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The complex phase diagram of high-critical temperature (T,) superconductors can be 
deduced from an SO(5) symmetry principle that unifies antiferromagnetism and d-wave 
superconductivity. The approximate SO(5) symmetry has been derived from the micro- 
scopic Hamiltonian, and it becomes exact under renormalization group flow toward a 
bicritical point. This symmetry enables the construction of a SO(5) quantum nonlinear a 
model that describes the phase diagram and the effective low-energy dynamics of the 
system. This model naturally explains the basic phenomenology of the high-T, super- 
conductors from the insulating to the underdoped and the optimally doped region. 

T h e  high-T, superconductors are among 
the  most comnlex svstems studied In con- 
densed-matter' plnrsi;s. Anderson (1 ) and 
Zhang and Rice (2)  argued rather success- 
fully tlnat a good starting point for modeling 
the  strong correlation effects in  the  oxides 
should be the Hubbard, or the  t-1 models 
close to half-filling ( in  these models, the  
repulsion energy U and the antiferro-inag- 
netic exchange constant J are related as J = 
t2/U,  where t is the  site-hopping matrix 
element).  Unfortunatelv, tlne exact solu- , , 
tions to these models in  one dimension 
shed very little light o n  hen. to solve them 
in  higher dimensions. 

Even within tlne much siinplified Hub- 
bard or t-T lnodels near half-fill in^. there are -, 

taro different energy scales in the  problem. 
A "high-energy physics" is responsible for 
forming local singlet pairs that basicallr 
originate from the  J term in the Hamilto- 
nian H. A mean-f~eld temperature TbfF can 
be associated with this energy scale, that 
call be bet\veen 0 and 1000 K, depending 
o n  the  filling factor. For conventional BCS 
(Bardeen-Cooper-Schrieffer) superconduc- 
tors, the energy scale of tlne pair formation 
is the  same as tlne true phase-transition 
temperature into a superconducting (SC)  
state. However, for the  oxides, the  lnigh- 
energy physics does not reveal the  true 
ground state of tlne system. 

I n  1987, Lee and Read (3)  asked a 
thought-provoking question, "Why is the  
T, so low?" If the  singlet formation occurs 
a t  the SC transition, the  natural transition 
temperature \vould be TbiF, which is much 
higher than the  observed Tc. T h e  reason 
that T, is ion. is because there is also other 
"low-energy physics," valid below TblF, that 
governs tlne fate of the  singlet pairs. T h e  
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singlet pairs can: ( i )  form a spatially ordered 
state [an antiferromagnetic (AF) state], ( i i)  
condense to for111 a d-wave superconductor, 
(iii) arrange themselves into a spatially 
inon-uniform state [phase separation (4)],  
( iv) form a spatially homogenous mixed 
state of coexisting AF and SC order [a 
"spin-bag plnase" (5)],  or (17) disorder if the  
effects of quantum fluctuation are strong 
enough [a "resonating valence-bond (RVB) 
plnase" (1 )]. In order to  distinguish the  dif- 
ferent competing ground states, a n  effective 
H is needed that describes the  low-energy 
physics sector of the  t-J model belon. TblF. 
T h e  form of H should be simple so that it 
can be solved analytically, and yet the  corn- 
plexity of tlne possible phases should emerge 
from the  unity of the  model. 

T h e  different competing orders are not 
separated by distinct energy scales 111 tlne 
remaining ~ r o b l e m ,  so it is not obvious how 

u L 

one can systematically apply tlne renormal- 
ization group idea to integrate out the  irrel- 
e17aint degrees of freedom. Fortunately, the  
strongly interacting low-energy degrees of 
freedom are related by syrnrnetry properties. 
T h e  main approach here is to identify tlne 
sytnmetrles of the  microscopic H, such as 
the  t-J model, and use them to constrai~l the 
possible form of the  lo\v-energy effective H. 

W h a t  svmmetries are known? Clnakra- 
vaty, ~ a l p e r i n ,  and Nelson (6), slnomred 
that the  low-energy effective H of a n  anti- 
ferromaginet is the  SO(3)  quanturn nonlin- 
ear a model. More recently, Pines and co- 
lvorkers (7,  8 ) ,  aind Chubuko~.,  Sachdev, 
and Ye (9 )  argued that this model is appli- 
cable in the  underdoped regime as well. T h e  
low-energy effective H of a superconductor 
is described by a U(1)  quantum nonlinear a 
model, sometimes called the  XY model. 
Doniacln and I i n ~ ~ i  (1 0) attempted to de- 
scribe tlne metal-insulator transition in  
terms of a quantum XY model, and recently 

Emery and Ki~~elsoin ( I  I )  presented evi- 
dence that the SC transition o n  the  under- 
doped side of the  oxides can be described by 
a renormalized classical XY model. Both tlne 
SO(3)  spin rotation and tlne U(1)  charge 
rotation svnnrnetries are obvious svmmetries 
of the  miiroscopic t-J model and'constrain 
anv new, unified low-energy theory. ", 

'The simplest way to  construct a unified 
theory of A F  and SC is to introduce a 
concept that I call superspin. It is a five- 
dimensional (5D) vector, n, = ( n l ,  n2, n3, 
n,, nj) .  T h e  first and the fifth components 
are the  superconducting components of the  
superspin, identified with the  t\vo d-wave 
SC-order parameters ( 8 ,  12):  

and 

g(p) = cos p, - cos p, ( I d )  

( C  creates electron \vitln nlomentum p). 
T R ~  remaining three components are the  
spin components of the  superspin, identi- 
fied with the A F  order parameter: 

n2 = C ~ ~ - ~ , ~ a ~ c , ? , ,  (2a)  
P 

y h e r e  au ' s  are the  Pauli spin matrices and  
Q = (T, T ,  T) is the  A F  ordering vector. 
T h e  concept of the  superspin is similar to  
tlnat of tlne pseudospin (1 3 ,  14) ,  with a 
crucial difference that  pseudospl~l is really 
"psendo" in  the  sense tha t  it has n o  real 
spin component.  There  is a n  S O ( 3 )  spin 
symmetry acting o n  the  (n,, n,, nq) sub- 
space, with the  total  spin S, being tlne 
generator of tlne rotation, aind there is a 
U ( 1 )  charge symmetry acting o n  the  (n , ,  
n j )  subspace, with the  total charge Q be- 
ing the  rotation generator: 

H e r e  l"\r is tlne number of electrons and M is 
tlne number of lattice sites. Of course, the  
concept of superspin is only usef~rl if are call 
enlarge tlne known SO(3)  X C(1) symme- 
try group to include orthogonal transforma- 
tions that can rotate the  A F  order parame- 
ters into the  SC ones. T h e  rninirnal group 
to accomplish this \vonld be a n  SO(5)  sym- 
metry group. If such orthogonal transforma- 
tions exist, and if they commute \\,it11 the  
microscopic H, then tlne concept of the  
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superspin would be very useful. Because or- 
thogoilal trailsformations preserve the  mag- 
nitude of the  vector, we can impose the  
constraint: 

and really think of the  superspin as a vector 
of a fixed magnitude in a 5 D  space, \\.here 
the  A F  and SC order appear as 3 D  and 2D 
projections, respectively. T e n  different "ELI- 
ler angles" are needed to  describe a general 
rotation in  a 5 D  space, and so the  SO(5)  
group has 10 symmetry generators. [In gen- 
eral, the  SO(n)  group has n (n  - 1)/2 sym- 
metry generators.] T h e  known SO(3)  x 
U(1)  sytnmetry supplies us \vith four such 
generators. 

The TT operators and the SO(5) algebra. 
T h e  remailling six symmetry generators 
have already been discovered by Demler 
and Zhailg (15) in their recent theory of 
resonant neutron scattering of high-T, su- 
perconductors. These operators carry charge 
2, spin 1,  and total momellturn (T, T, T).  
These T operators are defined as follows: 

and we see that there obviouslv are six of 
them. 

T h e  SO(5)  Lie algebra has 10 generators 
La, = -Lbn satisfying the  f o l l o ~ i n g  cotntnu- 
tation relations: 

Let us identify the  10 operators ( Q ,  S,, T,, 

T:) with the  generators of the  SO(5) ,  Lub, 
in the  folloming way, where Lab is: 

-S; 0 
T S\ -S, L1 

Q - l (T: -T*)  -l(T!-T\) - l (T; -Tz)  L1 

\x here the  value of the  lnatrlx elemeilts o n  
the  upper right triangle are detertnined by 
antisytntnetry, Lab = -Lhi,. T h e  fermionic 
represeiltatioils of the (Q, S,, T,, T:) op- 
erators in  Eqs. 3 and 5 and the  above iden- 
tification can be used to check exolicitlv 
that the  SO(5)  cornmutation relations (Eq. 
6) are indeed satisfied in the  contiiluuln 
approximat~on: 

This approximation is valid in the  long 
\valelength limit \\.here the  only important 
infortnation about the  internal structure of 
a composite operator is its sytnmetry, not  its 
detailed shape. Because g2(p) has s-\vave 
sytnmetry, it can be approxitnated by its 

average value. 
W i t h  the  aid of the  SO(5)  algebra, the  

concept of the  superspin introduced earlier 
can be defined precisely. T h e  superspin n, is 
defined as a vector representation of the  
SO(5)  Lie algebra that satisfies the  fol low 
ing com~nutat ion relation: 

Substitution for Lab and nc of the  tnicro- 
scopic definitions in  terms of the  electron 
operators in Eqs. 1,  2, and 7,  shomrs that 
they satisfy Eq. 9 in the  continuum approx- 
imation. In  particular, the  T operators ro- 
tate the  A F  order parameter into SC order 
parameter and vice versa. 

W i t h  the  basic lox-energy variables as- 
sembled and their kinematic relations spec- 
ified, dynamic properties can be addressed 
and the  comtnutation relations between the  
symmetry generators Lab and the microscop- 
ic t-J H call be discussed. T h e  total spin 
operators L,,, LZ4, and L j 4  and the total 
charge operator L,, certaiilly comtnute ex- 
actly \vith the  t-J H. W h a t  about the  re- 
maining six generators? Demler and Zhailg 
(1 5 )  have shown that although they do not  
comtnute exactly with the  t-J H, they are 
approximate eigeiloperators in the  sense 
that: 

\\.here o, = J ( l  - n)/2 - 2 p ,  and p is the  
chemical potential measured from half-fill- 
inp. This relation is obtaiiled bv the stan- 
dayd t matrix approximation tha't is similar 
to the  random-phase-approxitnatioi~ for 
particle-hole operators. T h e  reason that this 
relation holds is rather simple. T h e  T: op- 
erator is a particle-particle operator that 
describes a pair of ele_ctrons ~ i t h  a center- 
of-mass motnentum Q = (T, T, T).  Holy- 
ever, for tight-binding models \vith nearest- 
neighbor hopping,-the two-particle contin- 
uum vanishes a t  Q. Therefore, a repulsive 
interaction, such as J in  the triplet channel,  
naturally leads to  a n  antibound state. Thus, 
o, in Eq. 10  is nothing but the  energy 
e i~enva lue  of this antibound state. More - 
sophisticated calculations beyond the  t ma- 
trix approxitnation have also been carried 
out recently (1 6 ,  17). Equation 10  is ~LIII- 
damental in that it provides a bridge frotn 
the  microscopic t-J H to the  effective non-  
linear a model theory. O n e  can also define 
a T' operator by using g(p) = cos p, + cos 
py in Eq. 5. Such a n  operator \\,ould trans- 
fortn an  A F  state to s-wave SC state. H o w  
ever, it was found (15) that these are in 
general not eigeiloperators. Therefore, our 
theory naturally predicts d-pairing sytnmetry. 

There are t\vo reasons why the  SO(5)  
symmetry is only a n  approximate one. O n e  
is the  approximation used in  deriving Eq. 
10. Therefore, this relation should be tested 

in  exact diagonalizatioll studies of the  Hub- 
bard or the  t-J models. This call be done by 
calculatine the  dvnatnical correlation f ~ ~ i l c -  
tions of [he T bperators and identifying 
isolated poles in  their spectral f ~ ~ n c t i o n .  
Fortunately, such a study has been carried 
out recently by hjleixner and Hailke ( l a ) ,  
and a sharn collective tnode in  the  T chan- 
nel was found. T h e  second reason n7hr the  
SO(5)  sytnmetry is broken explicitly is that 
even if Eq. 10  holds exactly, H does not  
commute with all generators of SO(5) .  
However, this source of exolicit svmmetrv 
breaking is easy to  handle and has interest- 
ing physical consequences to be explored 
below. T h e  eigenoperator relation (Eq. 10)  
is almost as good as the  vanishing of the  
cotntnutator. T h e  reason is that  the  Casimir 
operator C = Xu<, Lib of the  SO(5)  algebra 
commutes ~ i t h  H, and therefore. \ve call 
still classify all of ;he eigenstates o f  H ac- 
cording to their SO(5)  quailturn numbers. 
T h e  situation is analogous to the probletn of 
a spin precessing in  a tnagiletic field-al- 
though the  full snin-rotation svtnmetrv is 
brokin by the inagnetic field, ;he mahni- 
tude of the  spin is preser~~ed.  

T h e  nresent work is a generalization of - 
the  concept of the exact SO(4)  sytnmetry 
(1 9 )  of the  Hubbard inodel and its applica- 
tion to the  negative U Hubbard model (14,  
20, 21 ). Using the  operators constructed 
earlier by Yang (22),  Yang and Zhang (1 9)  
pointed out that the  Hubbard model has, in 
addition to  the  usual SO(3)  soin rotation 
symmetry, a n  SO(3)  pseudospin sytntnetry 
generated by the  folloxing operator: 

Although this symmetry is valid both for 
the  positive and the  negative U Hubbard 
model, the  simplest vector multiplet con- 
tains s-wave SC and charge-density wave 
( C D W )  order parameters (14 ,  20): 

and is therefore only useful for the  negative 
U model. T h e  sitnplest generalizatioll of the  
pseudospin to the positive U or the  t-J 
model is the  concept of the  superspin intro- 
duced in this article. T h e  precise correspon- 
dence between these t\vo symmetries are 
summarized in Table 1 .  

Construction of the SO(5) quantum 
nonlinear a model. Wi th  the  basic kine- 
matic and dynamic constraints assembled, a 
low-energy effective H call be constructed. 
If the  SO(5)  symmetry is exact, one can ask 
what the  form of the  lox-energy H would 
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be. As  argued above, below TMF, the system 
tends to form local singlets, but could form 
either the A F  or S C  ground states. There- 
fore, TMF can be thought of as a mean-field 
transition below which the superspin ac- 
quires a fixed magnitude that leaves its ori- 
entation as a low-energy degree of freedom. 
Near TMF, the anisotropy terms in the  su- 
perspin space are not very important, and 
this transition can be sitnply described by a 
standard Landau free energy functional: 

F = a ? '  + b iz4  (13)  

T,, is the  temperature at which the  coef- 
ficient of the  auadratic term n = a ' ( T  - 
T,,) changes sign. 

Below TbfF, the magnitude of the super- 
spin is fixed, and it can always be rescaled to 
satis$ the constraint of Eq. 4. T h e  AF and S C  
nhases corresnond to fixed directions of the 
superspin and thus break the SO(5) symmetry 
suontaneouslv. The  low-enerev d~~namics  of -, , 
s k h  a systek is determined completely in 
terms of the Goldstone bosons and their non- 
linear interactions as snecified hv the SO(5)  ~, 

symmetry. T h e  kinetic 'energy of ;he system is 
sitnply that of a SO(5) rigid rotor, given by 
1/2x C,,b L:b(~), xvhere x is simply the mo- 
ment of inertia of the rigid rotor. In the 
long-wavelength limit, a gradient expansion 
can be pelformed to obtain a term pi2 C, 
[d,n,(x)]%o leading order. Therefore, the re- 
sulting H density is given by: 

H, is a low-energy H constrained by the 
SO(5)  symmetry. However, as this symme- 
try is not exact, some weak symtnetry- 
breaking perturbations should be allowed 
such that the  subgroup SO(3)  X U(1)  of 
the spin and charge symmetry is still exact. 
T h e  asymmetric H is given by: 

where x l j  = x,, XZ3 = xZ4 = x~~ = x,, and 
- 

X1(2,3,4)  - X(2,3,4)5 = XT are the charge) spin) 
and the newly introduced "n" susceptibility. 
A ~eneralized velocitv field v!, = n,,a,n, - 

L,L, L~ ,. ,, 

nhd,n, and the corresponding stiffness in the 
charge ( p l j  = p,), spin ( ~ 2 3  = P24 = P34 = P,) 
and the n ( P ~ ( , , , , ~ )  = P ( , , ~ , ~ ) ,  = p,) channel, 
have also been introduced. In the presence of 
explicit symmetry breaking, a quadratic sym- 
metry-breaking term of the fortu: 

is also allowed. 

H5 and Ha describe the  systetn at half- 
filling only. In  order to go away from half- 
filling, one simply has to add a I*, term 
-2pQ = -2p.L1, (where Q is a number 
operator). This yields 2, = H, - 2pL1 , and 
XL, = Ha - 2pLl j ,  respectively. Both 
and 2, can be quantized by using the  com- 
tnutation relations (Eqs. 6 and 9 ) ,  and a 
complete set of equations of motion can be 
determined. 

Given 7fi3, one can simply perform a 
Legendre transformation and obtain the  
corresponding Lagrangian. After a simple 
Wick rotation t + i ~ ,  the  Lagrangian den- 
sity becomes: 

where: 

is the  angular velocity, where a set of gen- 
eralized external potentials Bob are coupled 
to Lob. In  the  current problem, the  only 
nonvanishing component is B,, = -By J 1 = 

2p.. T h e  partition function of the systetn is 
given by: 

T h e  constants appearing in the  model 
can  now be defined. X~ and X, are the  
familiar uniform snin suscentibilitv and  
charge compressibiiity of th; systeli, and  
pb and  pc are the  spin stiffness and charge 
stiffr~ess, respectively (p, is not  to  be con- 
fused with the  superfluid density that  
sometimes also uses this nota t ion) .  X, and 
p, are two new constants introduced in 
this article. Thev  describe the  time and  
length scale over which a n  A F  region can 
be converted to  a SC region and vice 
versa. I n  order for the  S O ( 5 )  sytntnetry to 
be  approximately valid, one  would require 
that  these constants are close in  value. 
T h e  last remaining constant of our tnodel 
is the  anisotropy constant g, which selects 

Table 1. Comparison of three models (see text) 

Parameter t-J Model 

Symmetry SO(5) 
Symmetry generators See, 0, T ~ ~ ,  T: 

Order parameter Superspn 
Symmetry breaklng I* 
Phase trans~t~on Superspln flop (from AF 

to d-wave SC) 
Collect~ve modes 1 Massless phase and 

3 massve AF modes 

either a n  "easy plane" in  the S C  space (n l ,  
n,), or a n  "easy sphere" in the  A F  space (n,, 
n,, n4),  depending o n  the sign of g. As 
argued before, p. = 0 defines the  tnodel a t  
half-filling, where we know the  system is 
AF. Therefore, we fix g > 0 t o  match this 
fact. A t  this point, the values of the con- 
stants (especially the  sign of g) of the  model 
are not  deduced from any first-principles 
calculations. However, once these values 
are fixed at half-filling, they are not  allowed 
to vary in a n  arbitrary fashion. As  shown 
below, the richness of phase diagram comes 
entirely from variation of p. 

Origin of superconductivity. A t  half- 
filling, g > 0 is chosen so tha t  the  super- 
spin prefers to  lie in  a n  easy sphere of (n,, 
n,, n 4 )  Away from half-filling, the  only 
new term appearing in  7f is just the  p. 
term. I n  considering 2,, t he  p term ap- 
pears as a "gauge coupling" in  the  imagi- 
nary time direction. A constant p. term is 
a "pure gauge" and  could therefore be 
"gauged away." A naive expectation would 
be tha t  such a term has n o  dynamic con- 
sequences. However, there is a cost in- 
volved-although a constant p. term can  
be gauged away in  the  bulk, it reappears as 
a twisted boundary condition in t h e  imag- 
inary time direction and  could have non-  
trivial consequences. 

It is more direct to investigate the Y ,  
(Eq. 17) with the  periodic boundary condi- 
tion in  the  imaginary time direction. Be- 
cause of the periodic boundary condition, 
the  classical path extremizing the  path in- 
tegral are the  static solutions. T h e  only 
nonvanishing contribution of the  kinetic 
energy for these static solutions is the  p 
term, which gives a n  effective potential 
energy: 

Let us first consider the  SO(5)  symmetric 
case where X, = X, = X, in  which case the  
terms in  the  square bracket reduce to X. If 
we were dealing with a n  abelian XY model, 
such a term would still not have any dy- 

Negatlve U Hubbard 
model 

SO(4) 
sty, Q> 7 ,  llt 
Pseudospln 

I* 
Pseudospln flop (from 
CDW to s-wave SC) 

1 Massless phase and 
1 massve CDW mode 

Antiferromagnet in 
a B fleld 

SO(3) 
So 

Nee vector 
B 

Spin flop (from easy 
axis to easy plane) 

1 Massless XY and 
1 massive Z mode 
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namical consequences. Because n: + n i  = 1 
in  this case, the  above term would reduce to 
a number and give only a trivial shift of the  
ground-state energy and could not lead to 
any nontrivial phase transitions. However, 
if the  XY svm~netrv is etnbedded into a 
higher symmetry group, as in the present 
case, this term has a profound dynamic 
consequence. \Whereas the g term with g > 
0 favors a n  A F  easy sphere (n?, n,, n4),  the  
p term favors a S C  easy plane (n l ,  n,). This 
co~npet i t ion leads to a first-order phase 
transition (for more detailed discussion of 
the order of the transition, see below) 
when: 

For p. < p,, there is a n  A F  ground state, 
and the S C  state has a finite energy. This 
energy decreases gradually as one increases 
p. until levels cross a t  p.,. For p > kc,  the  
situation is reversed; there is a SC ground 
state, and the  A F  state has a finite energy. 

For X, f x,, the  situation is a bit inore 
complex. In  the parameter regime xc > xT, 
there is always a direct first-order transition 
from the  A F  to  the S C  state at p. = p., = 

vE. However, in the  parameter regime 
X ,  < X, < 2xc, and for: 

there exists a n  intermediate spin hag phase 
(5) with coexisting A F  and S C  order. 
Schrieffer, \Wen, and Zhang (5) describe 
such a phase in terms of pairing the eigen- 
states of the  AF background. 1Vhen ex- - 
pressed back in terms of the  original elec- 
tron operators, their order parameter is a 
mixture of the  A F  and the  d-wave S C  order 
parameters and the n operators. 

T h e  above discussion based o n  the  2- 
may appear rather formal, and an  intuitive 
physical exalnple would be useful. Consider 
an  antiferromagnet with easy-axis anisotro- 
py (say the  z axis). Below the  Nee1 transi- 
tion, the  NCel vector prefers to point along 
the  easy axis. A uniform magnetic field B 
pointed along the  easy axis creates an  easy 
xy plane. A t  a critical value of the  B field, 
there is a "spin-flop" transition where the  
NCel vector changes its orientation from 
the t axis to the  xy plane. Once  the  under- 
lying SO(5)  symmetry is revealed, the phys- 
ics of the  high-T, superconductivity is as 
siiuple as the  spin-flop transition. W e  see 
that Eq. 18 describes a precession of the 
superspin about a "fictitious B field," name- 
ly, p.. T h e  easy axis of the AF state trans- 
lates into the easy sphere (n,, n3, n4),  
whereas the  easv  lane of the A F  state 
translates into the 'easy SC plane ( n l ,  n,). 
T h e  transition from an  A F  ground state to a 
SC one is a "superspin-flop transition." In  

fact, the  phase diagram of an  easy-axis A F  
in  the  T and B plane is similar to that of a 
high-T, superconductor in the T and p 
plane. T h e  complete analogy between these 
two systems is summarized in  Table 1. 

This analogy also helps in  understanding 
the  origin of the superspin-flop transition in 
the X formulation of the  problem. In  the  7f 
formulation, the  p. tertn appears as a cou- 
pling to  the  symmetry-generator L l j ,  the  
number operator Q, but not to the  super- 
spin na directly. It is not immediately obvi- 
ous why this term would select any partic- 
ular direction in the  superspin space. Of 
course, the  same problem occurs in the  A F  
analog, where the  uniform B field c o u ~ l e s  

u 

to the  total spin vector rather than  the  Nee1 
vector. If one tries to visualize the  Nee1 7f 
in a selniclassical fashion, one must remem- 
ber that the total spin vector is orthogonal 
to the  Nee1 vector. T h e  externally applied 
uniform B field leads to a finite total spin in 
the  z direction. In  order to satisfy the or- 
thogonality condition, the NCel vector 
therefore has to  lie in  the  plane orthogonal 
to 2 .  In the  oresent tnodel [restricted to the 
 SO(^) symt~ietric case to simplify the alge- 
bra], the  orthogonality constraint takes the  
form: 

which can be simply proved by expressing 
the  angular momenta in terms of the  angu- 
lar velocities Lob = x(nanb - n,,nn) T h e  p 
term leads to doping, or a finite value of Ll ,. 
T h e  constraint gives n2 = n, = n, = @ if 
other Lab generators have n o  ground-state 
expectation value, which is the  case since 
x > @ .  

T h e  question of the origin of the S C  state 
u 

is not a single question, but rather two relat- 
ed questions separated by an  energy scale. 
T h e  hieh-enerev mechanism leads to bind- " ", 
ing of electrons into singlet pairs. T h e  origin 
of this binding is rather obvious in  the t-7 

u 

model, because the .J term favors electrons o n  
near-neighbor sites having opposite spins. 
T h e  proble~n is that this satne .J could also 
lead to an  A F  state. In this new model, pair 
binding gives rise to a finite magnitude of 
the  superspin without fixing its orientation, 
in marked contrast to the BCS theory, where 
pair binding is equated with the onset of the 
S C  state, and also different from the large 
nhase-fluctuation model ( 11  ), where the , , 

only fluctuation of the order parameter is its 
phase. In  addition to the  high-energy pair- 
binding mechanism, a lou-energy mecha- 
nistn selects an  orientation of the superspin 
and distinguishes the A F  frotn the SC state. 
T h e  selection of the different possible 
ground states is described bv SO(5)  nonlin- , . 
ear o model and the mechanism for favoring 
the SC state is the superspin-flop mechanis~n 
discussed above. Thus, superconductivity is 

an  inevitable conseauence of the SO(5)  , , 

sytnmetry and an  A F  state at half-filling. 
Frotn this point of view, an  A F  state can in 
sotne sense be t h o u ~ h t  of as a solid fortned bv 

0 

Cooper pairs, and the superspin-flop transi- 
tion is a first-order melting transition frotn 
the  solid into a superfluid of the Cooper 
pairs. In this framework, the spin fluctuation 
exchange calculations (23, 8, 12) should be 
interpreted as a mean-field theory of T,,. 
Such calculations lead to the imnortant Dre- 
diction of d-wave superconductivity, but 
they are not complete because they do not 
address the actual phase transition and the 
competition between AF and S C  states. T h e  
two different mechanisms com~le tnen t  each 
other in their respective energy regime and 
together forin a complete picture of the ori- 
gin of superconductivity in the oxides. 

Theory of collective modes and their 
nonlinear interactions. T h e  sunersnin mod- 

L L 

el gives a natural description of the collec- 
tive modes in the  ordered phase. Near the  
transition between the  A F  and the  S C  
ground states, the  ordered phases are not  
conventional, but their low-enerev excita- ", 
tions reflect ;he competition between the  
two different kinds of ordering. These low- 
energy excitations can be studied systetnat- 
ically by applying symmetry principles and 
have profound experimental consequences. 

Spontaneous breaking of a continuous 
symmetry naturally leads to Goldstone 
bosons. T h e  nutnber of the  Goldstone 
bosons is the nutnber of the  broken sytnme- 
try generators. For the  SO(5)  group, four 
Goldstone bosons correspond to the  four 
broken symmetry generators. 

If the superspin vector lies in the  S C  
plane, for example, along the n,  direction, 
the  mode corresponding to the  broken ro- 
tation generator L,, is just the usual Gold- 
stone mode, which describes the  nhase de- 
grees of freeborn of the sc order p'aratneter. 
T h e  three other modes correspond to the 
broken generators L1,, L1,, and LI4. These 
modes form a triplet representation of the  
unbroken SO(3)  spin symmetry. However, 
if the  superspin vector lies in the  A F  sphere, 
say along the  n, direction, the  usual spin 
waves correspond to the  broken generators 
L,, and L24. In  addition to  the  usual spin 
waves. the  current theorv nredicts two ad- , A 

ditional Goldstone tnodes that correspond 
to the  broken generators L,, and L,,. They 
form a doublet representation of the  charge 
U ( 1 )  sytntnetry group. 

This symmetry analysis shows what hap- 
pens if the  SO(5)  symtnetry is explicitly 
broken to SO(? )  x U(1) .  In  the  presence of 
a quadratic symmetry-breaking term geff = 
g - X ( 2 p ) 2 ,  the spin-triplet Goldstone 
mode of the  S C  state would become mas- 
sive if < @ and the charge-doublet mode 
of the  A F  state would become massive if geff 
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> 0. T h e  usual spin-wave modes and the  
phase mode remain massless because of the 
SO(3)  X L'(1) symmetry. Goldstone bosons 
that become massive because of explicit 
symmetry-breaking terms are sometimes 
called pseudo-Goldstone bosons. 

This general analysis can be easily 
checked by a explicit calculation starting 
from the  X,. T h e  equations of motion de- 
rived from take the form: 

where oab is given by the Wick rotation of 
Eq. 18. For Q ( x )  and S,(x), only the third 
term is nonvanishing, expressing the  conti- 
nuity of these exactly conserved charges. 
This set of eauations is a nonabelian een- " 
eralisation of the familiar Josephson equa- 
tions (24) in conventional superconductors. 
T h e  first equation is a generalization of the  
Josephson current relation. If we take Lnb(x) 
to be L, =ix) in the  first eauation, the onlv ,,, , 

surviving term is the third one, which re- 
duces to  the sta1:dard Josephson current 
expression .J = p,CO in the  isotropic limit. 
T h e  second equation is a generalization of 
the  Josephson acceleration equation. If we 
take Lnh(x) to be L,,(x) in  this equation, the  
familiar ac Josephson equation p = dO/dt is 
recovered. This set of equations for LZ3, LZ4, 
and L,,, are generalization of the  Landau- 

27 " 
Lifshitz equation of antiferromagnets (25).  

These equations unify A F  with S C  states 
and describe the linear spectrum as well as 
the  nonlinear interactio~ls of the  collective 
modes in A F  and S C  ohases. T h e  new 
physics contained in  these equations can be 
easily analyzed in  the  linearized approxima- 
tion. For gff > 0, there is a n  A F  ground 
state, and the equations can be linearized 
around the  N6el vector, say nZ: 

T h e  second equation describes the two 
spin-wave modes of the  AF state, while the  
first and the  last equations predict a new, 

massive doublet-pairing mode. In  the  long- 
wavelength limit, the  energies of these two 
modes are given by o, = a 2 2 p .  
This mode is the  precursor of superconduc- 
tivitv in  the A F  nhase and makes it olausi- 
ble ;hat one can'think of a n  antifer;omag- 
net  as a quantum solid of Cooper pairs. A 
quantum solid has two types of excitations, 
the  gapless phonon modes and a gaped 
mode corresponding to extracting an  atom 
from its position (24).  T h e  o- rnode de- 
scribed in  the  above equation roughly cor- 
responds to the  second type of excitation of 
a solid if the  Cooper pair is identified as a n  
"atom" of the  solid. As I*. is increased, t h ~ s  
pairing mode lowers its energy, the  quan- 
tum solid becomes softer, and eventually 
the  solid melts completely to form a super- 
fluid of Cooper pairs. 

I t  is commonlv believed that a t  half- 
filling, spin excitaiions are gapless, whereas 
all charge excitations have finite energy 
gaps. T h e  above analysis shows that the  
charge excitations have two distinct 
branches corresponding to adding and re- 
moving two particles. For p close to p,, the  
system is still a t  half-filling, but the  parti- 
cle-hole symmetry is broken. In  this case, 
the w- mode is nearly gapless but the o+ 
mode has a large gap. T h e  conventional 
definition of a charge-excitation gap is giv- 
e n  by the  sum of o+ and o- and could 
remain large. Therefore, near p,,, the half- 
filled Hubbard model has both gapless spin 
and nearly gapless charge excitations, and it 
is not surprising that a n  approximate SO(5)  
symmetry could be valid in this regime. 

For g,,, < 0, there is an  SC ground state, 
and the  eauations can be linearized around 
the  n,  vector to  obtain: 

T h e  first equation describes the  usual Gold- 
stone mode (sound mode) of a supercon- 
ductor, whereas the  second equation de- 
scribes the  triplet of massive magnetic 
modes predicted by Demler and Zhang ( 1  5 ) .  
This mode is a precursor of antiferromag- 
netism in  the  SC phase. It can be roughly 
thought of as the roton mode in  a super- 
fluid, because both of them reflect the  "di- 
agonal short-range order" in  a superfluid. 
As  r ~ ,  is decreased, this rnode lowers its 
energy until the  superfluid eventually "so- 
lidifies" to  form a n  A F  state. 

Both the  doublet-pairing mode in  the  
A F  phase and the triplet magnetic rnode in 
the  S C  ohase owe their existence to the  
kinetic energy terms of the  7 operators and 
are called the  7 doublet and the TI  triplet 
modes, respectively. Both classes of new 
collective modes have important experi- 

mental consequences. T h e  n triplet rnode 
has been used by Dernler and Zhang ( I  5 )  to 
explain the recent resonant neutron-scat- 
tering experiments o n  yttrium-barlum-cop- 
per oxide (YBCO) superconductors. Below 
T,, a collective excitation peak appears in  
the  neutron-scattering cross section be- 
tween 25 and 41 meV (26-36) depending 
o n  the  doping level, and the scatterings are 
observed in the spm-triplet channel at the 
commensurate rnoiuenturn (~i, T ,  7 ~ ) ,  in 
agreement with the quantum numbers 
found in my theory. These modes vanish at 
T, (28,  36) ,  consistent with the  interpreta- 
tion that they are the  pseudo-Goldstone 
modes associated with the  L'(1) symmetry 
breaking. [The resonant neutron-scattering 
peak vanished above T, in  the  T, = 92 K 
(28) and Tc = 62 K (30) materials. In  the 
T, = 52 K material, the peak intensity 
drops continuously across T, (29).] T h e  
precise correlation between the  energy of 
the  neutron peak and T, \\-ill be discussed 
below. 

T h e  above discussion assumes that quan- 
tum fluctuations are not  strong enough to 
destroy the  long-range order. In  the  oppo- 
site limit, when X-' >> p, the  kinetic terms 
in  2, and Xd should be diagonaliied first 
and the  potential energy terms treated as a 
perturbation. T h e  kinetic t e r~ns  can be di- 
agonalised easily by using the representa- 
tion theory of SO(n) .  They are classified by 
a n  integer 1: the  Casimir operator has the 
value l(1  + n - 2) in this representation. 
T h e  ground state is a SO(5)  singlet with 1 = 

0, and the lowest energy excitation is a 
massive vector multiplet with 1 = 1. This 
multiplet is split by the  anisotropy in  the 
kinetic coefficients. T h e  massive pairing 
doublet has energy (1/2xC) + ( 3 / 2 ~ _ ) ,  
whereas the  massive magnetic triplet has 
energy ( 2 1 2 ~ ~ )  ( 2 1 2 ~ ~ ) .  

The global phase diagram of high-Tc 
superconductors. T h e  phase diagram of the 
SO(5)  nonlinear a model can be deter- 
mined and colnpared with experiment. T h e  
topology of the  phase diagram takes differ- 
ent  forms depending o n  the strength of the  
q u a n t ~ ~ i n  fluctuation. T h e  case of d = 3 is 
discussed below unless otherwise stated. 
T h e  inodel does not  contain disorder and 
therefore precludes any disorder-induced 
phases such as the  spin-glass phase. 

I first discuss the  so-called renormalized 
classical regime (6 ) ,  where q ~ ~ a n t u m  fluctu- 
ations merely renormalize the  coupling con- 
stants of the model but are not  strong 
enough to destroy the  various types of or- 
dering. In  this case, a t  half-filling, p = 0, 
and g > 0, the  superspin lies in  the  easy 
sphere (nz, n,, n4) and there is a n  A F  
ground state. There is a phase transition to 
a paramagnetic phase a t  TN as the  temper- 
ature is raised, and this phase transition is in  
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the same universality class as the classical 
SO(3) model ill three dimensions. As p is 
increased from 0, the system is still half- 
filled, but the gap toward one of the T 

doublet mode decreases. Because it is easier 
for the s u ~ e r s ~ i n  to fluctuate into other 
directions, the effective spin stiffness de- 
creases and with it the NCel temperature. 
At  p,, the superspin has no preferential 
easy directions and the system is described 
bv an isotronic SO(5) nonlinear o model. . , 

~ l l i s  model has its own critical temperature 
Tbc, which is in general smaller than the 
NCel temperature, because the critical tern- 
perature of the SO(N) model scales inverse- 
lv with N. If the u. = L_ line is reached 
when T < Tb,, tce systelk is ordered and 
the superspin defined in this limiting pro- 
cedure still lies within AF easy sphere. 
When p is increased beyond the critical 
value, the superspin "flops" into the SC 
plane. Because the direction of the super- 
spin changes abruptly at the transition and 
the correlation length in the Josephson 
sense is finite at the transition point, the 
superspin flop transition is in general first 
order for T < Ti_,. Beyond the superspin 
flop transition, the system crosses frorn a 
SO(5) critical behavior over to an XY crit- 
ical behavior, and the SC transition tern- 
perature would increase with increasing p,  
because the mass of the T triplet mode 
increases. The topology of the phase dia- 
gram in this case is depicted in Fig. 1A. 

The line of the first-order superspin flop 
transition is in eeneral not exactlv vertical " 
because the susceptibilities and the stiff- 
nesses in different superspin directions may 

not be the same. At zero temperature and 
for p < pc, Q = 0 and the density of holes 
vanish. For p > pc, the density of holes is 
finite. The discontinuous jump of the den- 
sity is given by 2xp,. Therefore, if the phase 
diagram is plotted with the hole density 
rather than p as a variable, the phase dia- 
gram will contain a two-phase region where 
0 < Q < 2xp, The possibility of phase 
separation was first pointed out by Emery, 
Kivelson, and Lin (4) in the context of the 
t-J model. However, in their work the na- 
ture of the hole-deficient region is not 
clear, while in the present model I argue 
that it is in the SC phase. In the two-phase 
region, the long-range Coulomb interaction 
can lead to formation of a "stripe order" 
with alternating AF and SC stripes. 

The first-order superspin flop line termi- 
nates at a critical point Tbc, from which two 
second-order lines, one corresponding to 
the NCel transition and the other corre- 
sponding to the XY transition, emerge. For 
this reason, this critical point is called a 
bicritical point. There are tn'o relevant op- 
erators near the bicritical point, the reduced 
temperature tbc = (T - Tbc)/Tbc and gefP 
The scaling behavior near this point is well 
studied (31-33). One of the most important 
results is that even if the rnodel defined at 
the short length scales is not exactly SO(N) 
invariant, that is, the susceptibility and 
stiffness in different directions may not be 
the same, the difference among them scales 
to zero under the renormalization group 
flow when the bicritical point is reached. A 
simple version of this result is shown by 
Pelcovits and Nelson (32), who considered 

Fig. 1. Posslble phase dlagrams of 
our theoretical model T,, IS the 
temperature below whlch electrons 
blnd to form singlet palrs In the cur- 
rent model it corresponds to aflnlte 
magnitude of the superspln and T, 

Th > > 

and T, are the Neel and SC transi- Ts r 
\ 

tlon temperatures respect~vely T ~ c  Tc 
There are four posslble types of 
transitions from the AF to SC state T~~ 
(A) There is a dlrect flrst-order tran- 
sition that term~nates at a blcritlcal PC I-1 Pc1 Kc2 I-1 
point T,, that can be described as a 
superspin-flop transition. (6) There f C 
are two second-order phase transi- - - 
tions with an intermediate spin-bag 1 - \  

phase. The four second-order lines \ TMF 

a SO(N) model where the Nth component 
has a different stiffness than the others. The 
difference operator has negative scaling di- 
mension in the 2 + E exoansion of the 
nonlinear o model and is therefore irrele- 
vant near Tbc. A more general result was 
derived by Friedan (34), who considered a 
nonlinear o model on an arbitrary Rierna- 
nian manifold with metric gab. Friedan 
showed that the fixed point of the renor- 
malization group flow is an Einstein mani- 
fold with gab = [ 2 ~ ( d  - 2)]-'Rab, where Rab 
is the Ricci tensor. In particular, if one 
starts with a distorted sphere S,, only the 
average curvature is a relevant variable, 
whereas the distortions nreserving the aver- - 
age curvature are irrelevant. Therefore, if 
one has a microscopic model without the 
full spherical symmetry, a perfect sphere 
with constant curvature is produced by the 
large-scale fluctuations near the critical 

'7 

point. This result provides a strong theoret- 
ical justification for describing the high-Tc 
superconductors by a SO(5) nonlinear a 
model: Even if the symmetry is only approx- 
imatelv valid in the microsconic models 
such as the Hubbard or the t-J Aodel, near 
the bicritical point, where the most inter- 
esting transition frorn an AF to a SC state 
occurs, this symmetry becomes exact. 

Near the bicritical point, thermodynam- 
ic quantities obey exact scaling relations. 
As mentioned above, there are tn'o relevant 
operators. Finite tbc gives a temperature cor- 
relation length according to the scaling law 
(,,,= - tccv. The other relevant parameter is 
the biquadratic symmetry-breaking term 
gff, which gives a correlation length 5, - 
g,;,". Near the bicritical point, the singular 
part of the free energy scales according to: 

where a is the free energy exponent of the 
SO(5) model and + is a crossover exponent 
given by 4 = vlv,. In Eq. 28, A is a non- 
universal constant and 7 is a universal scal- 
ing function of a single argument. Other 
singular thermodynamic quantities are de- 
termined in a similar way. 

The crossover exponent + determines 
the way in which the two second-order 
lines merge into the first-order line. The 
universal scaling function f diverges at two 
arguments, x+ > 0 and x- < 0. The two 
second-order lines are determined by: 

LTp merge at a tetracrltlcal polnt T,, (C) \ \ 
\ 

There is a slngle second-order 
\ \ 
\ g,,r = (x+/A)tL g,,, = (x-lA)ttc (29) 

phase transition at a quantum crlti- iTNh * p, f i  * Expllcit c a l c ~ ~ l a t ~ o ~ ~ s  of the exponents can cal point (D) There are two second- be carried out w~thin both the E expansion 
order quantum phase transitions 
wlth an lntermedlate quantum-dls- Tc 

(32) and the large N approxlrnatlon (35) 
Tc 

ordered phase In each type of the To lead~ng order, 4 = 413 and 4 = 2 
phase dlagrams, there are two KC P FCI Kc2 I-1 respect~vely. The tuio second-order lines 

crossover temperatures T, and T, The spln-gap temperature T, corresponds to the temperature below merge Into the first-order lllle tange1ltlal1y 
whlch the superspln lhes wlthln the SC plane, and palrlng-gap temperature T, corresponds to the (Fig 1A) 
temperature below which the superspin hes wlthln AF sphere There exist parameter regimes where AF 
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and SC phases can coexist. In this case, the 
topology of the phase diagram must be mod- 
ified to include the spin bag phase (5), 
which is conceptually similar to the conjec- 
tured supersolid phase in 'He. In this case, 
all or part of the entire first-order superspin- 
flop lines separates into two second-order 
lines enclosing the spin bag phase (Fig. 1B). 
The four second-order lines intersect at a 
tetracritical point TtC. 

All of the phase transitions discussed so 
far are classical, in the sense that quantum- 
mechanical fluctuations onlv renormalize 
the coupling constants in ;he problem. 
When quantum fluctuations are gradually 
increased, ordering in some phases can be 
destroyed. Because the SO(5) isotropic 
point has the largest quantulll fluctuation, 
one would expect The to be driven to zero 
first. In this case, Tbc is a quantum critical 
point where the AF state goes into the SC 
state through a direct second-order phase 
transition. (Fig. 1C). ~ c z  , 

When the quantum fluctuatioils are in- 
creased further, an entire region between 
the AF phase and the SC phase becomes 
quantum disordered (Fig. ID).  In this re- 
gion, the properties of the model are better 
described by first diagonalizing the kinetic 
energy term of Xa. Both the triplet magnet- 
ic excitations and the doublet-pairing exci- 
tations have finite energy gaps. The transi- 
tion from the quantum-disordered phase 
into the AF phase is second order, the 
doublet-oairinp mode of the auanturn-dis- - 
ordered phase naturally continues into the 
-n doublet mode in the AF ohase, whereas 
the triplet magnetic excitation of the quan- 
tum-disordered phase has evolved into the 
two gapless Goldstone modes of the AF 
phase. The transition frorn the quanturn- 
disordered nhase into the SC nhase is sec- 
ond order as well, and the triplet magnetic 
excitation of the auanturn-disordered ohase 
naturally continues into the 7 triplet mode 
of the SC phase, whereas the doublet-pair- 
ing mode becomes the gapless Goldstone 
mode of the superconductor. 

The SO(5) quantum-disordered phase 
differs from the SO(3) quantum-disordered 
phase of the quantum antiferrornagnet (6) 
and the quantum XY disordered phase (1 0) 
because it has both a massive triplet mag- 
netic excitation and a massive doublet of 
pairing excitation. It is tempting to identify 
it with the RVB phase introduced by 
Anderson. In fact, phase diagram in Fig. 1D 
looks similar to the original RVB idea pro- 
posed by Anderson ( 1  ). The basic idea is 
that with low dimensionality and increased 
doping, quantuin fluctuations will first 
"melt" the AF state to form an RVB liquid 
of spin singlet pairs, and these singlet pairs 
further condense into a superfluid state. 
However, the SO(5) quantum-disordered 

phase differs from Anderson's RVB phase in 
terms of the excitation spectrum. In the 
RVB ohase. soinons and holons are the 
elementary excitations, but in the SO(5) 
quantum-disordered phase, even the elec- 
trons are "bound" into the collective coor- 
dinates. In some sense, the SO(5) quanturn- 
disordered ohase describes an "incomoress- 
ible liquid" of singlet pairs, similar to the 
Laughlin liquid in the fractional quantum 
Hall effect. 

The global features of the phase diagram 
deduced frorn the SO(5) auanturn nonlin- , ,  L 

ear a model agree reasonably well with the 
general topology of the experimentally ob- 
served phase diagram of high-T, supercoil- 
ductors. Within this model, the depression 
of the NCel and the SC temoerature have a 
common origin: A region in the phase dia- 
gram where the SO(5) fluctuations are 
maximal. This theory makes precise predic- 
tions about the scaling behavior in the 
crossover region. These predictions can be 
tested experimentally in sufficiently clean 
svstems where a direct first-order transition 
becomes possible. I believe that phase dia- 
grams in Fig. l ,  A and C, are reasonably 
close to reality in the high-Tc superconduc- 
tors. Figure 1B may be useful to understand 
the heavy ferinion materials, and Fig. 1D 
could be realized in the quasi-1D ladder 
systems where quantum fluctuations are 
strong. 

Theory of the spin gap, the SC transi- 
tion, and their relation. Underdoped high- 
Tc materials exhibit so-called pseudogap be- 
havior. Initiallv, this behavior was observed , . 
in the l/T, nuclear relaxation experiment, 
where the relaxation rate starts to droo 
rapidly below a temperature T* that is high- 
er than T,. Similar effects were then ob- 
served in the optical absorption spectrum 
and, more recently, in the photoemission 
experiments. A "pseudogap" in both spin 
and charge sector of the electronic spec- 
trum opens up at T*' (36). The name "spin 
gap," sometimes used for this behavior, is 
actually a misnomer. Within our current 
theoretical model. T* should sirnolv be 

L , 
identified with TblF where the superspin 
arnolitude forms and an electronic oseu- 
dogap opens as a result of that. In our 
model, TMF increases with decreasing dop- 
ing, consistent with experimental findings. 

Another type of nuclear spin relaxation 
rate, 1/Tzc (38), and neutron-scattering ex- 
periments (26-30) can measure the spin- 
spin correlation function directly. Above a 
certain temperature T,, the magnetic corre- 
lation length increases with decreasing T, 
while it saturates below T > T ~ .  I shall 
refer to this temperature T, as the spin-gap 
temperature, because it clearly distinguishes 
the spin and the charge response of the 
system. 

This spin-gap phenomenon has a natural 
explanation within our current theoretical 
model. There are three different tempera- 
ture scales in the current model. When the 
temperature is lowered below TblF, the su- 
perspin vector acquires a finite magnitude. 
However, for a finite range of temperature 
below TMF, say T, < T < TMF, (see Fig. I ) ,  
the temperature scale is still high enough 
that the superspin does not "notice" the 
anisotropy in its orientational degrees of 
freedom. In this temperature range, the 
model is essentially SO(5) symmetric, and 
the AF correlation length increases togeth- 
er with the pairing correlation length as 
temperature is lowered. For T < TS, the 
thermal energy becomes low compared to 
the anisotropy energy in the superspin 
space, and the superspin vector lies prefer- 
ably in the S C  plane. Therefore, below T,, 
the AF correlation length saturates to a 
finite value. Finally, at T,, the superspin 
vector picks a particular direction within 
the SC plane, therefore breaking the L1(l) 
gauge symmetry, and the system becomes 
superconducting. A similar picture applies 
to the AF side of the transition. There is a 
"pairing gap" temperature T above which 
the pairing correlation lengt% increases to- 
gether with the AF correlation length, 
while it saturates below Tp. 

Both T, and T, can be calculated quan- 
titatively within the SO(5) nonlinear a 
model (37). Assuming that T,, is much 
smaller than the maximal T, at optimal 
doping, one can approximate the transition 
region between the AF and SC phase by a 
quantum critical point. Near the quantum 
critical point, a finite temperature T intro- 
duces a thermal correlation length fic/kT 
(where fi is Planck's constant divided by 
2-n, c is the speed of light, and k is Bolti- 
manil's constant) and the energy of the -n 
triplet mode o: = (2p)2  - (2pc)2 intro- 
duces a spatial correlation length c/o,. In 
this region, the critical SC transition tern- 
perature is set by the equality of these two 
length scales and leads to a linear depen- 
dence of kT, and oo. This linear depen- 
dence agrees with the recent resonant neu- 
tron-scattering experiment in the under- 
doped and overdoped regime of YBCO su- 
perconductors (29). 

From the fit of the above mentioned 
proportionality, the spin-gap temperature 
T, can be determined, and T,/Tc -- 1.37. 
There are some experimental uncertainties 
about the value of Ts: The most accurate 
measurement has been carried out in the T, 
= 62 K material YBa2Cu,06,,,. The 1/T2G 
measurement shows that the AF correlation 
length saturates at T, .= 100 K (38). This 
gives a TJT, ratio of 1.61, about 15% great- 
er than the theoretically predicted ratio. 

Attempt at a synthesis. The most im- 

:iencemag.org SCIENCE VOL. 275 21 FE 



portant message from this work is that AF 
and SC are complementary. A SO(5) sym- 
metry determines the competition between 
these phases as well as the low-energy dy- 
namics of the high-T, superconductors. 

The mechanism of superconductivity is 
divided into a high-energy piece, identified 
with the pair binding or the formation of a 
superspin amplitude, and a low-energy piece 
that involves a superspin-flop mechanism 
for selecting the orientation of the super- 
spin and resolving the competition between 
the SC and AF states. These two different 
energy scales have different doping depen- 
dences. With increasing doping, Th,iF de- 
creases because the effective J decreases, but 
T. increases because both the thermal and 
the quantum SO(5) fluctuations decrease. 
Recent nhotoemission exneriments (40) 
found that the electronic gap decreases with 
increasing T,, which is inconsistent with 
the weak-coupling BCS theory but consis- 
tent with the current model. This work also 
answers the auestion of whv T. is low corn- , L 

pared with the energy scales of the pair 
formation. Emery and Kivelson (1 1) right- 
fully argued that this happens because the 
superfluid density is low, but did not offer 
an exolanation of v~ht- this is so. The cur- 
rent uzork explains this in terms of increased 
quantuln and classical SO(5) fluctuations 
near the isotropic point p,, which suppress 
both the Nee1 temperature and the SC 
transition temperature. The spin-gap phe- 
nomenon is naturally interpreted in terms 
of the competition between entropy and 
anisotropy energy in superspin space. The 
luost direct experimental evidence in SLIP- 

port of the approximate SO(5) symmetry is 
the resonant neutron-scattering peaks in 
the underdoped and optimally doped re- 
gion. These modes are naturally interpreted 
in terms of the pseudo-Goldstone bosons 
associated with the spontaneous SO(5) 
symmetry breaking. Notably absent in this 
discussion is the transport properties of the 
high-T, oxides. Below TMF, transport prop- 
erties could be addressed by considering 
ferrnions coupled to the SO(5) nonlinear o 
model degrees of freedom. However, quan- 
titative details have not yet been fully 
worked out. 

The current theorv unifies a number of 
seeming divergent theoretical approaches 
to the high-T, problem. It outlines a strat- 
egy to systematically extract the low-energy 
content of the t-.J model by constructing 
10~7-energy field theory constrained by the 
microscopic symmetry. The SO(5) symme- 

try can be used as a basic principle to orga- 
nize the various theoretical proposals. h4ost 
directly, it unifies the SO(3) nonlinear a 
model theory (6 ,  8 ,  9)  with the U(1) non- 
linear a model theory (10, 11). The "spin 
fluctuation exchange" (23, 8 ,  12) approach 
should be interpreted as a theory of T,,,. 
Phase separation (4) occurs in the t-J model 
because the superspin-flop transition is first 
order, therefore giving rise to a "forbidden 
density region." The spin-bag phase (5) call 
emerge in the phase diagram as a result of 
increased 7i fluctuation, or more precisely 
when X ,  > xi. The SO(5) quantum-disor- 
dered phase could in some sense be associ- 
ated with the RVB phase in Anderson's ( I )  
original proposal, and occurs as a result of 
increased SO(5) quantum fluctuation. 

The SO(5) theorv makes a number of . , 

new experimental predictions. The most 
direct prediction is that when the materials 
are sufficiently clean, there could be a di- 
rect first-order transition between the AF 
and the SC states. Measurements near the 
bicritical point can be compared quantita- 
tively with the theoretical predictions and 
can serve as an important test of the theory. 
There are other predictions for which I 
shall onlv outline the bas~c ideas. In the 
conventional Landau-Ginzburg theory of 
superconductivity, the order parameter is 
constrained to lie in a plane. Near the core 
of a SC vortex, a mathematical singularity 
is unavoidable. However, in the su~ersoin 

A 

model, because of the 5D-order parameter, 
the superspin could lie in the SC plane far 
away from a vortex, but flip into the AF 
sphere inside a vortex. Such a topological 
configuration is called a "meron" in field 
theory, meaning half of a Skyrmion. There- 
fore, the current theorv nredicts that the , L 

core of a vortex in underdoped superconduc- 
tors is not filled with normal electrons but is 
antiferromagnetic instead. Such an effect 
could be observed directly by studying the 
elastic satellite peaks in neutron-scattering 
experiments of the vortex lattice. The cur- 
rent theory can also be used to predict the 
static and dynamic properties of the inter- 
face between the AF and the SC phases. 

REFERENCES AND NOTES 

I .  P. W. Anderson. Science 235, 11 96 (1 987). 
2. F. C. Zhang and T. M. Rice. Phjfs. Rev. B 37. 3759 

(1 988). 
3. P. A. Lee and N. Read, Phys. Rev. Lett. 58. 2891 

(1 987). 
4. V. J. Emety S. K~velson, H. Q. Lln, ibid. 64, 475 

(1 990). 
5. J. R. Schreffer, X. G. Wen, S. C. Zhang. Phys. Rev. B 

39. 11 663 (1 989). 
6. S. Chakravarty. B. I. Halper~n, D. R. Nelson, ibid., p 

2344. 
7. V. Barzykin and D. Pines, ibid. 52. 13585 (1995). 
8 .  D. Pines. Phifsica C 235. 113 11994). 
9. A. V. Chubuiov, S. Sachdev, J' Ye, Phjfs. Rev. B 49, 

1 191 9 (1 994). 
10. S. Don~ach and M. Inui, Phjfs. Rev. B 41, 6668 

(1 990); J. Pilkfs. Chem. Solids 57, 506 (1 996). 
11. V. J. Emeryand S. Kveson, Natiire 374, 434 (1 995). 
12. D. Scaapino, Phys. Rep. 250, 329 (1995). 
13. P. W. Anderson, Phys Rev. 112, 1900 (1958). 
14. S. C. Zhang, Phjfs Rev. Lett. 65, 120 (1 990). 
15. E. Demler and S. C. Zhang, ibid. 75, 41 26 (1 995). 
16. H. Kohno, B.  Normad, H. Fukuyama, Proceedings of 

the 10th Anniversary HTS 'Workshop (World Scien- 
t ~ i ~ c ,  S~ngapore. 1996). 

17 E. Demler and S. C. Zhang, unpubl~shed results. 
18. S. Me~xner, W. Hanke. E. Demler, S. C. Zhang, pre- 

pr~nt, cond nat!9701217. 
19. C. N. Yang and S. C. Zhang, Mod. Phys. Lett. B 4, 

759 (1 990). 
20. S. C. Zhang, Int. J. iWod Phys. B 5, 153 (1 991). 
21. E. Demler. S. C. Zhang, N. Bulut, D. Scalapno, ibid. 

10, 2137 (1996). 
22. C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989). 
23. N. E. B~ckers, D. J. Scaapino, S. R. Wh~te, ibid. 62, 

961 (1989). 
24. P. W. Anderson Basic Notions of Condensed Matfer 

Physcs (Benjamn!Cummings, Menio Park. CA. 1983). 
25. B. I. Halper~n and P. C. Hohenberg, Phjfs Rev. 188, 

898 (1 969). 
26. J. Rossat-Mignod etal., Physica C 185, 86 (1991). 
27. H. Mook eta/. ,  Phys. Rev. Lett. 70, 3490 (1 994). 
28. H. F. Fong et a/.. ibid. 75. 31 6 (1 995). 
29. H. F. Fong eta/. .  ibid. 78, 71 3 (1 997). 
30. P. Dai et a/., ibid. 77, 5425 (1 996). 
31. M. E. Fsher and D. R. Nelson, /bid 32, 1350 (1974). 
32. R. A. Pecovits and D R. Nelson, Phys Lett. A 57,23 

11976). 
33. b -R : ' ~e l son  and R. A. Pelcov~ts, Phjfs. Rev B 16, 

21 91 (1 977); D. S. F~sher, ibid. 39, 1 1783 (1989). 
34. D. H. Friedan, Ann. Phys 163, 31 8 (1 985). 
35. S. H ~ k a m ~  and R. Abe, Prog. Theor Phys. 52, 369 

(1 974). 
36. B. Batogg and V. J. Emery. Nature 382. 20 (1996). 
37. Detaled calculatons appear as supplementary ma- 

teral ava~lable to Science Online subscribers at http: 
!/ww.sc~encemag.org!sc~ence!feature/data~zhang. 

38. M. Takigawa, Phjfs Rev. B 49, 4158 (1994). 
39. A. G. Loeser etal . .  Scrence 273. 325 (1996). 
40. J. M. Harris eta/. ,  prepr~nt. 
41, I thank R. B.  Laughlin for a stimulat~ng d~scussion 

that helped me form the superspin concept, and T. 
M. Rice for a s tmuat~ng discussion that led to the 
 denti if cation of the triplet magnetic excitation of the 
quantum-disordered phase with the t r~pe t  mode 
of theSC phase. I thank J. R. Schrieffer, S. Kivelson, 
R. B. Laughlin, and D. Scaapino for patiently teach- 
ing me about varlous aspects of the high-T, problem 
throughout the years and for sharing with me ther 
deep insights and enthusiasm and C. P. Burgess 
and C. Lutken for tutorng me about the nonlinear a 
model theory of QCD, lnspirng discussions w~ th  N. 
B ~ ~ l u t .  E. Demler. H. Fukuyama, M. Gre~ter, W. 
Hanke. B.  Keimer, H. Kohno, S. Me~xner. N. Na- 
gaosa. and Z. X. Shen are also gratefully acknowl- 
edged. Last but not ieast, I thank C. N. Yang for 
collaborating on an earler work which inspired the 
current one, and for impressing me with the power of 
symmetry. Supported by the NSF under grants 
DMR-9400372 and DMR-9522915. Part of this work 
was carried out while visitng the IBM Almaden Re- 
search Center and I thank B.  A. Jones for the hosp- 
tal~ty extended to me dur~ng my v ~ s ~ t .  

15 October 1996; accepted 13 December 1996 

SCIENCE VOL. 275 21 FEBRUARY 1997 http://u~ww.sciencemag.org 




