it

falak M R MR MR did from HeLa cell lysates, but not from
CHO cells transfected e .
with CAR (CHO-CAR), / \\ lysates of CHO-al 2 control cells (Flg. IB)
and Hela cells were in- These results confirmed that CAR cDNA
cubated with mAb RmeB CHO-CAR 100— o encodes the protein recognized by RmcB.
or the control antbody 8§ i 20 Analysis of its deduced amino acid se-
MOPC 195 for 1 hour on 5 ~ quence indicated that CAR is a 365-amino .
ice. Cells were then = ‘u, acid transmembrane protein with a short
;vashed, incubated with -, .”/JN\\ 46— = leader, a 222-amino acid extracellular do-
uorescein  isothiocya- P, main, a membrane-spanning helical do-
nate-conjugated  goat . o .1 -

) ) main, and a 107—amino acid intracellular
antibody to mouse im- Hela 4 in (Fig. 1C). Ali t of the CAR
munoglobulin, and ana- 30— = omain {rig. - Alignment or the
lyzed by flow cytometry. sequence with sequences of proteins be-
Control staining is seen A“\ longing to the immunoglobulin gene super-
on the left and RmcB ik family suggested that its extracellular por-
staining on the right; the S P 34 58 tion consists of two immunoglobulin-like
two overlap in the top ; % o domains. The deduced amino acid sequence

panel. (B) Immunopre-
cipitation. HelLa cells,
CHO-CAR cells, or con- c
trol CHO-al 2 cells were | war 11 CFULILCGUYDFARSLS ITTPEEMIEKAKGETAYLPCKFTLSPEDQ
iodinated by the glucose
oxidase-lactoperoxidase =,

of a murine CAR homolog was 91% iden-
tical to that of the human protein overall
and 95% identical within the cytoplasmic
domain (15). The relatively large and high-
ly conserved cytoplasmic domain suggests

— Log fluorescence @ —*

GPLDIEWLISPADNQKVDQVIILYSGDKIYDDYYPDLKGRVHFTSNDLKS

method and extracted ? the potential for interaction with other in-
in buffer containing 1% 101  GDASINVINLOLSDIGTYQCKVKKAPGVANKKIHLVVLVEPScarcyyne  tracellular proteins, but CAR'’s cellular.
Triton X-100. Immuno- function remains to be determined.

precipitation was per- 151 SEEIGSDFKIKCEPKEGSLPLQYEWQKLSDSQKMPTSWLAEMTSSVISVK CHO-CAR Cells, but not the Control
formed with the control 8 transfectants, bound radioactively labeled

antbody MOPC 195 201 NASSEYSGTYSCTVRNRVGSDQCLLRLNVVPPSNKAGLIAGATTIGTLLAL

(M) or with mAb RmcB
(R) bound to protein
G-Sepharose ~ beads. ., o covspSNMEGYSKTQYNQUPSEDFERTPQSPTLPPAKVAAPNLSRMGA cB3

Immunoprecipitated pro- 9- 8-
teins were analyzed in

coxsackievirus B3 and coxsackievirus B4
251  ALIGLIIFCCRKKRREEKYEKEVHHDIREDVPPPKSRTSTARSYIGSNHS

10% SDS-polyacrylamide SETEERINGESY, =8
gels under reducing conditions. The positions of marker proteins are indicated at left in kilodaltons. (C) E 74
Deduced CAR amino acid sequence (29). Amino acids experimentally determined by peptide sequencing are z 6-
in bold letters. The predicted hydrophobic leader and transmembrane domains are underlined. Based on o
homology to members of the immunoglobulin gene superfamily, cysteines at positions 41 and 120 and at 5’ 54
positions 162 and 212 may form intrachain disulfide bonds. Two potential sites for N-linked glycosylation in T 44
the extracellular domain are marked with an asterisk. Tyrosine 255 (KRREEKY) is a potential site for phos- 2
phorylation. The CAR cDNA sequence has been deposited in the EMBL database (accession number a 37
Y07593). Z o
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Table 1. Virus attachment to CHO-CAR transfectants. CHO-CAR or CHO-al 2 monolayers were 0—0O-O
incubated with the control antibody MOPC 195 (C) or with mAb RmcB for 1 hour at room temperature, 01 2

Days

Fig. 2. Coxsackie B virus infection of CHO-CAR
cells. CHO-CAR (solid circles) or CHO-al 2 (open
circles) monolayers were incubated for 1 hour at
room temperature with coxsackievirus B3 [CB3, 1
plaque forming unit (PFU) per cell] or coxsackievi-
rus B4 (CB4, 4 PFU per cell), then monolayers
were washed to remove unbound virus and incu-

then rinsed and incubated for 4 hours with 35S-labeled coxsackievirus B3 or B4 (20,000 cpm). Cox-
sackievirus B3 (strain Nancy), maintained in the laboratory of R.L.C., and coxsackievirus B4 (strain
J.V.B.), obtained from the American Type Culture Collection, were radiolabeled and purified, and binding
assays were performed as described (74). Results are shown as mean virus bound + SD for triplicate
monolayers and are representative of three experiments.

Virus bound (cpm)

Cellline Coxsackie B3 Coxsackie B4 bated at 37°C for 1 hour (0 days), 1 day, or 2 days.
Monolayers were frozen and thawed to release

c RmcB C RmcB virus, and plague assays were performed as de-

CHO-CAR 3003 + 219 217 + 24 2026 + 13 156 + 11 scribed (74). The figure shows the mean virus titer
CHO-al 2 50+ 5 78 + 28 44+ 3 41+ o  for triplicate cultures. These experiments were

performed twice.
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(Table 1). Echovirus 1, a picornavirus that
binds to the integrin a2 subunit (14, 16),
did not bind to CHO-CAR cells but did, as
expected, bind to the CHO-al 2 control
(17). CHO-CAR cells became infected by
coxsackieviruses B3 and B4, as evidenced
by viral cytopathic effect (17) and by active
virus replication (Fig. 2). Pretreatment with
mAb RmcB prevented virus attachment
(Table 1) and protected CHO-CAR cells

Fig. 3. Adenovirus inter-

S

from infection (17). These results demon-
strate that the protein encoded by CAR
cDNA is a functional virus receptor, medi-
ating both cell attachment and infection by
coxsackieviruses B3 and B4 .

Monoclonal antibody RmcB, which rec-
ognizes CAR protein, protects cells from
infection by prototype strains of all six cox-
sackie B serotypes (9), which is consistent
with the observation that all six serotypes

action with CAR on A 4000 Adz B Ad2 fiber
transfected CHO cells. 2500

(A through C) show %58- E

labeled virus and fiber at- K )

tachment to transfected e 2

cells (30). Each panel 3 3

shows mean values for ﬁ 2

virus or fiber bound + 2 8

SD for triplicate mono- =~ w

layers and is representa-
tive of at least two exper-

0
CHO-al 2 CHO-CAR

0.
CHO-al 2 CHO-CAR

iments. (A) Adenovirus C Ad2 D 0.07

attachment. CHO-CAR 5000 ) ® CHO-CAR

and CHO-al 2 monolay- W Buffer e 4 Hela

ers in 24-well plates & Fiber o

were incubated with la- 2 @ Knob £

beledadenovirus 2 (Ad2; & 3

20,000 cpm) (30) for 1 8 3

hour at room tempera- o @

ture, then washed and S

dissolved for scintillation VA 0.00¢ % 20 %
: : CHO-CAR

counting. (B) Adenovirus Bound

fiber attachment. Mono-

layers in six-well plates were incubated with labeled adenovirus 2 fibers (25,000 cpm). (C) Inhibition of
adenovirus attachment by purified fibers and knob domains. CHO-CAR monolayers were incubated
with buffer (solid bar), isolated adenovirus 2 fibers (5 pg, hatched bar), or recombinant adenovirus 5
knob domains (0.7 pg, stippled bar) before addition of labeled adenovirus 2. (D) Scatchard analysis of
fiber binding. Duplicate CHO-CAR and HeL.a monolayers were incubated with '25I-labeled adenovirus 2
fibers at different specific activities for 1 hour at 4°C. Monolayers were then washed four times and
bound radioactivity was determined. Nonspecific binding was determined by incubating labeled fiber in
the presence of a 200-fold excess of unlabeled fiber. Specific binding is shown as nanograms bound per
million cells. There was no specific binding to control CHO-al 2 monolayers.

Fig. 4. Adenovirus-medi- CHO-al 2

CHO-CAR

ated gene transfer. CHO- B~
al 2 and CHO-CAR cells
in 24-well plates were ex- \ i

posed to Ad.CMV-Bgal S

", R G e

No virus

at different multiplicities
of infection [MOI (in PFU

per cell)] for 1 hour at
room temperature, then
unbound virus was re- ,
moved and cells were in-

-,

Y MOI 1 23’ & 3

cubated for 40 hours at

37°C. Cells were fixed
with 2% paraformalde-
hyde and B-Gal activity %

was determined by incu- .

MOI 10

bation with phosphate-
buffered saline containing

5 mM ferric and 5 mM fer-
rous cyanide, 1 mM
MgCl,, and X-Gal (1 mg/

s

R

MOI 100

<

ml). Examination of mono-

layers before staining revealed some cytotoxicity in the CHO-CAR cells exposed to Ad.CMV-Bgal at 100 PFU

per cell. This experiment was performed three times.
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compete for a common cell surface attach-
ment site (18) and suggests that CAR is the
major coxsackievirus B receptor (19). Al-
though some coxsackievirus B strains have
gained the capacity to bind to an additional
receptor—the complement regulatory pro-
tein decay-accelerating factor (DAF) (20)—
virus attachment to DAF-transfected CHO
cells does not lead to productive infection
(20). Several DAF-binding strains of cox-
sackie B3 and B5 were examined and found
to infect CHO-CAR transfectants (17). It
is possible that DAF functions in virus at-
tachment for some strains, but that subse-
quent events, such as virus internalization
and initiation of uncoating, depend on in-
teraction with CAR.

A depression on the coxsackie B3 sur-
face is believed to be the site for receptor
attachment (21). In contrast, adenovirus
attachment to cells is mediated by fibers
projecting from the adenoviral capsid (22),
and globular knob domains at the tips of the
fibers directly contact the cellular receptor
(23). Despite these structural differences,
adenovirus 2 and coxsackievirus B3 were
found 20 years ago to compete for a HelLa
cell attachment site (24). We therefore
tested whether CAR might be a receptor for
adenovirus as well as for coxsackievirus B.
Radioactively labeled adenovirus 2 (Fig.
3A) and isolated adenovirus 2 fibers (Fig.
3B) bound specifically to CHO-CAR cells.
Virus attachment was blocked both by fi-
bers isolated from adenovirus 2 and by re-
combinant adenovirus 5 knob domains (Fig.
3C). Adenoviruses 2 and 5 have previously
been shown to compete for a common bind-
ing site (22). Inhibition by isolated fibers
and knob domains was specific, as deter-
mined by their failure to inhibit attachment
to Hela cells by adenovirus 35—a more
distantly related virus that did not bind to
CHO-CAR transfectants—or echovirus 1
(17). Scatchard analysis of fiber binding to
CHO-CAR and Hela cells showed parallel
lines (Fig. 3D), indicating that fibers bound
to both cell lines with the same affinity;
there were more specific binding sites on
CHO-CAR cells, which, as determined by
flow cytometry with mAb RmcB (Fig. 1A),
expressed more CAR protein than did
HeLa cells. These results confirm that CAR
is a receptor responsible for specific fiber-
mediated adenovirus attachment to cells.

Adenovirus enters CHO cells to some
extent, but there is a post-entry block to
viral protein synthesis and assembly (25).
We therefore measured the efficiency of
adenovirus-mediated gene delivery to
CHO-CAR transfectants rather than virus
production, using adenovirus 5 engineered
to encode B-galactosidase (B-Gal) [Ad.
CMV-Bgal (26)]. Expression of CAR great-
ly enhanced gene transduction by adenovi-
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rus 5, as demonstrated by in situ staining
with 5-bromo-4-chloro-3-indolyl-3-D-galac-
topyranoside (X-Gal) (Fig. 4), and, as ex-
pected, preincubation with isolated fibers or
knob domains blocked virus-mediated
B-Gal transduction (17). In quantitative
colorimetric assays on cell lysates, enzyme
activity was nearly 100-fold greater in the
CAR transfectants than in the control cells
at each multiplicity of infection and was
also greater than in HelLa cells (27). These
results demonstrate that attachment to
CAR on the cell surface markedly enhances
virus entry and adenovirus-mediated gene
transfer. Adenovirus entry is also facilitated
by interaction between the penton base
protein and integrins on the cell surface
(28). Our data do not exclude the possibil-
ity that, once fiber-mediated virus attach-
ment to CAR protein has occurred, inter-
nalization may involve a secondary interac-
tion with integrins or other molecules en-
dogenously expressed on CHO cells.

Adenoviruses are being studied exten-
sively as vectors for genetic therapy in hu-
mans (3). The defective vectors in present
use, such as the Ad.CMV-Bgal used in
these studies, are derived from adenovirus 2
and 5 and will bind to CAR. Because our
data indicate that CAR expression greatly
enhances gene transfer, identification of
the adenovirus receptor and an understand-
ing of its tissue distribution should be. of
importance in targeting gene delivery to
specific tissues. Manipulation of receptor
expression should be useful in achieving
efficient adenovirus-mediated transduction
both in vivo and in vitro. Identification of
CAR as the functional receptor for cox-
sackie B viruses and adenoviruses may also
facilitate development of new strategies to
limit disease caused by these pathogens.

Note added in proof. CAR sequences are
identical to genomic and EST clones that
map to human chromosome 21, which is
consistent with the recent localization of
the adenovirus 2 receptor to this chromo-
some (31). Other investigators (32) have
recently used the acronym CARI1 to de-
scribe an avian leukosis virus receptor that
is unrelated to the coxsackie and adenovi-
Tus receptor.
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