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Potential Involvement of Fas and Its Ligand in
the Pathogenesis of Hashimoto’s Thyroiditis

Carla Giordano,” Giorgio Stassi,” Ruggero De Maria,*
Matilde Todaro, Pierina Richiusa, Giuliana Papoff,
Giovina Ruberti, Marcello Bagnasco, Roberto Testi,
Aldo Galluzzo

The mechanisms responsible for thyrocyte destruction in Hashimoto’s thyroiditis (HT)
are poorly understood. Thyrocytes from HT glands, but not from nonautoimmune thy-
roids, expressed Fas. Interleukin-1p (IL-1p3), abundantly produced in HT glands, induced
Fas expression in normal thyrocytes, and cross-linking of Fas resulted in massive
thyrocyte apoptosis. The ligand for Fas (FasL) was shown to be constitutively expressed
both in normal and HT thyrocytes and was able to kill Fas-sensitive targets. Exposure
to IL-1B induced thyrocyte apoptosis, which was prevented by antibodies that block
Fas, suggesting that IL-1B-induced Fas expression serves as a limiting factor for thy-
rocyte destruction. Thus, Fas-FasL interactions among HT thyrocytes may contribute to

clinical hypothyroidism.

The interaction of Fas (CD95/APO-1) with
its ligand (FasL) regulates a number of phys-
iological and pathological processes of cell
death. Triggering of Fas contributes to the
regulation of the immune response and tissue
homeostasis, as well as to the immunological
clearance of virus or tumor cells (1).
Hashimoto’s thyroiditis (HT) is an auto-
immune disorder in which destructive pro-
cesses overcome the potential capacity of thy-
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roid replacement, estimated as about 5- to
10-fold in a lifetime (2). Apoptosis has
been occasionally observed in histological
section of normal thyroid (3). However,
apoptotic cell death is abnormally acceler-
ated during the pathologic phases leading
to clinical hypothyroidism (4).

The mechanisms responsible for thyro-
cyte destruction remain elusive (5). Normal
thyrocytes do not express Fas (6). However,
Fas is inducible in some cell types upon
appropriate stimulation (I). To determine
the possible involvement of Fas and its li-
gand in autoimmune thyroid destruction, we
first analyzed Fas expression in thyroid spec-
imens from active HT and from nontoxic
goiter (NTG) patients. Immunohistochem-
istry of frozen thyroid sections and two-color
flow cytometric analysis of dispersed thyroid
follicular cells, obtained by enzymatic diges-
tion, revealed that HT thyrocytes, identified
for cytokeratin (Fig. 1A) and thyroperoxi-
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Fig. 1. Fas expression on thyroid follicular cells from
nontoxic goiter (NTG) and Hashimoto's thyroiditis
(HT). (A) Immunohistochemical analysis of thyroid
cryostat sections exposed to control IgG1, anti-cy-
tokeratin, or anti-Fas and revealed by immunoenzy-
matic APAAP complex. (B) Flow cytometric analysis

of dispersed thyroid follicular cells. Cells were labeled with control serum or control IgG1 (dotted lines), or with anti-TPO serum or anti-Fas (solid lines). Fas expression
(right) was analyzed on cells gated on thyrocyte physical parameters and TPO positivity (left). (Upper panels) Nontoxic goiter. (Lower panels) Hashimoti's thyroiditis.

dase (TPO) positivity (Fig 1B), express large
amounts of Fas on their cell surface (7).

The expression of Fas in thyrocytes from
HT patients may be a consequence of the
intense inflammatory process. We therefore
examined whether the exposure of normal
thyrocytes to inflammatory cytokines could
induce Fas expression in vitro. IL-1B was the
only cytokine, among those found in HT
glands (8), able to induce Fas expression in
normal thyrocytes (Fig. 2A). Other cytokines,
such as tumor necrosis factor-a (TNF-a), in-
terferon-y (IFN-vy), IL-6, and IL-12, failed to
promote Fas expression (Fig. 2A). IL-1B-in-
duced Fas expression was detectable at doses
as low as 5 U/ml, reaching high levels at
concentrations around 100 U/ml (Fig. 2, B
and C). Both cycloheximide and actinomycin
D completely prevented IL-1B—induced thy-
rocyte Fas expression (Fig. 2B), indicating
that new RNA and protein synthesis is re-
quired in this process. As expected, IL-1B was
abundantly present in HT tissue (Fig. 2, D
and E).

These results were suggestive for a role of
Fas in thyrocyte destruction. Because Fas ex-
pression does not always correlate with its
apoptotic function (9), we examined whether
Fas was able to transduce a death signal in
thyrocytes. Triggering of Fas, after its in vitro
induction by IL-1B on normal thyrocytes, re-
sulted in massive apoptotic cell death, indi-
cating that Fas is functional and induces ap-
optosis in thyrocytes (Fig. 3, A and C). More-
over, IL-1B-induced Fas expression resulted
in appreciable thyrocyte apoptosis, in a dose-
dependent fashion (Fig. 3, A to C). Impor-
tantly, immunohistochemical analysis of HT
thyroid specimens revealed several apoptotic
cells among the Fas-positive thyrocytes (Fig.
3D). By contrast, Fas-negative NTG thyro-
cytes did not show any sign of apoptosis (Fig.
3D) (10).
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FasL expression by activated lymphocytes
dictates the fate of activated Fas-sensitive
lymphocytes (11). However, FasL expression
is not confined to the immune system, as
mouse eye and testis produce high levels of
this cytokine (12). Moreover, FasL expression
has been detected in hepatocytes from pa-
tients with alcoholic liver damage (13). We
therefore investigated whether FasL was ex-
pressed in HT and nonautoimmune thyroid
glands. Unexpectedly, FasL was constitutively
expressed on both nonautoimmune and HT
thyrocytes, as demonstrated by immunohisto-
chemical analysis of frozen sections (Fig. 4A)

Fig. 2. Fas expressionon A
normal thyrocytes in- _ aq-
duced by exposure to IL.- .2
1B. (A) Kinetics of Fas ex- 8 257
pression on NTG thyro- &£ |
= 20
cytes exposed to recom- =
binant IL-18 (200 U/ml; .g 157
Genzyme) [OJ), IL-6 (Gen- @ 10
zyme) (M), TNF-a (Boehr- 5
inger GmbH, Mannheim, : 5
Germany) (O), IL-12 (Gen- @

0
0 24 48 72 96
Hours

zyme) (4), and IFN-y (Sig-

ma) (&). Data are present-

ed as mean fluorescence

intensity (MFI) ratio (the ratio be-
tween MFI of specific and control
staining). (B) Fas expression on
NTG thyrocytes exposed for 72
hours to various doses of recom-
binant IL-1B, in the absence (O)
or presence of cycloheximide (20
rg/mi; Sigma) (O) or with actino-
mycin D (5 pg/mi; Sigma) (4). (C)
Simultaneous expression of Fas
expression and TPO on NTG thy-
rocytes exposed for 72 hours to
IL-1B (100 U/m), as detected by

and by two-color flow cytometric analysis of
dispersed TPO-positive thyrocytes (Fig. 4B)
(14). Accordingly, reverse transcriptase—poly-
merase chain reaction (RT-PCR) analysis
performed on mRNA isolated from NTG or
HT glands revealed that Fasl. mRNA was
present in both autoimmune or nonautoim-
mune conditions (Fig. 4C) (15). FasL expres-
sion by HT thyrocytes was abundant (Fig.
4B), about four- or fivefold higher than that
found on the small percentage of FasL-posi-
tive lymphocytes infiltrating HT glands (16).
The presence of Fasl. was further investigated
on purified normal thyrocytes. RT-PCR and
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two-color flow cytometric analysis. (D and E) Immunohistochemical analysis of HT thyroid cryostat sections
exposed to control IgG1 (D) or IL-1B mAb (E) and revealed by immunoenzymatic APAAP complex procedure.
Anti-lL-1B (IgG1) was from Genzyme, and secondary and immunoenzymatic reagents were from Dakopatts.
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protein immunoblot analysis confirmed the A Contol FasL B NTG
constitutive expression of FasL, both at the
mRNA (Fig. 4D) and protein levels (Fig. 4E),
in thyrocytes depleted of hematopoietic cells
(15).

To assess whether FasL expressed on thy-
rocytes is functional, we compared the ability
of purified normal thyrocytes to kill a Fas-
sensitive subline of the human T cell lympho-
ma HuT78 and a Fas-insensitive HuT78 vari-
ant, which expresses “death domain”-defec-
tive Fas receptors (17). Thyrocytes were able
to lyse Fas-sensitive but not Fas-insensitive
HuT78 cells (Fig. 5A). Moreover, cytotoxic-
ity against Fas-sensitive HuT78 was complete-
ly prevented by the addition of monoclonal
antibodies (mAbs) blocking Fas (18) (Fig.
5A), demonstrating that FasL on thyrocytes is
able to induce apoptotic cell death through
the engagement of functional Fas.

Normal thyrocytes do not undergo apo-
ptosis, because they express negligible
amounts of Fas. However, simultaneous ex-
pression of functional Fas and FasL in HT or
in IL-1B-stimulated thyrocytes might result
in apoptotic cell death. To address this hy-
pothesis, we examined whether IL-1B-in- Fig. 4. Constitutive expression of FasL lby thyrocytes. (A) Immgnohis-
duced apoptosis could be blocked by inter- tochemical analy31s of NTG, HT ‘fhyrond.‘ or normal pancreatic (NP) E
fering with Fas-FasL interactions. As shown cryostat secthns exposed tp control rabbit IgG or rapbn amh-FasL ar_wd :
by fl " ety of idi iodide (PI)— visualized by mrjunoperomdase. (B) Flow cytometric ana]ys:s of dls— L L

y TLow cytometry of propidium 10dide it persed TPO-positive thyrocytes. Cells were labeled with anti-FasL (solid  gaq 55 e “”
labeled thyrocytes and ethidium bromide— jieq) or control 196G (dotted lines). (C) RT-PCR in thyroid tissues. Lanes & HATy
acridine orange staining and fluorescence 1 ang 2, samples of NTG tissues from two different individuals; lanes 3
microscopy analysis, the addition of mAbs  and 4, samples from two different HT patients. & X174 DNA-Hae lIl digest was used as a size marker
that block Fas completely suppressed IL-18—  (M). (D) RT-PCR in normal human pancreatic islets (lane 1), Jurkat (human T cell leukemia) cells (lane 2),
induced apoptotic cell death in vitro (Fig. 5, Jurkat cells activated with phorbol 12-myristate 13-acetate (PMA, 10 ng/ml) and ionomyein (400 ng/mi)
B and C). These findings demonstrated that  for 4 hours (lane 3), normal thyroid tissue (lane 4), or hematopoietic cell-depleted thyrocytes (lane 5). (E)
IL-IB—mediated induction of Fas on thyro- Immunoblot dgtection (_jf FasL on cell lysates from Jurkat cells (lane ‘I_J, qurkat cells activated with PMA
(10 ng/ml) and ionomycin (400 ng/mi) for 4 hours (lane 2), normal thyroid tissue (lane 3), or hematopoietic
cell-depleted thyrocytes (lane 4). FasL was visualized by staining with anti-FasL and the ECL detection
system. Molecular sizes are indicated on the right (in kilodaltons).
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Fig. 5. IL-1B-induced thyrocyte apoptosis induced by Fas-FasL in-
teraction. (A) Cytotox tivity of thyrocytes toward Fas-sensitive
HuT 78 cells (), “death domain”~defective HUT 78 cell variants (£), IL-1
Fas-sensitive HUT 78 cells in the presence of ZB4 (10 ng/ml; anti-Fas ng
blocking mAb MBL, Japan) (78) (@). (B) Apoptotic cell death in NTG 6%
thyrocytes exposed for 36 hours to IL-6 (200 U/ml), IL-1B (200 U/ml) | ,_J L

plus control IgG1 (10 wg/ml), or IL-1@ (200 U/ml) plus ZB4 mAb. Data
represent the mean = 1 SD of five different experiments. Cell viability

was determined by orar

e acridine—ethidium bromide staining and fluorescence microscopy analysis.

(C) Flow cytometric analysis of nuclei from thyrocytes treated as in (B). Hypodiploid nuclei were
evaluated by Pl staining and flow cytometric analysis.

ligand are present in HT glands and that their
concomitant expression on thyrocytes is re-
sponsible for the induction of programmed
cell death. Because FasL is constitutively ex-
pressed in normal thyroids, IL-1B—induced Fas
expression may represent a critical limiting
factor for the acceleration of thyrocyte de-
struction during the course of the inflamma-
tory process. [L-18, probably released by infil-
trating monocytes or macrophages (or both)
or by activated endothelial cells, can interact
directly with thyrocytes, and thyrocyte de-
struction can proceed in a manner relatively
independent of infiltrating T lymphocytes.
Although autoreactive T lymphocytes may
contribute to the HT thyroid-infiltrating cells
(19), there is no evidence that cytotoxic T
lymphocytes are directly involved in thyro-
cyte destruction. Attempts to localize cyto-
toxic T lymphocytes in situ revealed that only
a few T lymphocytes, among those which
infiltrate HT thyroids, contain perforin (20).
Moreover, we found that the expression of
FasL. on infiltrating T lymphocytes is negligi-
ble compared to FasL expression on HT thy-
rocytes. These observations suggest a minor
role for cytotoxic T lymphocytes and a pre-
vailing involvement of FasL expressed by thy-
rocytes in tissue destruction. It is likely that
this process is then further amplified by au-
toantibody-mediated cytotoxicity, as new an-
tigenic determinants are exposed after initial
tissue destruction.

In conclusion, we provide evidence sug-
gesting that Fas-FasL interactions among
thyrocytes may contribute to the pathogen-
esis of HT. Although infiltrating T lympho-
cytes may participate to this process, our
results demonstrate that thyrocytes undergo
Fas-mediated apoptosis after IL-1B exposure
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without the contribution of other cells. This
mechanism might be operating in all forms
of hypothyroidism that follow inflammation.
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by 10% SDS-polyacrylamide gel electrophoresis un-
der reducing conditions and transferred to nitrocell-
ulose. FaslL was detected with anti-FasL (Clone 33;
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