
cell lines used in this study appear to belong 
to different comple~nentation groups for 
apoptosis (22) ,  thus illustrating the redun- 
dant  complexity of the  mechanislns regulat- 
ing cell death. 
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Involvement of Pre- and Postsynaptic 
Mechanisms in Post tetanic Poten tiation at 

Aplysia Synapses 
Jian-Xin Bao," Eric R. Kandel, Robert D. Hawkins? 

Posttetanic potentiation (PTP) is a common form of short-term synaptic plasticity that 
is generally thought to be entirely presynaptic. Consistent with that idea, PTP of evoked 
excitatory postsynaptic potentials at Aplysia sensory-motor neuron synapses in cell 
culture was reduced by presynaptic injection of a slow calcium chelator and was ac- 
companied by an increase in the frequency but not the amplitude of spontaneous 
excitatory postsynaptic potentials. However, PTP was also reduced by postsynaptic 
injection of a rapid calcium chelator or postsynaptic hyperpolarization. Thus, PTP at 
these synapses is likely to involve a postsynaptic induction mechanism in addition to the 
known presynaptic mechanisms. 

Post te tanic  potentiation, a n  increase in 
synaptic strength for several minutes fol- 
lowing high frequency sti~nulation of the  
presynaptic fibers ( I ) ,  has been observed 
and extensively studied a t  a number of SF- 

apses including Aplysia sensory-motor neu- 
ron synapses (2 ,  3). Aplysia sensory neurons 
release the  neurotransmitter glutamate 
~vh ich  acts through N-methyl-D-aspartate- 
like receptors o n  the  lnotor neurons, and 
thus these synapses may share properties 
\iit11 glutamatergic synapses in vertebrates 
(4). A t  Aplysia sensory-motor neuron syn- 
apses, PTP is accompanied by a n  increase in  
the  frequency of spontaneous miniature ex- 
citatory postsynaptic potentials (mEPSPs) 

or currents (mEPSCs) with n o  change in 
their amplitude, indicating that  the  expres- 
sion of PTP is presynaptic (3). In  addition 
to  PTP, repeated tetanic sti~nulation of the  
sensory neuron or pairing high-frequency 
stimulation of the  sensory neuron with 
strong depolariiation of the  lnotor neuron 
can produce long-term potentiation (LTP) 
a t  these synapses (5, 6). This potentiation is 
reduced by postsynaptic hyperpolarization 
during the  tetanic stimulation or infusion of 
t h e  C a 2 +  chelator B A P T A  [1,2-bis(2- 
aminophenoxy)ethane-N,hl,hl' ,N ' - te t ra-  
acetic acid] into the  postsynaptic neuron, 
indicating that the  induction of LTP in- 
volves postsynaptic events. Therefore, we 
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Fig. 1. PTP is reduced by presynaptlc EGTA. (A) Or~ginal recordings from four stantlally reduced PTP at LFS synapses. For PTP and PTP/EGTA groups, a 
representatve experiments at LFS synapses, showing homosynaptic depression tetanus was given at 10 mn (arrow). In both control and PTP groups, the sensow 
of EPSPs, PTP of EPSPs caused by a tetanus (20 Hz for 2 s) applied at 10 min neuron received injection of vehicle solution. *P < 0.05. **P < 0.01, and """P < 
(arrow), PTP 30 min after the sensory neuron was injected wlth EGTA (presyn- 0.001 versus control; iiP < 0.05. #iiP < 0.01. and #ii#P < 0.001 versus PTP. (C) 
aptic, 50 mM in the electrode), and PTP after an LFS cell was loaded wth BAPTA Presynaptic EGTA had no effect on basal synaptic transmission at LFS synapses. 
(postsynaptic, 200 mM in the electrode) for 30 mln. (B) Presynaptic EGTA sub- None indicates that no ~njection was performed. 

have examined whether postsynaptic infu- 
sion of BAPTA or hyperpolarization has 
similar effects on PTP at Aplysin sensory- 
motor neuron synapses in dissociated cell 
culture (7), using conventional intracellular 
recording techniques (8). 

At  a variety of synapses, PTP results from 
presynaptic residual CaZ+ that accumulates 
during tetanic stimulation (9-1 1 ) .  To  test 
~ i~he ther  PTP at Aplysia sensorymotor neu- 
ron synapses requires presynaptic Ca2+, we 
injected (12) sensory neurons with EGTA, a 
CaZ+ chelator with slow kinetics that buffers 
residual Ca2+ without affecting transmitter 
release (13). In control cells, the evoked 
EPSPs (eEPSPs) underwent homosynaptic 
depression; they declined over time at SF- 

apses onto either L7 or LFS motor neurons, 
even when the stimulation interval was as 
long as 5 min (Fig. 1, A and B). Tetanic 
stimulation (20 Hz for 2 s) of the sensory 
neuron induced PTP of the eEPSPs at LFS or 
L7 synapses (Fig. 1, A and B, and Fig. 2) .  
Compared to test-alone hotnosynaptic de- 
pression, PTP lasted for about 20 min (Figs. 
1B and 2). Presynaptic EGTA ( j 0  mM in 
the electrode) substantially reduced PTP at 
LFS synapses (Fig. 1, A and B) but did not 
affect the baseline EPSPs (Fig. 1C) or the 
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area under the sumlned EPSPs during tetanic 
stimulation [F(2,28) = 0.722, P = 0.49541 
(14). These results are consistent with the 
conventionally held view that PTP is pre- 
synaptically mediated and requires presynap- 
tic CaZ+ accumulation. 

Aplyszn sensory-motor neuron synapses 
also exhibit LTP, which is blocked by 
postsynaptic infusion of the Ca2+ chelator 
BAPTA (6).  To  test whether PTP is also 

dependent on postsynaptic Caz+,  we inject- 
ed BAPTA tetrapotassium salt (200 mM in 
the electrode) into the motor neuron. 
BAPTA injected into the motor neuron 
significantly reduced PTP (Fig. 1 A  and Fig. 
2, A and B) (15). The effects of BAPTA 
seemed to be somewhat larger at LFS than 
at L7 synapses (compare A and B in Fig. 2),  
pobably because there was a higher con- 
centration of BAPTA in LFS cells because 

A LFS synapses B L7 synapses - Control (n = 8 )  

8 ' 0  10 20 30 40 - '0 10 20 30 40 

C LFS synapses D L7 synapses .- 
-+ Control ( n  = 6) 
-13-- PTP ( n  = 6) 
-+- PTPIHPP ( n  = 7) 

Time (min) 

Fig. 2. PTP is reduced by postsynaptic BAPTA or hyperpolarization during the tetanus. (A and B) Effect 
of postsynaptic BAPTA (200 mM in the electrode) at LFS (A) or L7 (B) synapses. (C and D) Effect of 
postsynaptic hyperpolarization (HPP) at LFS (C) or L7 (D) synapses. Hyperpolarization (2 nAfor LFS and 
4 nA for L7) was given from approximately 20 s before to 20 s after the tetanus. 
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postsynaptic BAPTA on homosynaptic depression at LFS syn- 
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synapses. We applied 5-HT (10 pl. 50 pM) at 10 min (arrow). (D) Petfusion w~ th  L-octanol (1 mM) for at 
least 30 mln blocked the electrical coupl~ng between the sensory neuron (SN) and motor neuron (L7). (E) 
L-octanol did not affect PTP or the effect of postsynaptic HPP (4 nA) on PTP at L7 synapses. 

of their smaller size. Thus, postsynaptic significantly affect the amplitude of eEPSPs 
Ca'+ was also involved in PTP induction. measured 30 lnin after BAPTA injection 

BAPTA might have interfered with PTP (Fig. 3A) ,  the rate of homosynaptic depres- 
by diffusing through gap junctions to the sion (Fig. 3B), or the short-term heterosyn- 
presynaptic tertninals. However, BAPTA aptic facilitation produced by serotonin 
injected into the lnotor neuron did not [5-hydroxytryptamine (5-HT)] (Fig. 3C)  

( I  6) .  Thus, postsynaptic BAPTA did not 
affect basal synaptic translnission or other 
forms of plasticity that are thought to be 
presynaptic (17, 18), suggesting that it did 
not diff~~se from the motor neuron to the 
sensory neuron, but rather acted pritnarily 
or excl~~sively to lower the Ca2- concentra- 
tion in the postsynaptic cell. 

LTP at  these synapses is also reduced by 
postsynaptic hyperpolarization during te- 
tanic stimulation (5). Similarly to LTP, 
strong postsynaptic hyperpolarization dur- 
ing the tetanus also reduced PTP at both 
LFS and L7 synapses (Fig. 2,  C and D) 
(19) .  It is possible that postsynaptic hy- 
perpolarization interfered with PTP by 
damaging the postsynaptic cell or by hy- 
perpolarizing the presynaptic terminals 
through electrical coupling. However, we 
f o ~ ~ n d  that postsynaptic hyperpolarisation 
did not have deleterious effects on  basal 
synaptic. transmission (control cells in Fig. 
2,  C and D). Gnder our experimental con- 
ditions, there was small but detectable 
coupling between sensory and lnotor neu- 
rons (20), which was blocked by per f~~s ion  
for 20 to 30 mi11 with L-octanol (1 mM),  
a n  inhibitor of electrical coupling in other 
systems (n  = 5 )  (Fig. 3D) (21). In the 
continuous presence of 1 mM L-octanol, 
tetanic sti~nulation of the sensory neuron 
still produced normal PTP of eEPSPs, and 
strong postsynaptic hyperpolarization (4 
n A )  still produced significant reduction of 
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Fig. 4. Effects of PTP and postsynaptic HPP on spontaneous release. (A) 
Postsynaptic HPP during tetanus reduced PTP of eEPSPs at LFS synapses. 
(B) Postsynaptic HPP had little effect on the tetanus-induced Increase in the 
frequency of spontaneous mEPSPs in the same experiments as (A). (C) PTP 
did not significantly affect the amplitude distributon of mEPSPs. In this repre- 
sentative experiment, the mean amplitude of mEPSPs before and after the 
tetanuswas 108.0 = 6.2 pV(n = 1O)and 119.1 2 7.8 pV(n = 14), respectvely 
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PTP at  L7 synapses (Fig. 3E) (22) .  Thus, 
electrical coupling between the sensory 
and motor neurons was not required for 
the induction of PTP, and hyperpolariza- 
tion of the postsynaptic cell did not reduce 
PTP by hyperpolariring the presynaptic 
terminals through electrical coupling. 
Taken together, these results suggest that 
induction of PTP, at  least in part, requires 
postsynaptic depolarization. 

Tetanic stimulation of the sensory neu- 
ron that induced PTP of eEPSPs also pro- 
duced a large increase in the frequency of 
mEPSPs (Fig. 4 ,  A and B), but did not 
significantly increase the amplitude of 
lnEPSPs (Fig. 4 ,  C and E),  suggesting that 
expression of PTP involves a presynaptic 
increase in transmitter release. Strong hy- 
perpolarization of the postsynaptic motor 
neuron during the tetanus reduced PTP of 
eEPSPs (Fig. 4A).  However, it did not 
affect the increase in the frecluency of 
lnEPSPs (Fig. 4B) or their amplitude (Fig. 
4 ,  D and E) (23) .  Thus, postsynaptic hy- 
perpolariration may affect some aspect of 
presynaptic transmitter release that is spe- 
cific to evoked release. 

PTP is accompanied by an increase in 
the frequency, but not the amplitude, of 
spontaneous lnEPSPs at a nun~her  of syn- 
apses (24) including Aplysia sensory-motor 
neuron synapses in cell culture (Fig. 4 )  (3).  
Moreover, the time course of PTP at syn- 
apses made by L10 cells in Aplysia (9) and 
other synapses (10) parallels that of the 
residual presynaptic Ca" following a teta- 
nus, and presynaptic injection of Ca2+ che- 
lators blocks both the rise of residual Ca2- 
and PTP (Fig. 1B) (9-1 1 ). Thus presynaptic 
residual Ca'+ that accumulates during 
trains of action potentials is t h o ~ ~ g h t  to 
contribute to the enhancenlent of both 
spontaneous and evoked release during 
PTP. However, PTP was also reduced by 
either postsynaptic infusion of the Ca2+ 
chelator BAPTA or postsynaptic hyperpo- 
lariration (Fig. 2),  suggesting that postsyn- 
aptic mechanisms (postsynaptic depolariza- 
tion and a postsynaptic increase in Ca") 
also participate in PTP induction at senso- 
ry-motor neuron synapses. One  possibility is 
that the potentiation is composed of two 
independent components: "conventional" 
PTP that is entirely presynaptic and de- 
pends on presynaptic Ca", and short-term 
potentiation (STP) that requires postsynap- 
tic depolarization and an increase in Ca2-, 
similar to STP in hippocampus (25). How- 
ever, unlike PTP and STP in hippocampus, 
the components of potentiation in Aplysia 
that were sensitive to presynaptic EGTA 
(Fig. 1B) and postsymaptic BAPTA or hy- 
perpolarization (Fig. 2) had roughly similar 
time courses, which were within the range 
of PTP at other synapses (1). Ivloreover, 

presynaptic EGTA reduced maximum PTP 
by 93% (Fig. lB) ,  and postsynaptic BAPTA 
or hyperpolariration reduced it by 58% (the 
average in Fig. 2, A through D), so that 
their combined effects would be Inore than 
100°/6 if they were additive. Thus, a more 
likely possibility is that PTP involves, in 
part, some interaction between pre- and 
postsynaptic mechanisms. For example, 
postsynaptic depolarization and increased 
Ca2+ during the tevanus could lead to for- 
n~at ion of a retrograde messenger that in- 
teracts with presyl-xaptic residual Ca" to 
increase transnlitter release. Such a mech- 
anism is thought to contribute to LTP in 
hippocampus (26), and retrograde modula- 
tion of transmitter release is also thought to 
occur in a number of other systems (27). 
Because postsynaptic hyperpolariration did 
not affect the tetanus-induced increase in 
sponvaneous release, the putative retrograde 
messenger in Aplysia would have to act on 
some aspect of transmitter release that is 
specific to synchronized, evoked release. 
The  Aplysia cell culture system, with a sin- 
gle presynaptic and postsynaptic neuron in 
isolation, should be particularly advanta- 
geous for studies of the mecl-xanisms of such 
transsynaptic interactions. 
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A Mammalian Telomerase-Associated Protein 
Lea Harrington," Timothy McPhail, Vernon Mar, Wen Zhou, 

Rena Oulton, Amgen EST Program, Mike B. Bass, 
Isabel Arruda, Murray 0. Robinson* 

The telomerase ribonucleoprotein catalyzes the addition of new telomeres onto chro- 
mosome ends. A gene encoding a mammalian telomerase homolog called TPI (telo- 
merase-associated protein I )  was identified and cloned. TPI exhibited extensive amino 
acid similarity to the Tetrahymena telomerase protein p80 and was shown to interact 
specifically with mammalian telomerase RNA. Antiserum to TPI immunoprecipitated 
telomerase activity from cell extracts, suggesting that TPI is associated with telomerase 
in vivo. The identification of TPI suggests that telomerase-associated proteins are 
conserved from ciliates to humans. 

Telomerase is a n  unusual RNA-dependent 
DNA nolvmerase that uses an R N A  com- 

L ,  

ponent to specify the addition of telo~neric 
repeat sequences to chromoso~ne ends (1).  
In hu~wans the telomeric repeat is 5 ' -  
TTAGGG-3' ,  and the telomerase RNA 
contains a sequence complementary to this 
telo~neric repeat ( 2 ,  3) .  The  telomerase 
R N A  template is required for telomere re- 
peat synthesis in vitro and in vivo (4-6). 
Telomerase activity is differentially regulat- 
ed in normal and i~nmortalized cells. In 
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ger~nline cells telomeres are maintained, 
whereas several somatic tissues lack telo- 
rnerase activity and undergo progressive 
telomere shortening with increasing age 
11 ). In immortalized cells telomere length is , , " 

stabilized and telomerase activity is often 
reactivated (7-9). Telomerase activity has 
also been detected in many cancers (1 ,  9).  

Telornerase activities l~ave been identified 
in several organisms, and their RNA c o m ~ o -  " 
nents have been cloned from mouse, human, 
ypast, and several ciliates (1). Putative telo- 
rnerase or telomere-associated proteins have 
been identified in yeast (18). The ribonucle- 
oprotein complex responsible for telomerase 
activity, however, l ~ a s  been purified only in 
ciliates (1 1-13). Purified Tetrahymena telo- 
lnerase contains an RNA and two protein 
components, p80 and p95 (4, 13). The p80 
colnponent can be specifically cross-linked to 
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