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Prevention of Apoptosis by Bcl-2: Release of
Cytochrome c from Mitochondria Blocked

Jie Yang, Xuesong Liu,” Kapil Bhalla, Caryn Naekyung Kim,
Ana Maria Ibrado, Jiyang Cai, Tsung-l Peng, Dean P. Jones,

Xiaodong

Wang*t

Bcl-2 is an integral membrane protein located mainly on the outer membrane of mito-
chondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response
to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic
program, suggesting a possible connection between Bcl-2 and cytochrome ¢, which is
normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis
were found to have an elevation of cytochrome ¢ in the cytosol and a corresponding
decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome
¢ from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2
in prevention of apoptosis is to block cytochrome c release from mitochondria.

Genetic studies of programmed cell death
in Caenorhabditis elegans have identified two
genes, ced-9 and ced-3, that play important
roles in regulating and executing apoptosis
(I). ced-9 and its mammalian counterpart
bcl-2 prevent cells from undergoing apopto-
sis (2, 3). ced-3, which encodes a protease of
the interleukin-1B—converting enzyme
(ICE), or caspase-1, family, is required for
apoptosis (4, 5). The mammalian protein
CPP32 (caspase-3) shares sequence similar-
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ity and substrate specificity with CED-3
(6).
CPP32 is a cytosolic protein that nor-
mally exists as a 32-kD inactive precursor. It
is cleaved proteolytically into a 20-kD and a
10-kD active heterodimer in cells undergo-
ing apoptosis (7). Activated CPP32 cleaves
poly(adenosine diphosphate—ribose) poly-
merase (PARP) (7), sterol regulatory ele-
ment-binding proteins (8), and several
other cellular proteins (9). Bcl-2, which
seems to work upstream of CPP32, prevents
activation of CPP32 in response to stauro-
sporine and other agents that cause apopto-
sis (10). The mechanism by which Bcl-2
regulates apoptosis is unknown; however,
the location of Bcl-2 on the outer mem-
brane of mitochondria raises the possibility
that its function may be related to the
function of mitochondria, which have been
implicated in apoptosis (11-13).

We previously developed an in vitro as-
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say in which cytosol from normally growing
cells induces the activation of CPP32 and
fragmentation of DNA after incubation
with deoxyadenosine triphosphate (dATP)
(14). Fractionation of this cytosol prepara-
tion revealed that cytochrome ¢, which was
released into the cytosol during homogeni-
zation, is required for activation of CPP32
and DNA fragmentation (14). We also ob-
served a marked increase of cytochrome ¢ in
the cytosol of cells undergoing apoptosis
induced by staurosporine, a broad-range
protein kinase inhibitor that induces apo-
ptosis in a variety of cell types (14).

Cytochrome ¢ is encoded by a nuclear
gene and translated by cytosolic ribosomes
as apopcytochrome ¢ (15). Apocytochrome
c is subsequently translocated into the mi-
tochondria where a heme group is attached
covalently to form holocytochrome ¢ (15).
The increase in cytosolic holocytochrome ¢
upon apoptosis suggests that mitochondria
may participate in apoptosis by releasing
cytochrome c. This observation raises the
possibility that Bcl-2, located on the outer
membrane of mitochondria, may prevent
cell death by blocking the release of cyto-
chrome c. We tested this possibility in the
following experiments.

Human acute myeloid leukemia (HL-
60) cells were transfected with a retroviral
vector containing a neomycin resistance
gene (neo cells), or the same vector con-
taining a cDNA encoding human Bcl-2
(Bcl-2 cells). The latter cells, which over-
express Bcl-2, resist apoptosis induced by
clinically used anticancer drugs such as ar-
abinosylcytosine (Ara-C), etoposide, and
mitoxantrone hydrochloride (16). We iso-
lated the mitochondria and cytosol from
the two cell lines by differential centrifuga-
tion (17) and confirmed overexpression of-
Bcl-2 on the mitochondria by protein im-
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munoblot analysis using an antibody to
Bcl-2 (Fig. 1A). Next, we treated cells from
the two lines with 1 pM staurosporine for
various lengths of time (18). Treatment of
the control neo cells with staurosporine re-
sulted in the activation of CPP32 in the
cytosol, as indicated by the cleavage of
PARP (Fig. 1B), whereas no PARP cleav-
age was detected in the cytosol of Bcl-2
cells. We then measured cytochrome ¢ in
the mitochondria (Fig. 1C) and cytosol
(Fig. 1D) by protein immunoblot analysis.
Without staurosporine treatment, most of
the detectable cytochrome c in both cell
lines was in the mitochondria. Cytochrome
c in the cytosol of neo cells increased sig-
nificantly after 1 hour of treatment with
staurosporine, and it continued to increase
for another 3 hours. The amount of cyto-
chrome c in mitochondria showed a corre-
sponding decrease, and cytochrome c be-
came almost undetectable by the end of 4
hours of staurosporine treatment. In con-
trast, there was little change in cytochrome
c in either the cytosol or mitochondria in
the cells overexpressing Bcl-2.

Fig. 1. Induction of cytochrome c release from the
mitochondria to the cytosol by staurosporine. (A)
Protein immunoblot analysis of Bcl-2 expression
in mitochondria from HL-60 neo and Bcl-2 cells.
Samples (25 ng) of mitochondria from neo and
Bcl-2 cells were subjected to 15% SDS-poly-
acrylamide gel electrophoresis (PAGE) and trans-
ferred to a nitrocellulose filter. The filter was
probed by an antibody to Bcl-2 (Santa Cruz), and
the antigen-antibody complex was visualized by
an enhanced chemiluminesence method (70). (B)
Cleavage of in vitro—translated, 35S-labeled hu-
man PARP by S-100 fractions from neo and Bcl-2
cells treated with staurosporine for the indicated
amount of time. Human PARP was in vitro—trans-
lated and labeled with 35S as described (70).
S-100 fractions (5 n.g) were incubated with trans-
lated PARP (5 wl) at 30°C for 5 min. The samples
were subjected to 12% SDS-PAGE and trans-
ferred to a nitrocellulose filter. The filter was ex-
posed to an x-ray film (Kodak) for 4 hours at room
temperature. (C) Immunoblot analysis of cyto-
chrome ¢ in mitochondria isolated from neo and
Bcl-2 cells treated with staurosporine for the
amount of time indicated in (B). (D) Immunoblot
analysis of cytochrome ¢ in S-100 (cytosolic) frac-
tions isolated from neo and Bcl-2 cells treated
with staurosporine for the amount of time indicat-
edin (B). Samples (25 pg) of mitochondria and the
S-100 fraction from each time point were used for
immunoblot analysis of cytochrome c as de-
scribed in (70). (E) Mitochondrial membrane po-
tential of staurosporine-treated neo and Bcl-2
cells were measured by rhodamine 123 staining
and visualized by laser scan confocal microscopy
(29). Image a, neo cell without staurosporine treat-

Mitochondrial membrane depolarization
is an early event of apoptosis, and overex-
pression of Bel-2 prevents it (13, 19). To
see whether the release of cytochrome c
from mitochondria is a consequence of de-
polarization, we treated samples of cells
with staurosporine for various lengths of
time and measured their mitochondrial
membrane potential by staining with rho-
damine 123 (20), a cationic fluorophore
taken up by mitochondria as a result of their
membrane potential. The rhodamine 123
uptake was visualized by laser scan confocal
microscopy (19) (Fig. 1E). The neo cells
treated with staurosporine for 2 hours (Fig.
1E, image c) and 4 hours (Fig. 1E, image d)
showed no loss of mitochondrial membrane
potential, but most mitochondrial cyto-
chrome ¢ had been released by 2 hours of
treatment and was undetectable after 4
hours. The mitochondrial membrane po-
tential of neo cells was eventually lost after
12 hours of staurosporine treatment (Fig.
1E, image e). Bcl-2 cells showed little
change of mitochondrial membrane poten-
tial after 2, 4, and 12 hours of staurosporine

neo
Bel-2

Cleaved
products

- Mitochondrial
cytochrome ¢

- Cystolic
cytochrome ¢

ment; image b, neo cell treated with carbonyl cyanide m-chlorophenylhydrazone for 10 min to disrupt
their membrane potential; image ¢, neo cell treated with staurosporine for 2 hours; image d, neo cell
treated with staurosporine for 4 hours; image e, neo cell treated with staurosporine for 12 hours; image
f, Bcl-2 cell treated with staurosporine for 2 hours; image g, Bcl-2 cell treated with staurosporine for 4
hours; image h, Bcl-2 cell treated with staurosporine for 12 hours.
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treatment (Fig. 1E, images e, f, and g). This
observation confirms the previous finding
that Bcl-2 overexpression protects cells
from losing their mitochondrial membrane
potential (13, 19). The release of cyto-
chrome c does, however, precede the loss of
mitochondrial membrane potential.

To test whether the release of cyto-
chrome c into the cytosol is restricted to
staurosporine-induced apoptosis, we tested
another apoptosis-inducing reagent, etopo-
side, a widely used anticancer agent (21).
Etoposide stabilizes covalent complexes be-
tween topoisomerase Il and genomic DNA,
resulting in DNA strand breaks (21). Bcl-2
inhibits etoposide-induced apoptosis with-
out affecting the DNA strand breaks (21).
Treatment of neo cells with 50 uM etopo-
side, a concentration that is attained clini-
cally (21), resulted in the activation of
caspases after about 3 hours, as indicated by
the cleavage of PARP (Fig. 2A) and DNA
fragmentation (Fig. 2C). Bcl-2 cells showed
no activation of CPP32 or DNA fragmen-
tation. Protein immunoblot analysis of cy-
tosol from etoposide-treated neo cells
showed a significant increase of cytochrome
c as early as 1 hour, and this persisted for a
total of 4 hours (Fig. 2B). In Bcl-2 cells, no
cytosolic cytochrome c was detected up to 3
hours of etoposide treatment, but at 4

A neo Bcl-2
r 1 e 1
0 2 3 4 0 2 3 4 (hours)Etoposide
e EeE | PARP precursor
{ S L e Cleaved
products
- Cystolic
cytochrome ¢

Fig. 2. Induction of cytochrome c release into the
cytosol by etoposide. (A) Cleavage of in vitro—
translated, 35S-labeled human PARP by S-100
fractions from neo and Bcl-2 cells treated with 50
1M etoposide for the indicated amount of time. (B)
Immunoblot analysis of cytochrome ¢ in the S-100
fraction isolated from neo and Bcl-2 cells treated
with etoposide for the time indicated in (A). (C)
DNA fragmentation assay of neo and Bcl-2 cells
treated with etoposide for the indicated amount of
time. The DNA fragmentation assay was done as
described (20).
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hours, a small amount was observed.

These experiments show that cyto-
chrome c is released from mitochondria
early in apoptosis before mitochondrial
depolarization, activation of caspases, and
DNA fragmentation. Overexpression of
Bcl-2 prevents the release of cytochrome ¢
from the mitochondria to the cytosol.
Similar data were obtained with the cells
overexpressing another member of the
Bcl-2 family, Bcl-xp (22).

The prevention of release of cytochrome
¢ from mitochondria in cells overexpressing
Bcl-2 was also apparent during in vitro in-
cubation of mitochondria in hypotonic
buffer (Fig. 3). We isolated mitochondria
from large-scale cultures of neo and Bcl-2
cells. Similar amounts of mitochondria from
the two cell lines, as determined by protein
concentration and confirmed by oligomy-
cin-sensitive mitochondrial adenosine tri-
phosphatase activity (23), were incubated
in vitro with a buffer solution containing
150 mM sucrose at 30°C for 1 hour. The
mitochondria were then pelleted by centrif-
ugation, and the presence of cytochrome ¢
in the supernatants and mitochondrial pel-
lets was detected by protein immunoblot

Fig. 3. In vitro reconsti- A

tution of the CPP32 acti- o)

vation reaction by pro- 15. Mlilt1 Mit.

teins released frommito- I B

chondria. (A) Proteinim- 2 2 285 245
W ®w €M <o

munoblot  analysis  of
cytochrome ¢ from sam-
ples (25 ng) of the S-100
fraction from Hela cells
(S-100), the S-100 frac-
tion immunodepleted of
cytochrome c¢ [S-100
(-cyt. )], or the superna-
tants (sup.) and pellets of

- X

SEaE

-—Cyt.c

analysis (Fig. 3A). A reduction in sucrose
concentration from 250 mM, in which the
isolated mitochondria were originally resus-
pended, to 150 mM and incubation at 30°C
resulted in the release of cytochrome ¢ from
the mitochondria of the neo cells but not
from the Bcl-2 cells. Consistent with this
finding, the mitochondrial pellet from the
Bcl-2 cells retained much more cytochrome
¢ than that of the neo cells after the same
period of incubation.

The S-100 fraction of cytosol prepared
by Dounce homogenization of HeLa cells in
a hypotonic buffer without sucrose contains
cytochrome c released from mitochondria
during homogenization (14) (Fig. 3A). The
cytochrome c in the S-100 fraction can be
immunodepleted with a monoclonal anti-
body to cytochrome c [designated S-100
(-cyt. c)] (Fig. 3A). The S-100(-cyt. c)
fraction lost its ability to initiate the apo-
ptotic program on the addition of dATP, as
measured by the cleavage of CPP32, and
apoptotic activity was restored by the addi-
tion of purified cytochrome ¢ (Fig. 3B).

This immunodepletion and reconstitu-
tion system allowed us to test directly
whether mitochondria trigger the cytosolic
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mitochondria (Mit.) (10 pg) from neo or Bcl-2 cells incubated at 30°C for 1 hour with 150 mM sucrose

and then centrifuged. X denotes a cross-reacting

protein with this antibody. (B) CPP32 activation

reactions were carried out by incubating samples (3 pl) of in vitro—translated and affinity-purified CPP32
(70) with HelLa S-100 fraction (S-100), S-100(-cyt. c), S-100(-cyt. c) plus 0.2 g of human cytochrome
¢ [S-100(-cyt. ¢) + cyt. c], the supernatants of the incubated mitochondria alone, the supernatants plus
S-100(-cyt. c), the supernatants supplemented with S-100(-cyt. c) plus 0.5 ug of antibody to cyto-

chrome c (anti-cyt. c) (IgG2A), or 0.5 pg of control

IgG2A (control Ab) (antibody to SLA, major histo-

compatibility complex class |, American Type Culture Collection CRL-1945) in addition to 1 mM MgCl,
and 1 mM dATP in 25 ml of buffer A. After incubation at 30°C for 1 hour, the samples were subjected to
15% SDS-PAGE and transferred to nitrocellulose filters. The filters were exposed to x-ray film (Kodak) for

4 hours at room temperature.

Fig. 4. Reconstitution of CPP32 activation
by cytochrome c but not by apocyto-

Cytochrome ¢ Apocytochrome ¢

chrome c. Bovine cytochrome ¢ (Sigma)
was purified further through a Mono S col-
umn, and the heme group of cytochrome ¢
was removed as described (24). The apo-
cytochrome ¢ and cytochrome c were di-
alyzed against buffer A before use. Sam-

0 0.003 0.01 003 0.1 0.3 0.003 0.010.03 0.1

03 (ug)
— CPP32
precursor

Activated
CPP32

ples (25 pg) of HeLa S-100 fraction immu-
nodepleted of cytochrome ¢ were supple-

mented with increasing amounts of apocytochrome ¢ or cytochrome ¢ as indicated and used for the

CPP32 activation reaction as described in Fig. 3.
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apoptotic program by releasing cytochrome
c and whether overexpression of Bcl-2
blocks this process. Mitochondria from neo
and Bcl-2 cells were incubated in a low-
sucrose buffer solution in vitro for 1 hour
(Fig. 3B). The mitochondria were then pel-
leted, and the resulting supernatants were
incubated with immunodepleted HeLa cell
S-100(-cyt. ¢) fraction and 3°S-labeled
CPP32. The CPP32 was cleaved when the
S-100(-cyt. ¢) fraction was incubated with
the supernatant from mitochondria of neo
cells in the presence of dATP but not with
that of Bcl-2 cells. The mitochondrial super-
natants alone were not able to activate
CPP32, which is consistent with our previ-
ous finding that additional cytosolic factors
are required for the dATP- and cytochrome
c—dependent activation of CPP32 (14). Ac-
tivation of CPP32 was prevented by the
inclusion of a monoclonal antibody to cyto-
chrome ¢ [immunoglobulin G2A (IgGZA)],
but not by a control monoclonal 1gG2A,
showing the specificity of cytochrome ¢ in
activating CPP32.

Cytochrome c is translated by cytosolic
ribosomes as apocytochrome c, and it is
assembled in the mitochondria into holocy-
tochrome ¢ (15). We investigated which
forms support apoptosis. We prepared apo-
cytochrome ¢ from bovine cytochrome ¢
(24) and found that holocytochrome ¢, but
not apocytochrome c, reconstituted the
CPP32 activation activity with the S-100
(-cyt. ¢) fraction (Fig. 4). This result is
consistent with the idea that the release of
cytochrome ¢ from mitochondria, not the
block of importation of cytochrome c, may
lead to apoptosis. Taken together, these
data support a model in which Bcl-2, locat-
ed on the outer membrane of mitochondria,
prevents the initiation of the cellular apop-
totic program by preventing the release of
cytochrome ¢ from mitochondria.

The mechanism by which cytochrome
c is released from mitochondria remains to
be determined. However, the release of
cytochrome ¢ from mitochondria seems to
represent a pathway of apoptosis distinct
in several ways from the one reported by
Kroemer and co-workers who showed that
a 50-kD protein, released from mitochon-
dria upon mitochondrial depolarization, is
able to induce chromatin condensation
and DNA fragmentation when incubated
with nuclei (19). First, cytochrome c re-
lease precedes mitochondrial membrane
depolarization (Fig. 1, C to E); second,
cytosolic cytochrome ¢ participates in acti-
vating CPP32 (14), whereas the 50-kD mi-
tochondrial factor directly induces apoptot-
ic changes in the nuclei (19); and finally,
activated CPP32 induces apoptotic changes
in nuclei only in the presence of cytosol,
and such changes can be blocked by the
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presence of a submicromolar concentration
of CPP32-specific tetrapeptide inhibitor
(25). On the other hand, the 50-kD factor,
once released from mitochondria upon de-
polarization, functions without cytosol and
is insensitive to the CPP32 inhibitor (13).
Despite these differences, it is possible that
these two pathways may work together to
induce complete apoptosis, in which case
Bcl-2 must block both pathways.

Other factors that work together with
cytochrome c to activate CPP32 and subse-
quent DNA fragmentation appear to be of
cytosolic origin and present in similar
amounts in the cytosol from both neo and
Bcl-2 cells (26). The molecular identity of
these factors remains to be determined.

The mechanism by which Bcl-2 blocks the
release of protein from mitochondria and the
regulation of this process are topics of future
study. Especially in the case of cytochrome c,
the release appears to be independent of any
noticeable structural changes in the mito-
chondria. The recent determination of the
nuclear magnetic resonance and crystal struc-
ture of Bcl-xi (27), and the demonstration of
phosphorylation of Bcl-2 and its pro-apoptot-
ic family member BAD (28), may also shed
some light on the function and regulation of
this family of proteins. The arrangement of
the « helices in Bel-x;. is reminiscent of the
membrane translocation domain of bacterial
toxins, in particular, diphtheria toxin and co-
licins. Inasmuch as the diphtheria toxin trans-
location domain is thought to form a mem-
brane pore (27), the Bcl-2 family of proteins
could also be part of a pore structure that
might control the release of cytochrome c.
The pro- and anti-apoptotic regulation mech-
anisms, such as the sequestration of phospho-
rylated BAD in the cytosol or the association
of Raf with Bcl-2 (28), might assert their
influences on apoptosis by regulating the per-
meability of such a pore.
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The Release of Cytochrome c from
Mitochondria: A Primary Site for
Bcl-2 Regulation of Apoptosis

Ruth M. Kluck, Ella Bossy-Wetzel, Douglas R. Green,*
Donald D. Newmeyer*t

In a cell-free apoptosis system, mitochondria spontaneously released cytochrome c,
which activated DEVD-specific caspases, leading to fodrin cleavage and apoptotic
nuclear morphology. Bcl-2 acted in situ on mitochondria to prevent the release of
cytochrome c and thus caspase activation. During apoptosis in intact cells, cytochrome
c translocation was similarly blocked by Bcl-2 but not by a caspase inhibitor, zZVAD-fmk.
In vitro, exogenous cytochrome c bypassed the inhibitory effect of Bcl-2. Cytochrome
c release was unaccompanied by changes in mitochondrial membrane potential. Thus,
Bcl-2 acts to inhibit cytochrome c translocation, thereby blocking caspase activation and

the apoptotic process.

Bel-2 and its relatives (for example, Bcl-x,
E1B 19K, and CED-9) are potent inhibitors
of apoptotic cell death (1-3). Bcl-2 is lo-
cated predominantly in the outer mito-
chondrial membrane, the endoplasmic re-
ticulum, and the nuclear membrane (4-8),
and it appears to prevent apoptosis at a
point in the process upstream of the activa-
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tion of CED-3 family proteases such as
caspase-3 (CPP32) (9-12). How Bcl-2 pre-
vents protease activation is not known.
We used a cell-free system based on Xe-
nopus egg extracts in which recombinant
Bcl-2 prevents protease activation and sub-
sequent apoptotic effects (13—16). This sys-
tem is similar to other cell-free systems
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