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Transformation in Garnet from 
Orthorhombic Perovskite to LiNbO, Phase 

on Release of Pressure 
Nobumasa Funamori, Takehiko Yagi, Nobuyoshi Miyajima, 

Kiyoshi Fujino 

High-pressure in situ x-ray diffraction and transmission electron microscopy on 
quenched samples show that natural garnet transforms to orthorhombic perovskite (and 
minor coexisting phases) containing increasing amounts of aluminum with increasing 
pressure. This suggests that the perovskite is the dominant host mineral for aluminum 
in Earth's lower mantle. Orthorhombic perovskite is quenched from -35 gigapascals but, 
because of the increased aluminum content, transforms to the LiNbO, structure upon 
quenching from -60 gigapascals. 

I n  1974, Liu (1)  reported the transforma- 
tion of a natural garnet, the host mineral of 
A1 in Earth's upper mantle, into the ortho- 
rhombic perovskite structure at  30 GPa. 
Since then, the transformation of earnets of " 
various compositions has been investigated 
to clarifi7 the host mineral of A1 in the 
lower m'antle. The results, however, are 
comolicated and the host remalns uncer- 
tain, whereas the hosts of the other main 
cations (Mg, Si, and Fe) in the mantle- 
(Mg,Fe)Si03 orthorhombic perovskite and 
(Mg,Fe)O magnesiowiistite-are well iden- 
tified. Weng e t  al. (2) carried out experi- 
ments on pyrope (blg,A1,Si,Ol,)-grossular 
(Ca,A1,Si30,,) garnet at 40 GPa and sug- 
gested that it transforms to an assemblage of 
orthorhornbic perovskite and unquenchable 
Ca-rich perovskite, O'Neill and Jeanloz (3) 
reported the coexistence of garnet with or- 
thorhombic perovskite up to 50 GPa in a 
pyrope-almandine (Fe,Al,Si,O,,) system. 
Irifune e t  al. (4) found the decomposition of 
pyrope into a sub-alurninous (Al-deficient 
relative to garnet) orthorho~nbic perovskite 
and a corundum-ilmenite solid solution at 
pressures greater than 26.5 GPa. They also 
found an increase of A1 in the uerovskite 
phase with increasing pressure, and predict- 
ed the formation of an aluminous uerov- 
skite with pyrope composition above 30 to 
40 GPa. Recently, Kesson e t  al, (5) reported 
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that rhombohedra1 perovskite, rather than 
orthorhombic perovskite, is the stable phase 
of pyrope-almandine garnet at 55 to 70 
GPa. O n  the other hand, Ahmed-Zald and 
Madon (6) suggested, from their experi- 
ments at 40 to 50 GPa, that the main host 
mineral of A1 varies depending on chemical 
composition, pressure, and temperature. 
The candidates they proposed are 
(Ca,Mg,Fe)Al,Si,O, with the hollandite 
structure, A12SiOj with the V,Oj structure, 
and (Ca,Mg)Al,Si06 with an unknown 
structure. 

T o  clarify the host mineral of A1 under 
lower mantle conditions, we carried out 
high-pressure in situ x-ray diffraction exper- 
iments on natural garnet with the use of a 
diamond anvil cell and synchrotron radia- 
tion (7). Garnet from the Udachnaya kim- 
berlite pipe in the Sakha Republic (8) with 
the composition Py,,Alm,,Gro,,Sp, [Py, 
pyrope; Alm, almandine; Gro, grossular; Sp, 
spessartine (Mn3Al,Si30,,)] was ground to 
a powder and used as the starting material. 
The  samples were heated by a yttrium-alu- 
minum-garnet (YAG) laser at two different 
pressures (9). The recovered samples were 
examined by transmission electron micros- 
copy (TEM) (1 C) .  

The sainple was compressed to 67.5 GPa 
and heated by the YAG laser. Pressure de- 
creased to 52.8 GPa, measured after heat- 
ing. The x-ray diffraction profile (Fig, 1 A )  
obtained after heating shows that most of 
the intense lines can be indexed as ortho- 
rhombic perovskite, with intensities similar 

to those of MgSiO? perovskite (1 1 ). Unit 
cell parailleters of this phase are a = 

3.539(4) A, b = 4.761(5) A, c = 6.622(5) 
A, and V = 143.1(2) A3. The other lines 
can be assigned to Ca-rich perovskite, 
stishovite, and garnet. A trace amount of 
stishovite is often observed as a metastable 
phase during tran'sformation, but it is not 
clear whether the stishovite observed in 
this sample is the metastable phase (12). 
The  garnet may be a residual of the starting 
material that has not been heated to a high 
enough temperature (9,  13). The ortho- 
rhombic perovskite phase was observed on 
decoinoression down to 9.6 GPa, although - 
splitting of the characteristic triplet 
020- 112+200 became unclear with de- 
creasing pressure (Fig. 1, B and C ) .  Both a 
decrease of the orthorhombic distortion 
from cubic symmetry (14) and an increase 
of the pressure gradient across the sainple 
during decolnpression can explain this phe- 
nomenon. Diffraction from the orthorhotn- 
bic oerovskite is not observed in the orofile 
obtained after complete decompression 
(Fie, I D ) ,  The  main oeaks can be indexed 
~ - 
on the basis of rhombohedra1 symmetry 

I " " " " ' "  " " " ~ ' " " " " l  
* 
h I 52.8 GPa lI 

1 9.6 GPa 1 

I OGPa 

I 

5 10 15 20 
20 (degrees) 

Fig. 1. X-ray diffraction profes of the -60 GPa 
sample obtaned durng decompresson at room 
temperature. The star lndcates the characterstic 
trlplet 020+112+200 of orthorhombic perovsklte. 
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(Table 1) and the other lines can be as- 
signed to stishovite and garnet. The low 
intensities of the peaks of the rhombohedral 
phase may be attributable to the partial 
amorphization of orthorhombic perovskite, 
in addition to amorphization of Ca-rich 
perovskite. On the other hand, diffraction 
from orthorhombic perovskite was observed 
after complete decompression for the Sam- 
ple heated at 39.5 GPa (pressure after heat- 
ine was 30.2 GPa). In this run. we observed 
unidentified diffraction lines i'n addition to 
those from Ca-rich ~erovskite (unauench- 
able), stishovite, an2 garnet. ~bweber,  we 
could not identify the additional phase from 
the x-ray diffraction profile, because these 
lines are weak and many of them overlap 
with lines from the other phases. 

TEM observation on the sample recov- 
ered from -60 GPa revealed that the rhom- 
bohedral phase has a composition close to 
that of the starting material but deficient in 
CaSiO,. This phase exhibits a lamellar- 
twinned microstructure, and all the twin 
planes examined were (1012) (Fig. 2). The 
orthorhombic perovskite recovered from 
the -35 GPa experiment is deficient in 
Al2O3 relative to the rhombohedral phase 
(and the starting material). Only a negligi- 
ble amount (< -1 weight %) of the Al- 
rich phase was observed in the -60 GPa 
sample, which agrees with the x-ray obser- 
vation, whereas a small but significant 
amount (-10 weight %) was observed in 
the -35 GPa sample. The chemical com- 
position of the Al-rich phase in the -60 
GPa sam~le is close to that in the -35 GPa 
sample. This Al-rich phase may correspond 
to the unidentified x-ray diffraction lines 
observed in the -35 GPa experiment. Elec- 
tron diffraction patterns taken on the Al- 
rich phase cannot be indexed on the basis 
of a corundum-ilmenite solid solution (4). 
Although the chemical composition of the 
Al-rich phase has not been determined de- 
finitively, it is close to (Ca,Mg,Fe)Al,SiO, 
(6) but enriched in (Ca,Mg,Fe)O and defi- 
cient in SiO,, and it differs from 
(Ca,Mg,Fe)Al,Si,O, (6) or Al,SiO, (6). 

Table 1. Observed and calculated x-ray diirac- 
tion pattern of the rhombohedral phase at ambi- 
ent conditions. 

0 1 2 3.5001 3.4993 0.0002 
1 0 4 2.5340 2.5345 -0.0002 
1 1 0 2.4183 2.4183 0.0000 
1 1 3 2.1033 2.1012 0.0010 
2 0 2 1.9897 1.9895 0.0001 
0 2 4 1.7485 1.7496 -0.0006 
1 1 6 1.5953 1.5951 0.0001 
0 3 0 1.3962 1.3962 0.0000 

*a = 44.37(1) A, c = 12.733(7) A, V = 258.0(2) A3 (hex- 
agonal axis). 

The rhombohedral phase observed in the 
recovered -60 GPa sample seems to be 
identical to "rhombohedral perovskite" ob- 
served by Kesson et d. (5), because of the 
similarities of the experimental conditions 
and the results of TEM observations (lamel- 
lar-twinned microstructure and chemical 
composition). However, we interpret this 
phase as having the LiNbO, structure. Can- 
didate structures include (i) rhombohedral 
perovskite, (ii) corundum, (iii) ilmenite, and 
(iv) LiNbO,. Among them, corundum can 
be rejected because it has a different chem- 
ical composition. The rhombohedral phase 
has a composition close to the starting ma- 
terial. The c/a ratio of this phase is 2.63, 
whereas it is 2.87 for MgSiO, ilmenite (15); 
therefore, it is also unlikely to have ilmenite 
structum The Goldschmidt tolerance factor 
t = (1/2)'I2(rA + ro)/(rB + r,), where rA, rB, 
and ro are the ionic radii of the A-site 
cation, Bsite cation, and oxygen anion, re- 
spectively, is useful for discussing the perov- 
skite-structured compounds by systematics 
(1 6). Neglecting Fe, Ca, and Mn for simplic- 
ity, we obtain t = 0.83 for Mg4Si4012.yd 
t .  = 0.80 for Mg3A12Si3012. Ionic radu in 
sixfold coordination from Shannon and Pre- 
witt ( 17) were used in the calculation. Rhom- 
bohedral perovskite is unlikely, because this 
phase is usually formed when t > -0.85. 
MnTiO, forms orthorhombic perovskite 
structure at high pressure and transforms to 
LiNbO, structure during decompression (1 8). 
Tlie value of t for MnTiO, is 0.79, which is 

Fig. 2. (A) TEM micrograph of the sample recov- 
ered from -60 GPa. (B) Selected area electron 
diffraction pattern of the grain indicated by the 
arrow in (A). The grain shows the polysynthetic 
twinning on the plane (1 01 2). 

close to that for Mg3A12Si3012. Similar trans- 
formations have also been observed in Mn- 
SnO, (16), FeTiO, (1 6), and MgGe0, (19), 
where t = 0.75 to 0.77. The increase of A1 in 
the perovskite phase with increasing pressure 
reduces t and may cause the transformation to 
the LiNbO, phase (20). The sub-aluminous 
perovskite coexisting with the Al-rich phase 
at -35 GPa did not transform to this phase. 
A twinned microstructure, such as that ob- 
served in our -60 GPa sample, was also 
reported for MnTiO, (21 ) and MgGe0, (1 9). 
The orientation of twin   lanes is the same for 
all three materials. This coincidence supports 
our conclusion that the aluminous ortho- 
rhombic perovskite transforms to LiNbO, 
during decompression. 

Our results show that the capacity of 
orthorhombic perovskite to accommodate 
A1 increases with pressure. Because experi- 
ments on model mantle rock suggest that 
orthorhombic perovskite accommodates the 
mantle inventory of A1 even at the condi- 
tions of the uppermost part of the lower 
mantle (22), this phase seems to be the host 
mineral of Al, at least in the upper half of 
the lower mantle. This conclusion is com- 
patible with the results of the experiment on 
natural rock conducted at 54 GPa (23). 
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An Fe!,v02 Diamond Core Structure for the Key 
Intermediate Q of Methane Monooxygenase 

Lijin Shu, Jeremy C. Nesheim, Karl Kauffmann, Eckard Munck, 
John D. Lipscomb, Lawrence Que Jr.* 

A new paradigm for oxygen activation is required for enzymes such as methane mono­

oxygenase (MMO), for which catalysis depends on a nonheme diiron center instead of 

the more familiar Fe-porphyrin cofactor. On the basis of precedents from synthetic diiron 

complexes, a high-valent Fe2(fji-0)2 diamond core has been proposed as the key oxi­

dizing species for MMO and other nonheme diiron enzymes such as ribonucleotide 

reductase and fatty acid desaturase. The presence of a single short Fe -0 bond (1.77 

angstroms) per Fe atom and an Fe-Fe distance of 2.46 angstroms in MMO reaction 

intermediate Q, obtained from extended x-ray absorption fine structure and Mossbauer 

analysis, provides spectroscopic evidence that the diiron center in Q has an Fe2V02 

diamond core. 

Th e MMO enzyme system found in meth-

anotrophic bacteria initiates the oxidation 

of methane (1, 2), thereby preventing the 

atmospheric egress of nearly 1 billion tons 

of this greenhouse gas annually. MMO cat­

alyzes the difficult oxidation of methane 

(CH4) to methanol (CH3OH) with incor­

poration of one oxygen atom from Oz . The 
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soluble MMO system consists of three sep­

arate protein components termed the hy­

droxylase (MMOH), reductase (MMOR), 

and component B (MMOB) (3, 4). The 

crystal structures of MMOH have revealed 

a nonheme diiron active site (5-7) where 

oxygen activation and substrate oxidation 

occur (4). Transient kinetic analysis of a 

single-turnover reaction has revealed at 

least five and probably six intermediates in 

the catalytic cycle, among which interme­

diate Q is the key oxidizing species (8-11). 

The Mossbauer properties of Q indicate an 

exchange-coupled high-valent FeIVFeIV 

cluster. The FeIV oxidation state has been 

assigned on the basis of the large decrease in 

isomer shift from 8 = 0.50 mm s_ 1 for 

FemFeiii M M O H to 8 = 0.17 mm s~l for Q 

Table 1. Compositions of freeze-quenched 
EXAFS samples of MMOH intermediate Q deter­
mined by Mossbauer spectroscopy. An optimal 
time window from 100 to 320 ms, determined by 
stopped-flow spectroscopy at 17°C, was used to 
quench a single-turnover reaction and trap inter­
mediate Q according to the experimental proce­
dure reported previously (8, 9, 12). Sample 1 was 
trapped at 150 ms and sample 2 was trapped at 
300 ms, allowing us to study two samples with 
different concentrations of Q for comparison of 
their EXAFS feature intensities. 

Sample 
Fe"Fe" 
form 

Inter- Inter­
mediate mediate 

P Q 

F e m F e i i i 

form 

27% 
33% 

5% 
5% 

61% 
44% 

7% 
18%* 

"Samples 1 and 2 both have a contribution from FelllFel" 
MMOH. The spectrum of sample 2 revealed an additional 
species with parameters similar to those of the oxo-
bridged Fe^Fe'" cluster of ribonucleotide reductase. We 
have seen this component in various samples prepared 
to trap intermediates of the'MMOH cycle. 

(12); the latter value is comparable to the 8 

values for well-characterized FeIV complex­

es (13, 14). To date, no high-valent inter­

mediate of any metallooxygenase has been 

structurally characterized. Here, we report 

extended x-ray absorption fine structure 

(EXAFS) studies of Methylosinus trichospo-

rium OB3b MMOH intermediate Q that 

provide spectroscopic evidence that an en­

zyme uses an Fe2(|UL-0)2 diamond core for 

alkane oxidation (15). 

A rapid freeze-quench technique al­

lowed us to trap Q in the optimal time 

domain after mixing FenFen MMOH with 

100% Oz-saturated buffer in the presence of 

two equivalents of MMOB (8, 9, 12). The 

samples were analyzed by Mossbauer spec­

troscopy to provide an independent quan­

titation of the reaction cycle intermediates 

in the samples before and after the x-irra-

diation inherent in the EXAFS experiment. 

Figure 1 shows a 4.2 K Mossbauer spectrum 

of Q sample 1 and the corresponding fea­

tures that make up this spectrum. The pro­

gressive decrease in isomer shift 8 upon 

passage through successive reaction cycle 

intermediates FenFen MMOH, P (16), and 

Q indicates the increasing oxidation state 

of the two Fe sites. The Mossbauer-deter-

mined compositions of the two freeze-

quenched samples 1 and 2 are listed in 

Table 1. As indicated, intermediate Q rep­

resented substantial fractions of each sam­

ple, 61% and'44%, respectively; these per­

centages were the same before and after 

irradiation. 

The R-space EXAFS spectra of four 

MMOH samples (17) have features that 

correspond to the distances from each Fe 

site to surrounding atoms (Fig. 2). For ex­

ample, the FenFen MMOH sample o shows 

one prominent feature at R ~ 2.1 A (Fig. 

SCIENCE • VOL. 275 • 24 JANUARY 1997 515 

mailto:QUE@chem.umn.edu

