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Atomistic Simulation of Shock Wave-Induced
Melting in Argon

A. B. Belonoshko

A three-dimensional molecular dynamics simulation of shock wave loading was under-
taken to investigate the Hugoniot equation of state at the transition of argon from solid
to liquid. The simulated data agree with shock wave and static high-pressure experi-
mental data. The melting transition in this simulation occurs without overshooting the
argon melting temperature. There are two discontinuities that may bracket a mixed-
phase region of solid and liquid along the simulated argon Hugoniot. This is an intrinsic
feature of the Hugoniot crossing the argon melting curve and does not require the

addition of any solid-solid phase transition.

Shock wave experiments are particularly
well suited for molecular dynamic (MD)
simulations because in such experiments
sample sizes are small and time scales are
short (1). Few studies have been devoted to
the simulation of shock wave—induced
phase transitions (2), and none of them
were done in three dimensions. I have sim-
ulated the shock wave—induced melting
transition for Ar, an element for which
many physical parameters are well known
and for which [ have simulated the melting
curve (3), which agrees with experimental
data (4). Argon transforms to liquid directly
from the face-centered-cubic (fcc) phase
without any high-pressure and high-tem-
perature solid-solid phase transformations
(5).

The initial configuration for the simu-
lation consisted of Ar atoms in an fcc
lattice with n by n by m unit cells trans-
lated in x, y, and z directions, respectively,
with n varying from 5 to 10 and m varying
from 60 to 120 in different simulations.
The minimum number of atoms was 6000,
and the maximum was 48,000. Calcula-
tions with different numbers of atoms
showed that 6000 atoms is sufficient to
obtain reliable results. Periodic boundary
conditions were applied in the x and y
directions. An Ar-Ar interaction was de-

Theoretical Geochemistry Program, Institute of Earth Sci-
ences, Uppsala University, S-752 36, Uppsala, Sweden.

scribed in terms of the Buckingham poten-
tial (3, 6, 7). The shock wave was gener-
ated through the motion of a piston in the
—z direction with a given velocity (U,).
The interaction of the Ar atom with the
piston was calculated on the assumption
that a piston is a solid homogeneous Ar
crystal. On the side of the sample opposite
the piston (at z = 0) Ar atoms interacted
with the elastic wall. The time step for
solving equations of motion was 4 fs, and
the number of time steps varied from 3000
to 6000. I cross-checked all calculations,
using simulations with various time, time
step, length of sample, cutoff radius of
interaction, cross-sectional area, number
of atoms, and initial conditions.

The propagation of the shock wave front
was observed in snapshots of the structure (a
supplementary figure is available to online
subscribers at http://www.sciencemag.org),
allowing rather precise (error less than
1%) measurement of the shock wave ve-
locity (U,). To measure the sound velocity
V, in the shock-compressed part of the
sample, [ stopped the piston at some time
step (usually time step 1000) and mea-
sured the velocity of the rarefaction wave.
Pressure profiles were used to determine
U, and V_ (8). Volume (V), pressure (P),
and temperature (T) were monitored as a
function of z. [ also calculated P and V
from U _-U, data using two of the Rankine-
Hugoniot (RH) relations:
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Fig. 1. Simulated shock wave velocity (U,) as a
function of particle velocity (U,) compared to ex-
perimental data (shown with error bars) (77).

V=V Y,

and
P = po[jpljS + PO (2)

The initial state (denoted by the “0” sub-
script) was at T = 5 K and a density (py) of
1.784 glem® (Vy = 22.413 cm?/mol). The
initial pressure Py was close to 1 bar and can
be neglected, because the first term on the
right in Eq. 2 is much larger.

Shock waves were simulated in the range
03 km/s <U_< 2.5 km/s. At U, < 1.0 km/s
the calculated U, values are somewhat larger
than the experimental values (Fig. 1). This is
due to the higher initial density in my simu-
lations (1.784 versus 1.65 g/cm?) and to the
fact that the simulated crystal is the ideal
crystal whereas the experimental one is poly-
crystalline. The analysis of structures (9) at U,
< 1.0 km/s shows that the shock wave pro-
duces micrograins of Ar, similar to the grains
observed in other simulations (1). The Hugo-
niot elastic limit is exceeded at U, = 0.85
km/s. The calculated U,-U, data agree with
experiment (Fig. 1). The P and V values
behind the shock wave front calculated from
time averages of V and P [as done, for exam-
ple, in (10)] derived directly from simulations
and from the RH relations (Egs. 1 and 2) are
in good agreement with experimental values
(3,6,7,11).

Temperature can be calculated directly in
a computer simulation, for the velocities of
atoms are known at each time step (10). The
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Fig. 2. (A) Calculated pressures and temperatures
along the Hugoniot compared with the melting curve
calculated with the same interatomic potential. The
discontinuous Hugoniot behavior coincides with the
melting point. There is a substantial pressure interval
in which the Hugoniot follows the pressure and tem-
perature of melting. This interval is shown in the mag-
nified portion of the figure. (B) The volume of Ar along
the Hugoniot compared with the volumes of solid
and liquid Ar along the melting curve. Some of the
Hugoniot volume falls into the intermediate range
between the volumes of solid and liquid Ar, indicating
the coexistence of solid and liquid phases in the
Hugoniot transition regime.

curve of P versus T (Fig. 2A) derived from the
simulations agrees with the experimental
data. There is a change in the slope of the P-T
curve, which represents a mixture of solid and
liquid phases existing in different areas of the
sample behind the shock waves at the same
time. When the solid Hugoniot arrives at the
P and T conditions of melting at some Up, a
small increase in U, does not provide suffi-
cient energy to permit the sample to jump to
the liquid branch of the Hugoniot because of
the finite enthalpy of melting. Instead, as U,
increases, larger parts of the shocked sample
transform into the liquid state. Analysis of
structures (9) shows that some parts of the
system are liquid whereas others remain solid.
Some points in the transitional regime fall in
between the solid and liquid volumes (Fig.
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Fig. 8. Sound velocity versus pressure along the
Ar Hugoniot. The dependence exhibits two dis-
continuities separated by AU,, =~ 0.4 km/s (com-
pare with Fig. 1).

2B), indicating the coexistence of two phases.
Analysis of the structure also shows that melt-
ing occurs without any so-called “overshoot-
ing” (when a substance metastably remains
solid even when its temperature is higher than
the melting temperature), which is often used
to explain the discrepancy between static and
shock wave experiments. The melting curve
of Ar calculated in static simulation (3) passes
through the solid-liquid transition range of
the Hugoniot (Fig. 2A).

The calculated dependence of V, on pres-
sure for Ar (Fig. 3) is qualitatively similar to
the dependence measured for Fe (12) (both
elements have two discontinuities and in both
cases these discontinuities are separated by
~0.4 km/s in terms of Up). These simulations
of the Ar Hugoniot suggest that these discon-
tinuities may be related to melting rather than
to a solid-solid phase transition. This may
have important implications for Fe. It has
been suggested (12) that the first discontinu-
ity for Fe is related to a solid-solid transition
and the second one to melting. My simula-
tions suggest that these two discontinuities
may represent a mixed-phase region of solid
and liquid due to the melting of Fe. Although
the possible existence of an ultrahigh-PT Fe
phase is definitely an open question, it is
possible that the two discontinuities on the
sound V-P curve (12) are not evidence of a
solid-solid transition (13).
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Twentieth-Century Sea Surface
Temperature Trends
Mark A. Cane,” Amy C. Clement, Alexey Kaplan,

Yochanan Kushnir, Dmitri Pozdnyakov, Richard Seager,
Stephen E. Zebiak, Ragu Murtugudde

An analysis of historical sea surface temperatures provides evidence for global warming
since 1900, in line with land-based analyses of global temperature trends, and also
shows that over the same period, the eastern equatorial Pacific cooled and the zonal sea
surface temperature gradient strengthened. Recent theoretical studies have predicted
such a pattern as a response of the coupled ocean-atmosphere system to an exogenous
heating of the tropical atmosphere. This pattern, however, is not reproduced by the
complex ocean-atmosphere circulation models currently used to simulate the climatic
response to increased greenhouse gases. lts presence is likely to lessen the mean
20th-century global temperature change in model simulations.

Anmidst the often contentious debate on
global warming, there are areas of general
consensus. There is agreement that Earth’s
surface temperature has increased over the last
100 years by between ~0.3° and 0.6°C (1).
There is, however, disagreement as to the
causes of this temperature increase. [t may be
a response to anthropogenic forcing, a part of
the climate system’s innate natural variability,
or a combination of the two. There is also
general consensus that the radiative effect of
increased atmospheric concentrations of
greenhouse gases will cause Earth’s tempera-
ture to rise. The direct warming effect of these
gases is rather small, but there is a potential
for amplification by positive feedbacks within
the climate system. Understanding of these
mechanisms is incomplete, and the strength
of the amplification is uncertain, as evidenced
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by the fact that, when loaded with twice the
modern concentration of atmospheric COs,,
state-of-the-art climate models give mean
global changes varying from 1.5° to 4.5°C (1).
Until quite recently, simulations of the
climatic response to increasing concentrations
of greenhouse gases gave temperature changes
that exceeded the observed increase by about
a factor of 2 (I, 2). It was then suggested that
the discrepancy might result from the neglect
of the cooling effect of sulfate aerosols (3).
Inclusion of this effect brought simulations
into better agreement with observations (1,
2). Unfortunately, the radiative effects of
aerosols are poorly understood. It is quite pos-
sible that the influence of the values currently
used in simulations is considerably larger than
the true influence (4) and is substituting for
natural moderating mechanisms that are ab-
sent or underrepresented in present models.
Here we point out a pattern in the
changes of sea surface temperature (SST)
over the course of the 20th century—an
increase in the zonal gradient across the
equatorial Pacific—that has been missed in
simulations performed with comprehensive
climate models [general circulation models

(GCMs)]. Recent theoretical studies (5—8)
have predicted this pattern as a response to
exogenous heating of the tropical atmo-
sphere. If the theory is correct, it would
provide evidence that the coupled atmo-
sphere-ocean dynamics are delaying, and
possibly regulating, global warming. The
absence of this mechanism in the GCM
simulations may account in part for the
discrepancy between the observed and
modeled global mean temperature rise.

The theoretical ideas we invoke (5-8) fol-
low the line of argument first proposed by
Bjerknes (9), which forms the foundation of
our present understanding of the El Nifio—
Southern Oscillation (ENSQO) phenomenon
(10). Suppose a uniform external heating is
imposed on the tropical Pacific. The SST will
tend to rise, leading to increased evaporative
cooling until a new, warmer equilibrium is
reached. This change would be the only re-
sponse in the absence of a decisive contribu-
tion from ocean dynamics. In the eastern
equatorial region, however, vigorous up-
welling brings up cold waters from below,
counteracting the warming tendency. Thus,
initially, the SST increases more in the west
than in the east, enhancing the temperature
gradient along the equator. The atmosphere
responds with increasing trade winds, which
in turn will increase the upwelling rate and
the thermocline (11) tilt, cooling the surface
waters in the east and further enhancing the
temperature contrast. As a consequence of
this dynamical feedback, the mean tempera-
ture will increase less than it would with the
purely thermodynamic response.

To test the mechanism, we imposed a
uniform forcing on a simplified model of the
ocean-atmosphere system in the tropical
Pacific, the Lamont model used to forecast
El Nifio (12). The forcing was chosen so
that in the absence of ocean dynamics, SST
would increase by 1°C everywhere. In the
model’s mean annual response (Fig. 1), not
only does the eastern equatorial Pacific
cool, consistent with the mechanism de-
scribed above, but the dynamics of the cou-
pled ocean atmosphere system spreads the
influence of the upwelled waters through-
out the tropical Pacific, such that the mean
increase in temperature is only 0.5°C.

A number of objections to this theory and
model demonstration may be raised. The the-
ory relies on colder upwelled waters balancing
some of the imposed heat input, but the sim-
ple ocean model used specifies a fixed ther-
mocline temperature. In reality, the waters of
the equatorial thermocline originate at the
surface at higher latitudes. If these source
waters were to warm up, then equatorial ther-
mocline temperatures would eventually in-
crease; the cooling effect would then be re-
duced on a time scale set by the renewal time
for the equatorial thermocline. Some recent
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