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Transmission sf the BSE Agent to Mice in the 
Absence of Detectable Abnormal Prion Protein 

Corinne I. Lasmezas," Jean-Philippe Deslys, Olivier Robain, 
Alexandre Jaegly, Vincent Beringue, Jean-Michel Peyrin, 
Jean-Guy Fournier, Jean-Jacques Hauw, Jean Rossier, 

Dominique Dormont 

The agent responsible for transmissible spongiform encephalopathies (TSEs) is thought 
to be a malfolded, protease-resistant version (PrPres) of the normal cellular prion protein 
(PrP). The interspecies transmission of bovine spongiform encephalopathy (BSE) to mice 
was studied. Although all of the mice injected with homogenate from BSE-infected cattle 
brain exhibited neurological symptoms and neuronal death, more than 55 percent had 
no detectable PrPres. During serial passage, PrPres appeared after the agent became 
adapted to the new host. Thus, PrPres may be involved in species adaptation, but a 
further unidentified agent may actually transmit BSE. 

O n e  of the  distinct features of the BSE 
agent is its high ability to infect other spe- 
cies (1-3), whereas other TSE agents are 
easilv transmitted onlv \vithin a svecies. 
This species harrier leads to  cor-isiderable 
prolor-igation of the  i1-icuhatior-i p e r ~ o d  dur- 
ing interspecies translnissiol~ (4) .  During 
subsequent experirner-ital passages, TSE 
agents adapt to the  new host: the  incuba- 
t ion period shortens and stahle pathological 
properties are acqu~red (5). Accoriiing to  
the  prion hypothesis, PrPres ( the  patholog- 
ical, protease-resistant isoform of the  prion 
protein) constitutes the  infectious agent in  
TSEs, and replication involves the  hoino- 
typic interaction bet~veen a pathological 
PrP molecule and the  endogenous r-iative 
vroteln to  vroduce a co~lformational con- 
version to  the  ahnormal isoforin. T h e  mag- 

C. I. Lasmezas, J -P. Ceslys, A Jaegly, V. Ber~rgue. 
J.-M Peyr~n D. Dormort, Comm~ssarlat a 'Erergie 
A t o m ~ q ~ e ,  Ser?:lce de Neuroviroloq e, DSViCRMiSSA, 
B.P. 6, 60-68 averue du Gerera Leclerc 92265 Fon 

nitude of the  species harr~er  \vould thus be a 
conditior-i of the  extent of congruency be- 
t\r2een the  PrP of the  donor species and that 
of the  ne\v host 16). Ho\vever, this mecha- , , 

r-i~sm car-inot accour-it for the  exceptional 
ability of the  BSE agent to cross the  species 
barrier. This agent has original properties 
and is suspected to have contaminated hu- 
mans (2,  7). Thus, we examined BSE trans- 
mission and PrPres during primary transmis- 
sion to  mice and i1-i subsequent passages to  
other mice. 

Thirty C57BL/6 mice were inoculated by 
intracerebra1 injection of a 25% BSE-infected 
cattle brain homogenate. After 168 to 719 
davs. all of the inoculated anitnals exhibited , , 
symptotns of a l~eurological disease encom- 
passir-ig illainly hindlimb paralysis, tremors, 
hypersensitivity to stimulation, apathy, and a 
hunched posture. Bioche~nical ar-ialysis of 
their brains shoxed no  detectable PrPres ac- 
cumulation in more than 55% of the mice; 
these mice were termed PrPres  (Figs. 1 and 2 )  . <> 

tenay-aux-Roses Cedex, Frarce. (8). Histological examination revealed neuro- 
0. Robar ,  HBp t a  Sant Vncent de P a ~ l ,  NSERM U 29, 
74 averue De~ fe~ t -~oche reau  75674 Paris cedex 14, ilal death in all mice, but other classical 
Frarce. changes associated with TSEs-that is, neu- 
J.-G. Fourner. H6p ta  de a Sapetrere, NSERM U 153, renal vacLlolatioll and astrocytosis-u.ere lim. 
47 b o ~ e v a r d  de I'?Bptal, 75651 Pars Cedex 13 France. 
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couroe. NSERM U 360, 47 boulevard de 'HBpital, loss u.as most obvious in the Purkinie cells of 
75651 Paris Cedex 13, France. the cerebellum, hut degenerated neurons were 
J Rosser. Ecoe Super eure de Phys cue et Ch mie n -  
dJstrlelles, CNRS URA 2054 rJe Vauq Jelin, 75231 also observed, to a smaller extent, In the C A I  
Pars Cedex 5, France. region of the hippocampus. No  sign of local 
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showed marginalization and clumping of the 
chromatin, a characteristic of type I apoptosis 
(Fig. 3E) (9). 

The PrPreg mice were infected with a 
TSE agent because they could transmit a dis- 
ease exhibiting the classical features of TSE, 
that is, PrPres accumulation and spongiform 
lesions (Fig. 2). The brains of PrPres+ mice 
(for example, B1) and PrPres mice (for ex- 
ample, B4) were used to inoculate a second 
series of mice. Most of the mice inoculated 
with PrPres brains developed a classical TSE, 
but a few presented the PrPres pattern again 
and the incubation periods remained spread. 
However, as was observed at primary passage, 
PrPres+ and PrPres- mice had the same range 
of incubation periods (Fig. 2) (1 0). Transmis- 
sion from PrPres+ mice led to an important 
reduction of incubation time that was very 
homogeneous (167 2 2 days, mean 2 SEM) 
with detectable PrPres in all mice (Fig. 2). 

A third passage was performed with one 
mouse from the B1 lineage and two mice from 
the B4 lineage, only one of which had detect- 
able PrPres (Fig. 2). After inoculation with 
the PrPres brain, incubation periods were 
shortened and less variable and all but one of 
the mice had detectable PrPres at the termi- 
nal stage of disease. Transmission from 
PrPres+ mice gave very similar incubation 
periods, whether originally inoculated with 
brain homogenate from the PrPres- or 
PrPres+ lineages. Finally, as a result of this 
third passage, the PrPres- pattern had almost 
disappeared (Fig. 2). Thus, the PrPres+ pat- 
tern had a selective advantage and was asso- 
ciated with the short and homogeneous incu- 
bation periods. Therefore, PrPres could be 
associated with the adaptation of the agent to 
its new host. 

Because we were able to transmit a TSE 
agent without detectable PrPres upon three 
passages, infectivity and PrPres can be disso- 
ciated [see also (1 1 )]. The similarity of the 
clinical signs in PrPres- and PrPres+ mice 
suggests that neuronal death was the major 
determinant of central nervous system func- 
tion impairment. However, the presence of 
spongiform lesions and overt gliosis was di- 
rectly linked to that of PrPres (12). The role 
of PrPres in the pathogenesis of cerebral dam- 
age has been shown in vitro (13), as has the 
requirement for normal PrP in the develop- 
ment of disease and pathological lesions (14, 
15). Thus, PrPres is clearly involved in the 
pathogenic process of TSEs. However, it may 
not be the transmissible component of the 
infectious agent. 

This concept is supported by the multi- 
plicity of TSE strains. For example, more 
than eight different strains can replicate in 
syngeneic C57BL/6 mice but exhibit specif- 
ic properties (incubation period, distribu- 
tion of the lesions, and biochemical fea- 
tures) even though the PrP of the host is 

the same (1 6, 17). Some strains are even 
able to retain their specific properties upon 
transmission to different hosts with differ- 
ent PrP molecules (1, 16), whereas others 
undergo phenotypic changes when passaged 
in a single host (18). Finally, when mice 
lacking PrP were inoculated with either the 
Chandler scrapie strain or the mouse-adapt- 
ed Fukuoka-1 strain of Creutzfeldt-Jakob 
disease, they did not develop clinical dis- 
ease, but several brains contained a trans- 
missible agent 20 weeks after inoculation 
(14, 19). 

Because we could transmit a TSE with- 
out detectable cerebral PrPres accumula- 
tion in the case of interspecies transmis- 
sion of the BSE agent, the hypothesized 
existence of an infectious aeent in addi- " 
tion to PrPres becomes more likely; in 
view of the complexity of TSE strain prop- 
erties, this agent may be a nucleic acid. 
Moreover, our results suggest a pathogenic 
mechanism that may account for the pe- 
culiar efficacy of the BSE agent in crossing 
the species barrier. The BSE agent is vir- 
ulent enough to replicate in the new host 

Fig. 1. (A and B) PrPres A B 
detection by protein I m -  30 kD+ -30 kD 
munoblot (26) h (A). 

21.5 kD + n brains of mice at the ter- c21.5 kD 
minal stage of the dis- 
ease (4 mg brain equiva- 
lent) were analyzed. B1, 
B10. B6. and 84. first -- 

passage from cattle brain; 2PB4-1, second passage 
from B4 mouse; Control, negative control brain (mouse C -- 
inoculated with the brain of a healthy cow and killed 800 30 kD+ 
days after inoculation without clinical signs); Pos, brain 21.5 kD + 

pool of mice at terminal stage of experimental scrapie ,,,, #,,,,, , , ,, , ,, ,, ,, , , ,, , ,, ,, ,, 
(strain C506M3); Pos/x, dilutions of positive control. in Control PrPres- 
(B), under conditions of maximal sensitivity, the PrPres 
signal can be detected at a 1 :10.000 dilution of the positive control (2.5 pg brain equivalent). Pos, 
control, and PrPres- samples correspond to 25 mg brain equivalent. (C) Similar degradation pattem of 
PrP with a range of doses of PK in a normal mouse brain and a PrPres- brain, showing the absence of 
PrPres with less resistance to protease than usual in PrPres- brains (27). 

Fig. 2. Transmission fea- 
tures of BSE into mice at 
first, second, and third pas- 
sage (28). Histograms rep- 
resent the amount of PrPres 
(expressed as a percentage 
of the positive control) in the 
brains of mice at the terminal 
stage of neurological dis- 
ease. Diamonds represent 
the incubation period for 
each individual mouse test- 
ed for PrPres. The positive 
control corresponds to a 
brain pool of mice at the ter- 
minal stage of experimental 
scrapie (strain C506M3). At 
primary passage, individual 
mice were scored from B1 
to 830 according to their in- 
cubation periods. The brains 
of 82, 83, 826, and 827 
could not be analyzed and 
are not represented. The 
brains of B1 and 84 were 
inoculated to a second se- 
ries of mice called, respec- 
tively, 2PB1 and 2PB4. At 
third passage, the recipient 
mice were called, respec- 
tively, 3PB1 and 3PB4. Sec- 
ond passages were also 
performed with B6, B10, 
and 81 5 and are not shown 

- 
> 

850 
Primary passage ,1750 2 

61 mouse ImuIurn 84 rnwse lnaulum n 

I I 1 h 
* r 8 5 0 2  
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Third passage n 
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for the sake of clarity; they were consistent with the passages from B1 and 84. 
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anapaptotic~oe8krtheOeFebelkrmafa 
RPres'moUeeW.Notethsdumplnsandmapginalizationbfth~,~well~thenormal 
aspeetof~~enudeevrnembrene~~~andcytoptasrnicor~(arrpwheadsshowtheGdgi 
apparatus and r n i t m .  ~csde  k, 0.5 m. 

without PrPres accumulation. Hence, it is 8. It could be argued that we killed our mice W,  
not eliminated, and during replication the when inMNitv was n d  maximal in the brain. I-bvmer, 

mice were killed at the premortem stage (that is, just 
agent may acquire the capacity to convert before they would have died of disease). Moreover. it is 
the new host PrP into ~ r ~ r e s .  As a result known fr& experimental models that ~ r ~ r e s  accumu- 

of this adaptation, the transmissible agent 
~ ~ ~ & ~ ~ m O ~ '  ~ ~ n ~ ~ ~ ~ ( l ' ; P  " 

would be tightly associated with PrPres, 9. P. G. H. Clarke, Anat. Embryol. 181,195 (1 990). 

and induce the development of classical 
spongiform lesions. 
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staned en bloc wlth uranyl acetate and embedded In 
Aradte Utrathn sectons were staned wlth uranyl 

acetate and lead c1:rate before examnaton wlth a 
P h p s  CMlO electron mcroscope. 

31. VVe thank R Bradley for BSE- nfected cattle bran 
homogenate. C. Wessmann and R H Kmberln for 
helpful dscussons, and R Rouxand J. C. Mascaro 
for expert anma  care. We also thank P. Frltch and 
M. VVasowcz. as w e  as L Court, who encouraged 
our research on TSE. Supported by a grant from 
D.R.E T. (Pars). 
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Potency of Combined Estrogenic Pesticides 

S t e v e n  F. Arnold et al. found 153- to  
1630-fold svner~ i s t i c  interactions between 

1 " 
binary ~ n i x t ~ ~ r e s  of the  weakly estrogenic 
pesticides endosulfan, dieldrin, toxa- 
phene, and chlordane in competitive es- 
trogen receptor (ER) binding assays and in  
a n  estrogen-responsive assay i n  yeast (1 ) .  
Less dramatic synergistic interactions be- 
tween two vveakly estrogenic hydroxy 
polychlorinated biphenyl congeners were 
also observed in  the  yeast assay and  in  
human endometrial cancer cells. O n  the  
basis of these data,  it vvas suggested "that 
t h e  estrogenic potency of some environ- 
mental chemicals, when tested singly, may 
be underestimated" (1 ,  p. 1491).  T h e  pur- 
ported synergistic interactions of these 
compounds have important mechanistic 
and public heal th  consecluences (2 ) .  W e  
reassessed the  potential synergistic inter- 
actions of two weakly estrogenic pesti- 
cides, dieldrin and toxaphene, using the  
following estrogen-responsive assays: in- 
duction of uterine \vet weight, progester- 
one  receptor (PR)  levels and uterine per- 
oxidase activitv in  the  immature female 
mouse; inductikn of cell growth and two 
estrogen-responsive reporter gene assays in  
MCF-7 human breast cancer cells; induc- 
t ion of reporter gene activities in  two 
yeast-based assays that  expressed either 
the  human  or mouse ER; and competitive 
binding t o  human  and mouse ER. For 
these 1 3  different estrogen-responsive as- 
says, t h e  combined activities of dieldrin 
plus toxaphene were essentially additive. 
Moreover, interactions of all t he  binary 
mixtures of organochlorine pesticides re- 
ported by Arnold et al. ( 1 )  \\.ere reinves- 
tigated in  the  two yeast-based assays. 

T h e  results we obtained in  yeast trans- 
formed with a n  expression plasmid tha t  
contained the  wild-tvoe mouse ER and a 

, A  

reporter plasmid containing a single ERE 
linked to  the  Lac2 gene (3 )  indicate that  
the  estrogenic activities of all t he  binary 
mixtures of organochlorine pesticides were 

additive. These same binary mixtures \yere 
also investigated in  a yeast-based human  
ER assay ( 4 ) ,  which used the  same yeast 
strain and reporter gene construct used by 
Arnold et al. (1  ). In contrast to  that  study, 
synergistic activity vvas no t  observed for 
any pesticide combination. T h e  differenc- 
es between our results and those reported 
by Arnold et al. (1 )  cannot  be accounted 
for by differences i n  total  ER expression, 
because varying this expression did not  
have any affect o n  synergy. These results 
demonstrate tha t  synergism between 
weakly estrogenic chemicals is not  univer- 
sal, even within the  same strain of yeast. 
T h e  recent scientific, regulatory, and pub- 
lic concern regarding the  potential ad- 
verse environmental and human  heal th  
impacts from synergistic estrogen respons- 
es induced by organochlorine pesticide 
mixtures should be tempered by our re- 
sults, which demonstrate that  these com- 
pounds are weakly estrogenic and,  in  corn- 
bination, their activities are additive (5). 
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Response: It is difficult t o  compare the  re- 
sults of the  study by Rarnamoorthy et al. t o  
ours because the  assavs they used, while 
appearing to  be similar ;o ours', were in each 
case different. T h e  differences, however, 
have been instructive in helping us frame 
some of the  parameters that may be impor- 
tant in  determining the  synergistic action of 
weakly estrogenic chemicals. 

In  our mammalian and veast cell assavs 
( I ) ,  as well as in the  ligand-binding exper- 
iments, the  concentration of receptor mol- 
ecules was lovx., while in  the studv bv Ra- 

1 ,  

mamoorthy et al. the  concentrations \\.ere 
high. For example, our tnammalian cell cul- 
ture experinlents used Ishikavva uterine can- 
cer cells that lack detectable ER and were 
transfected with onlv 20 119 of hER cDNA. 
In  contrast, ~amakoortYhy et al. used 
MCF-7 breast cancer cells that contained 
high levels of endogenous ERs [MCF-7 cells 
typically contain endogenous ER levels in 
the  range of 30,L100 ERs per cell (2)  to  
230,330 ERs per cell (3)]  and that were 
transfected with an  additional 4 to 5 pg  of 
hER cDNA.  Likevvise, in  the  yeast-based 
assay used in  our report, the n ~ ~ m b e r  of 
expressed hERs was estimated to be 500 to 
1030 receptors per cell, but the  study by 
Ramalnoorthy et al. appears to  contain well 
in excess of 1000 ERs per cell. Finally, our 
in  vitro c o m ~ e t i t i v e  binding conditions 

u 

used 0.4 n M  concentrations of ERs (mono- 
mer concentrations), whereas the  concen- 
tration of ER used by Ramamoorthy et al. 
was considerably higher and the  assays were 
not performed according to our report (1 ). 
Therefore, because our results shovved syn- 
ergy and theirs did not,  ER concentration 
may play a n  important role in the ability of 
mixtures of chemicals to  synergize. 

Wi th  reoard to  the  anitnal studies, our - 
earlier vvork showed synergistic responses to  
weakly estrogenic chetnicals in turtles that 
vvere treated early in  development (4) .  T h e  
study by Ramamoorthy et al. vvas performed 
in the  uterus of female mice that had al- 
ready undergone sexual dlfferentlatlon. Our  
contention has been that cieveloomentall~ 
exposed animals are more likely to  demon- 
strate synergistic responses to  estrogenic 
chemicals. Nonetheless. insoection of the  , A 

data provided by Ratnatnoorthy et nl. sug- 
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