cell lines used in this study appear to belong
to different complementation groups for
apoptosis (22), thus illustrating the redun-
dant complexity of the mechanisms regulat-
ing cell death.
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Involvement of Pre- and Postsynaptic
Mechanisms in Posttetanic Potentiation at
Aplysia Synapses

Jian-Xin Bao,* Eric R. Kandel, Robert D. Hawkinsf

Posttetanic potentiation (PTP) is a common form of short-term synaptic plasticity that
is generally thought to be entirely presynaptic. Consistent with that idea, PTP of evoked
excitatory postsynaptic potentials at Aplysia sensory-motor neuron synapses in cell
culture was reduced by presynaptic injection of a slow calcium chelator and was ac-
companied by an increase in the frequency but not the amplitude of spontaneous
excitatory postsynaptic potentials. However, PTP was also reduced by postsynaptic
injection of a rapid calcium chelator or postsynaptic hyperpolarization. Thus, PTP at
these synapses is likely to involve a postsynaptic induction mechanism in addition to the

known presynaptic mechanisms.

Posttetanic potentiation, an increase in
synaptic strength for several minutes fol-
lowing high frequency stimulation of the
presynaptic fibers (1), has been observed
and extensively studied at a number of syn-
apses including Aplysia sensory-motor neu-
ron synapses (2, 3). Aplysia sensory neurons
release the neurotransmitter glutamate
which acts through N-methyl-D-aspartate—
like receptors on the motor neurons, and
thus these synapses may share properties
with glutamatergic synapses in vertebrates
(4). At Aplysia sensory-motor neuron syn-
apses, PTP is accompanied by an increase in
the frequency of spontaneous miniature ex-
citatory postsynaptic potentials (mEPSPs)

or currents (mEPSCs) with no change in
their amplitude, indicating that the expres-
sion of PTP is presynaptic (3). In addition
to PTP, repeated tetanic stimulation of the
sensory neuron or pairing high-frequency
stimulation of the sensory neuron with
strong depolarization of the motor neuron
can produce long-term potentiation (LTP)
at these synapses (5, 6). This potentiation is
reduced by postsynaptic hyperpolarization
during the tetanic stimulation or infusion of
the Ca’* chelator BAPTA [1,2-bis(2-
aminophenoxy)ethane-N,N,N’ N'-tetra-
acetic acid] into the postsynaptic neuron,
indicating that the induction of LTP in-
volves postsynaptic events. Therefore, we
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Fig. 1. PTP is reduced by presynaptic EGTA. (A) Original recordings from four
representative experiments at LFS synapses, showing homosynaptic depression
of EPSPs, PTP of EPSPs caused by a tetanus (20 Hz for 2 s) applied at 10 min
(arrow), PTP 30 min after the sensory neuron was injected with EGTA (presyn-
aptic, 50 mM in the electrode), and PTP after an LFS cell was loaded with BAPTA
(postsynaptic, 200 mM in the electrode) for 30 min. (B) Presynaptic EGTA sub-

have examined whether postsynaptic infu-
sion of BAPTA or hyperpolarization has
similar effects on PTP at Aplysia sensory-
motor neuron synapses in dissociated cell
culture (7), using conventional intracellular
recording techniques (8).

At a variety of synapses, PTP results from
presynaptic residual Ca?" that accumulates
during tetanic stimulation (9-11). To test
whether PTP at Aplysia sensory-motor neu-
ron synapses requires presynaptic Ca?*, we
injected (12) sensory neurons with EGTA, a
Ca’* chelator with slow kinetics that buffers
residual Ca?" without affecting transmitter
release (13). In control cells, the evoked
EPSPs (eEPSPs) underwent homosynaptic
depression; they declined over time at syn-
apses onto either L7 or LFS motor neurons,
even when the stimulation interval was as
long as 5 min (Fig. 1, A and B). Tetanic
stimulation (20 Hz for 2 s) of the sensory
neuron induced PTP of the eEPSPs at LFS or
L7 synapses (Fig. 1, A and B, and Fig. 2).
Compared to test-alone homosynaptic de-
pression, PTP lasted for about 20 min (Figs.
1B and 2). Presynaptic EGTA (50 mM in
the electrode) substantially reduced PTP at
LFES synapses (Fig. 1, A and B) but did not
affect the baseline EPSPs (Fig. 1C) or the
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area under the summed EPSPs during tetanic
stimulation [F(2,28) = 0.722, P = 0.4954]
(14). These results are consistent with the
conventionally held view that PTP is pre-
synaptically mediated and requires presynap-
tic Ca?" accumulation.

Aplysia sensory-motor neuron synapses
also exhibit LTP, which is blocked by
postsynaptic infusion of the Ca?" chelator
BAPTA (6). To test whether PTP is also

A LFS synapses

160 —O— Control (n = 6)
1407 s 7 —0— PIP(n=10)
120 [l —m— PTP/BAPTA (n=10)

100
80

LFS synapses

~——O— Control (n=6)
——0— PTP (n=6)
~—#— PTP/HPP (n=7)

EPSP amplitude (% of 1st trial)
(@]

C
50 4
H Initial EPSP (mV)
EPSP (30 min) (mV)
X
2
2 304
2
c 204
o
4
w101
0.

Control
(n=5)

EGTA
(n=11)

None
(n=25)

stantially reduced PTP at LFS synapses. For PTP and PTP/EGTA groups, a
tetanus was given at 10 min (arrow). In both control and PTP groups, the sensory
neuron received injection of vehicle solution. *P < 0.05, *P < 0.01, and **P <
0.001 versus control; #P < 0.05, ##P < 0.01, and ###P < 0.001 versus PTP. (C)
Presynaptic EGTA had no effect on basal synaptic transmission at LFS synapses.
None indicates that no injection was performed.

dependent on postsynaptic Ca?", we inject-
ed BAPTA tetrapotassium salt (200 mM in
the electrode) into the motor neuron.
BAPTA injected into the motor neuron
significantly reduced PTP (Fig. 1A and Fig.
2, A and B) (15). The effects of BAPTA
seemed to be somewhat larger at LFS than
at L7 synapses (compare A and B in Fig. 2),
probably because there was a higher con-
centration of BAPTA in LFS cells because

B L7 synapses

160 —O— Control (n=8)
140 —2— PTP (n=8)
skeksk . —&— PTP/BAPTA (n=8)

120
100 &

80

60

40

20

o1
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—O— Control (n=8)
* —a— PTP(n=8)
—a— PTP/HPP (n=9)

Time (min)

Fig. 2. PTP is reduced by postsynaptic BAPTA or hyperpolarization during the tetanus. (A and B) Effect
of postsynaptic BAPTA (200 mM in the electrode) at LFS (A) or L7 (B) synapses. (C and D) Effect of
postsynaptic hyperpolarization (HPP) at LFS (C) or L7 (D) synapses. Hyperpolarization (2 nA for LFS and
4 nA for L7) was given from approximately 20 s before to 20 s after the tetanus.
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postsynaptic BAPTA on homosynaptic depression at LFS syn-

apses. (C) Lack of effect of postsynaptic BAPTA

on short-term facilitation induced by 5-HT at LFS

synapses. We applied 5-HT (10 pl, 50 wM) at 10 min (arrow). (D) Perfusion with L-octanol (1 mM) for at
least 30 min blocked the electrical coupling between the sensory neuron (SN) and motor neuron (L7). (E)
L-octanol did not affect PTP or the effect of postsynaptic HPP (4 nA) on PTP at L7 synapses.

of their smaller size. Thus, postsynaptic
Ca’™ was also involved in PTP induction.

BAPTA might have interfered with PTP
by diffusing through gap junctions to the
presynaptic terminals. However, BAPTA
injected into the motor neuron did not

significantly affect the amplitude of eEPSPs
measured 30 min after BAPTA injection
(Fig. 3A), the rate of homosynaptic depres-
sion (Fig. 3B), or the short-term heterosyn-
aptic facilitation produced by serotonin

[5-hydroxytryptamine (5-HT)] (Fig. 3C)

| REPORTS

(16). Thus, postsynaptic BAPTA did not
affect basal synaptic transmission or other
forms of plasticity that are thought to be
presynaptic (17, 18), suggesting that it did
not diffuse from the motor neuron to the
sensory neuron, but rather acted primarily
or exclusively to lower the Ca?* concentra-
tion in the postsynaptic cell.

LTP at these synapses is also reduced by
postsynaptic hyperpolarization during te-
tanic stimulation (5). Similarly to LTP,
strong postsynaptic hyperpolarization dut-
ing the tetanus also reduced PTP at both
LFS and L7 synapses (Fig. 2, C and D)
(19). It is possible that postsynaptic hy-
perpolarization interfered with PTP by
damaging the postsynaptic cell or by hy-
perpolarizing the presynaptic terminals
through electrical coupling. However, we
found that postsynaptic hyperpolarization
did not have deleterious effects on basal
synaptic transmission (control cells in Fig.
2, C and D). Under our experimental con-
ditions, there was small but detectable
coupling between sensory and motor neu-
rons (20), which was blocked by perfusion
for 20 to 30 min with L-octanol (1 mM),
an inhibitor of electrical coupling in other
systems (n = 5) (Fig. 3D) (21). In the
continuous presence of 1 mM L-octanol,
tetanic stimulation of the sensory neuron
still produced normal PTP of eEPSPs, and
strong postsynaptic hyperpolarization (4
nA) still produced significant reduction of
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Fig. 4. Effects of PTP and postsynaptic HPP on spontaneous release. (A) z 4 °
Postsynaptic HPP during tetanus reduced PTP of eEPSPs at LFS synapses. 3 4
(B) Postsynaptic HPP had little effect on the tetanus-induced increase in the 5 3
frequency of spontaneous MEPSPs in the same experiments as (A). (C) PTP 2
did not significantly affect the amplitude distribution of MEPSPs. In this repre- 1 1 —H
sentative experiment, the mean amplitude of MEPSPs before and after the o 0 | |T| ﬂ
tetanus was 108.0 = 6.2 wV (n = 10)and 119.1 = 7.8 wV (n = 14), respectively 0 100 200 300 400 0 100 200 300 400
(not significantly different). (D) Postsynaptic HPP during the tetanus also did not mEPSP amplitude (uv)
significantly affect mEPSP amplitude. In this representative experiment, the E
mean amplitudes of MEPSPs were 121.8 = 8.4 wV (n = 13)and 140.4 = 14.7 pV (n = 21), before and after 9
the tetanus, respectively (not significantly different). (E) Summary of effects of tetanus (PTP) and postsyn- ;.; 50 L # a MEPSP
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5
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PTP at L7 synapses (Fig. 3E) (22). Thus,
electrical coupling between the sensory
and motor neurons was not required for
the induction of PTP, and hyperpolariza-
tion of the postsynaptic cell did not reduce
PTP by hyperpolarizing the presynaptic
terminals through electrical coupling.
Taken together, these results suggest that
induction of PTP, at least in part, requires
postsynaptic depolarization.

Tetanic stimulation of the sensory neu-
ron that induced PTP of eEPSPs also pro-
duced a large increase in the frequency of
mEPSPs (Fig. 4, A and B), but did not
significantly increase the amplitude of
mEPSPs (Fig. 4, C and E), suggesting that
expression of PTP involves a presynaptic
increase in transmitter release. Strong hy-
perpolarization of the postsynaptic motor
neuron during the tetanus reduced PTP of
eEPSPs (Fig. 4A). However, it did not
affect the increase in the frequency of
mEPSPs (Fig. 4B) or their amplitude (Fig.
4, D and E) (23). Thus, postsynaptic hy-
perpolarization may affect some aspect of
presynaptic transmitter release that is spe-
cific to evoked release.

PTP is accompanied by an increase in
the frequency, but not the amplitude, of
spontaneous mEPSPs at a number of syn-
apses (24) including Aplysia sensory-motor
neuron synapses in cell culture (Fig. 4) (3).
Moreover, the time course of PTP at syn-
apses made by L10 cells in Aplysia (9) and
other synapses (10) parallels that of the
residual presynaptic Ca’* following a teta-
nus, and presynaptic injection of Ca?™ che-
lators blocks both the rise of residual Ca®*
and PTP (Fig. 1B) (9-11). Thus presynaptic
residual Ca’* that accumulates during
trains of action potentials is thought to
contribute to the enhancement of both
spontaneous and evoked release during
PTP. However, PTP was also reduced by
either postsynaptic infusion of the Ca?*
chelator BAPTA or postsynaptic hyperpo-
larization (Fig. 2), suggesting that postsyn-
aptic mechanisms (postsynaptic depolariza-
tion and a postsynaptic increase in Ca’™)
also participate in PTP induction at senso-
ry-motor neuron synapses. One possibility is
that the potentiation is composed of two
independent components: “conventional”
PTP that is entirely presynaptic and de-
pends on presynaptic Ca?*, and short-term
potentiation (STP) that requires postsynap-
tic depolarization and an increase in Ca®™,
similar to STP in hippocampus (25). How-
ever, unlike PTP and STP in hippocampus,
the components of potentiation in Aplysia
that were sensitive to presynaptic EGTA
(Fig. 1B) and postsynaptic BAPTA or hy-
perpolarization (Fig. 2) had roughly similar
time courses, which were within the range
of PTP at other synapses (I). Moreover,
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presynaptic EGTA reduced maximum PTP
by 93% (Fig. 1B), and postsynaptic BAPTA
or hyperpolarization reduced it by 58% (the
average in Fig. 2, A through D), so that
their combined effects would be more than
100% if they were additive. Thus, a more
likely possibility is that PTP involves, in
part, some interaction between pre- and
postsynaptic mechanisms. For example,
postsynaptic depolarization and increased
Ca®" during the tetanus could lead to for-
mation of a retrograde messenger that in-
teracts with presynaptic residual Ca’* to
increase transmitter release. Such a mech-
anism is thought to contribute to LTP in
hippocampus (26), and retrograde modula-
tion of transmitter release is also thought to
occur in a number of other systems (27).
Because postsynaptic hyperpolarization did
not affect the tetanus-induced increase in
spontaneous release, the putative retrograde
messenger in Aplysia would have to act on
some aspect of transmitter release that is
specific to synchronized, evoked release.
The Aplysia cell culture system, with a sin-
gle presynaptic and postsynaptic neuron in
isolation, should be particularly advanta-
geous for studies of the mechanisms of such
transsynaptic interactions.
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A Mammalian Telomerase-Associated Protein

Lea Harrington,” Timothy McPhail, Vernon Mar, Wen Zhou,
Rena Oulton, Amgen EST Program, Mike B. Bass,
Isabel Arruda, Murray O. Robinson*

The telomerase ribonucleoprotein catalyzes the addition of new telomeres onto chro-
mosome ends. A gene encoding a mammalian telomerase homolog called TP1 (telo-
merase-associated protein 1) was identified and cloned. TP1 exhibited extensive amino
acid similarity to the Tetrahymena telomerase protein p80 and was shown to interact
specifically with mammalian telomerase RNA. Antiserum to TP1 immunoprecipitated
telomerase activity from cell extracts, suggesting that TP1 is associated with telomerase
in vivo. The identification of TP1 suggests that telomerase-associated proteins are

conserved from ciliates to humans.

T elomerase is an unusual RNA-dependent
DNA polymerase that uses an RNA com-
ponent to specify the addition of telomeric
repeat sequences to chromosome ends (1).
In humans the telomeric repeat is 5'-
TTAGGG-3', and the telomerase RNA
contains a sequence complementary to this
telomeric repeat (2, 3). The telomerase
RNA template is required for telomere re-
peat synthesis in vitro and in vivo (4-6).
Telomerase activity is differentially regulat-
ed in normal and immortalized cells. In
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germline cells telomeres are maintained,
whereas several somatic tissues lack telo-
merase activity and undergo progressive
telomere shortening with increasing age
(I). In immortalized cells telomere length is
stabilized and telomerase activity is often
reactivated (7-9). Telomerase activity has
also been detected in many cancers (I, 9).

Telomerase activities have been identified
in several organisms, and their RNA compo-
nents have been cloned from mouse, human,
yeast, and several ciliates (I1). Putative telo-
merase or telomere-associated proteins have
been identified in yeast (10). The ribonucle-
oprotein complex responsible for telomerase
activity, however, has been purified only in
ciliates (11-13). Purified Tetrahymena telo-
merase contains an RNA and two protein
components, p80 and p95 (4, 13). The p80
component can be specifically cross-linked to
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