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neopeptide in the thymus provides a new
approach for exploring the role of peptide
in the positive selection of T cells. This
strategy inverts the traditional one of start-
ing with a T cell displaying a particular
TCR and then attempting to define the
requirements for its selection; rather, it be-
gins with expression of a new peptide and
permits one to study the T cells naturally
selected on it. OQur data show that the pep-
tide sequence influences the sequence of
the TCRs on selected cells, significant and
systematic variations resulting from single-
residue changes at putative TCR-contact
points. The relation between selecting pep-
tide and selected TCR shows significant,
but not complete, two-way degeneracy,
analogous to what is seen with the respons-
es of mature T cells. Taken together, these
observations support the hypothesis that
positive selection involves direct recogni-
tion of peptide features, but they do not
entirely rule out the possibility that peptide
plays primarily a structural role, its precise
sequence impinging on the process when it
leads to steric hindrance of the TCR (12).
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Comparative Rates of Development
in Monodelphis and Didelphis

Timothy Rowe (1) presents a provocative
hypothesis on the coevolution of the mamma-
lian middle ear and neocortex, but there is a
problem with the data presented in support of
his hypothesis of a relation between brain
growth and the detachment of the ear ossicles.
Throughout the article, Rowe discusses the
“didelphid” condition. Readers unfamiliar
with the literature cited may not realize that
in order to define the didelphid condition,
Rowe combines data on Didelphis from the
literature with his data on Monodelphis with-
out acknowledging the differing rates of de-
velopment in the two taxa. The two animals,
although both didelphids, have different rates
SCIENCE
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of postnatal growth and maturation. For ex-
ample, in Monodelphis, the young first come
off the teat at day 12, in Didelphis it is not until
day 48 (2); in Monodelphis the young are
weaned at day 50, in Didelphis it is after day
100 (2); in Monodelphis the auditory ossicles
begin ossification on day 11 (3), in Didelphis it
is during week 6 (4). We do not have infor-
mation on the differences in timing of the
specific events discussed by Rowe, but most
information suggests that any given event will
occur 2 to 4 weeks later in Didelphis than in
Monodelphis.

The inappropriate combination of data
occurs at multiple points in Rowe’s report
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(I1); however, the problem is particularly
critical in figure 4, which provides the pri-
mary data to suggest a relation between the
growth of the brain and the detachment of
the ossicles. In this figure, Rowe superim-
poses his data on the growth of the ecto-
tympanic and dentary bones and the date of
the detachment of the auditory ossicles in
Monodelphis on data on brain growth in
Didelphis presented by Ulinski (5). He does
not correct for the differing rates of devel-
opment; instead, the two data sets are com-
bined. This is equivalent to taking one set
of measurements on a domestic cat and
another on a tiger and, without correction
for size or rates of development, summariz-
ing the “felid” pattern. The auditory ossicles
do not detach from Meckel’s cartilage at
day 21 in Didelphis because at this time
there is no jaw condyle nor is there ossifi-
cation of any ossicle (4). Further, all evi-
dence suggests that at 20 days after birth the
brain is far more advanced in Monodelphis
than in a 20-day Didelphis pouch young (6).
If Rowe is to argue a relation between the
timing of events in development, he must
either compare data derived from a single
species or, at the least, correct for the dif-
fering rates of development in two very
different species.
i Kathleen K. Smith
Alexander F.H. van Nievelt
Department of Biological
Anthropology and Anatomy,
Duke University,

Durham, NC 27710, USA
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Response: Do Didelphis and Monodelphis re-
ally have differing rates of growth? In an-
swering this question, care must be taken to
distinguish between rates of growth and
rates of maturation because the two are
broadly correlated but are not strictly cou-
pled throughout ontogeny (1).

Didelphis and Monodelphis undoubtedly

have different growth rates. These closely
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related didelphid marsupials (2) have simi-
lar life-spans of 2 to 3 years in the wild, yet
Didelphis reaches two to three times the
adult size of Monodelphis (3). This accords
with the observation that Didelphis young
remain attached to the teat longer and are
weaned much later than Monodelphis young.

Do rates of maturation also differ? My
observations on skeletal maturation in Mo-
nodelphis (4-5) agree closely with those of
Smith (6) and van Nievelt, but we disagree
on the timing of maturation events in Di-
delphis. Their statements about Didelphis are
based on a study by Nesslinger (7), who
examined only whole specimens that were
cleared and stained for bone (alizarin). As
histology shows, clearing and staining does
not allow one to detect bone at its earliest
stages in ontogeny. Nesslinger’s specimens
consisted of only road-killed and wild-
caught Didelphis, so that chronological ages
could only be approximated. More thor-
ough studies on the embryology of Didelphis
(8=11) were based on a collection of several
hundred specimens raised by the Wistar
Institute in the 1930s. Histological section-
ing of individuals of known ages indicates
that, insofar as the skeletons of Monodelphis
(46, 12) and Didelphis (8—11) can be com-
pared, they are virtually identical in timing
of maturation.

For example, a synovial joint is present
between the incus and malleus at birth in
both Didelphis (10) and Monodelphis (12).
Ossification of the ectotympanic has begun
by the middle of the second day in both
species. In Didelphis (10, p. 235)

at 7 days the mandible has a definite temporo-
mandibular articulation . . . the mandibular con-
dyle contains a larger condylar cartilage which
has developed between the seventh and fifteenth
day. It is rather large and is already undergoing
some ossification . . .

just as in Monodelphis (5, 6, 12). Ossifica-
tion of the malleus has begun in both Mo-
nodelphis (5) and Didelphis (10) by the end
of the second week. By the third week the
incudo-malleolar joint is well formed and
enclosed in a fibrous joint capsule in both
species. In the fourth week, about the time
of detachment, the incudo-stapedial joint
becomes well formed and also enclosed in a
fibrous joint capsule in both species. Over
the remainder of ontogeny, the bones of the
auditory chain in the two didelphids share
similar chronologies. My examination of
the surviving materials from the Wistar col-
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lection and other large North American
skeletal collections of Didelphis substanti-
ates these observations (5); I can find no
support for the statement that “any given
event will occur 2 to 4 weeks later in Di-
delphis than in Monodelphis.” Although di-
delphid species have different growth rates,
their chronologies of maturation are closely
comparable.

Last, the relation that 1 described be-
tween the brain and middle ear (4, 5) is one
of relative growth, not timing of matura-
tion. The relative size of the adult brain
varies over more than an order of magni-
tude among different mammalian species,
hence mammals must have widely varying
rates of brain growth (13). But the small
middle ear ossicles are far less variable in
size, their growth ceasing early in ontogeny
as a constraint of their function in high-
frequency audition. Repositioning of the
auditory chain occurs in the wake of con-
tinued cerebral growth. Didelphids are
among the least encephalized mammals and
offer the most generalized examples of this
relationship. The patterns of variability
among other species are invariably superim-
posed upon a more general pattern of dif-
ferential growth of the brain and middle ear
bones that is common to all mammals.

Timothy Rowe

Department of Geological Sciences and
Vertebrate Paleontology Laboratory,
University of Texas,

Austin, Texas 78712, USA
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