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~01011, ovary, kidney, and central nervous 
system origin. A highlv schenlatic vie\\, of 

Approach to the Molecular thls porti& of ~ ~ C N C I  drug discovery- 
development process is shown in Fig. 1. 
Compounds for testing have come princi- 
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Since 1990, the National Cancer Institute (NCI) has screened more than 60,000 com- 
pounds against a panel of 60 human cancer cell lines. The 50-percent growth-inhibitory 
concentration (GI,,) for any single cell line is simply an index of cytotoxicity or cytostasis, 
but the patterns of 60 such GI,, values encode unexpectedly rich, detailed information 
on mechanisms of drug action and drug resistance. Each compound's pattern is like a 
fingerprint, essentially unique among the many billions of distinguishable possibilities. 
These activity patterns are being used in conjunction with molecular structural features 
of the tested agents to explore the NCl's database of more than 460,000 compounds, 
and they are providing insight into potential target molecules and modulators of activity 
in the 60 cell lines. For example, the information is being used to search for candidate 
anticancer drugs that are not dependent on intact p53 suppressor gene function for their 
activity. It remains to be seen how effective this information-intensive strategy will be at 
generating new clinically active agents. 

D r u g  discovery is heing transformed hy 
nen7 developinents in  tnolecular cell biology 
and the  infornlation sciences. A case in  
point is the  drug discovery program con- 
ducted by the  Developnlental Therapeutics 
Progranl (DTP) of the  NCI. Before 1985, 
the NCI  used inice bearing murine leuke- - 
lnia P388 cells to screen n e ~ \ ~  compounds for 
anticancer activity. Tha t  strategy Identified 

agents active against leukemias but relatil-e- 
1y few that were effective against soliil tu- 
mors, including the most coinmoll human 
carcinomas. Hence, the  NCI  established a 
primary screen in which compounds are 
tested in  ~ ' i t ro  for their ability to inhibit 
growth of 62 ilifferent human cancer cell 
lines ( 1  ). Included are melanomas, leuke- 
mias, and cancers of breast, prostate, lung, 

and products of hlotechnology are also be- 
ing screened. 

This "disease-oriented" strategy for drug 
discovery n7as based o n  the  hypothesis that 
selective activity in vitro against cancer cell 
lines from a particular organ \vould predict 
selective activity against corresponding tu- 
tnors in humans. Tha t  concent is being - 
tested as agents progress through clinlcal 
trials, and the  answer is not vet clear. How- 
ever, patterns of activity observed in the  
screen have proved predictive in an  even 
more no~verful wav a t  the  nlolecular level: 
They i rovide incisive lnforn~ation o n  the  
lnechanisnls of action of the  comvounds 
tested and o n  molecular targets and modu- 
lators of activity within the  cancer cells. 
T h e  cell lines are not fully representative of 
s o l d  tumors in humans, but their patterns 
of pharmacological response are rich in  in- 
formation. W e  refer to this test system as a 
"screen," but it has also hecome a way to 
"profile" or "fingerprint" potential thera- 
peutic agents. 

T h e  patterns of activity \\ere first ana- 
lyzed by the  COMPPlRE algorithm (2 ) .  
Given one compound as a "seed," COM- 
PARE searches the  database of screened 
agents for those most similar to the  seed 111 

their patterns of activity against the  panel 
of 60 cell lines. Similarity in pattern often 
indicates similarity in  nlechanisin of action, 
Inode of resistance, and molecular structure 
(2 ) .  Thls form of analysis has been applied 
productively to topoisonlerase I1 inhibitors 
( 3 ) ,  pyriinidlne hiosynthesis inhihitors ( q ) ,  
and tuhulin-active compouniis (5), anlong 
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other classes of agents. Back-propagation 
neural networks and predictive methods 
from classical statistics have also been used 
to verify that the patterns of activity could 
predict a compound's mechanism of action 
(6) .  More detailed information on the rela- . , 
tion between pattern and mechanism has 
come from additional analvses based on 
techniques from statistics and artificial in- 
telligence (7, 8). To date, five compounds 
(spicamycin analog KRN 5500, flavopiri- 
dol, UCN-01, a depsipeptide, and a quino- 
carmycin analog) assessed in the screen and 
analyzed by the methods described above 
have been selected for entry into clinical 
trials (9). 

Bioinformatics:.The Structure, 
Activity, and Target Databases 

Here we describe a general way in which 
information on the activity patterns is be- 
ing combined with other types of informa- 
tion to address problems in drug discovery 
and molecular pharmacology. A formula- 
tion of this approach in terms of three 
databases is shown in Fig. 1: (A) contains 
the activity patterns already discussed, (S) 
contains molecular structural features of the 
tested compounds, and (T) contains possi- 
ble targets or modulators of activity in the 
cells. Portions of these databases can be 
accessed through DTP's World Wide Web 
site (http://epnwsl.ncifcrf.gov:2345/dis3d/ 
DTP.HTML). Links to these and additional 
pertinent databases can be found at http:// 
www.nci.nih.gov/intra/lmp/jnwbio.htm. 
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These two Web sites will be updated pro- 
gressively with additional data and tools of 
analysis (1 0). 

The chemical structure (S) database can . , 
be coded in terms of any set of twodimen- 
sional (2D) or 3D molecular structure de- 
scriptors. The NCI's Drug Information Sys- 
tem (DIS) contains chemical connectivity 
tables for approximately 460,000 molecules, 
including the 60,000 tested to date. Three- 
dimensional structures have been obtained 
for 97% of the DIS compounds, and a set of 
588 bit-wise descriptors has been calculated 
for each structure by use of the Chem-X 
computational chemistry package (Chem- 
DBS3D module, Chemical Design, Oxford, 
U.K.) (1 1 ). This.data set provides the basis 
for pharmacophoric searches; if a tested 
compound, or set of compounds, is 'found to 
have an interesting pattern of activity, its 
structure can be used to search for similar 
molecules in the DIS database (12). 

In the target (T) database, each row 
defines the pattern (across 60 cell lines) of 
a measured cell characteristic that may me- 
diate, modulate, or otherwise correlate with 
the activity of a tested compound. When 
the term is used in this general shorthand 
sense, a "target" may be the site of action or 
part of a pathway involved in a cellular 
response. Among the potential targets as- 
sessed to date are oncogenes, tumor-sup- 
pressor genes, drug resistance-mediating 
transporters, heat shock proteins, telomer- 
ase, cytokine receptors, molecules of the 
cell cycle and apoptotic pathways, DNA 
repair enzymes, components of the cytoar- 
chitecture, intracellular signaling mole- 

cules, and metabolic enzymes (1 3). 
In addition to the targets assessed one at 

a time, others have been measured en masse 
as part of a protein expression database 
generated for the 60 cell lines by 2D poly- 
acrylamide gel electrophoresis (2D PAGE) 
(14). The aim is to look for molecules that 
have not been considered ~reviouslv as tar- 
gets. In the process, a link has been estab- 
lished between the molecular pharmacology 
of cancer and the growing enterprise of 
proteome research (15). The current data- 
base consists of 1014 indexed and quanti- 
tated protein spots, of which 151 have been 
quality controlled over all 60 current cell 
lines and incorporated into a primary data 
set for analysis (14). Analogous links to 
genome research are being established 
through analyses of gene amplification and 
mRNA expression patterns. Figure 1 indi- 
cates approximately 100 targets, but that 
number is increasing rapidly. 

Relating Molecular Targets to 
Drug Activity Patterns 

The first target analyzed in detail by the 
COMPARE program was the drug-resis- 
tance transporter P-glycoprotein (Pgp), en- 
coded by multidrug resistance gene MDR-1 
(16-18). The result was a list of agents 
predicted and then experimentally verified 
to be good Pgp substrates. Related strategies 
identified Pgp inhibitors (1 9). We present 
here a complementary approach for analysis 
and display of these data, the DISCOVERY 
program package (20), which maps coher- 
ent patterns in the data, rather than treat- 

-4&0,000 
compounds 

Database A 

ActMty r 
.I . m. 

Sma Fi.;,. 
Fig. 1. Simplified scnematic o-ation-intensive approach ro cancer drug discovery 
and molecular pharmacology at the NCI. Each row of the activity (A) database represents the pattern of 
activity of a particular compound across the 60 cell lines. As described in the text, the A database can 
be related to a structure (S) database containing 2D or 3D chemical structure characteristics of the 
compounds and a target (T) database containing information on possible molecular targets or modu- 
lators of activity within the cells. 

SCIENCE VOL. 275 17 JANUARY 1997 



ing the compounds and targets one pair at a quirements have guided development of 
time. Because the S, A, and T databases DISCOVERY, which integrates the dispar- 
contain, in aggregate, many millions of ate types of information on the compounds 
numbers, the challenge was to compact that and displays them in novel ways suited to 
information sufficiently for analysis without human pattern recognition. The same algo- 
losing or obscuring important local features rithms can be applied to other types of 
of the data. These often contradictory re- databases, including those generated by 

, - .  , : ,  . . - .  . Tarms [dusTordsr) , . 
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Fig. 2. "Clustered correlation" (ClusCor) map of the relation between compounds tested and molecular 
targets in the cells. This normalized A-T' product matrix (where the prime symbol indicates the matrix 
transpose) correlates target patterns across the 60 cell lines with patterns of growth inhibition for an 
important set of 3989 compounds. A red or orange point (high positive Pearson correlation coefficient) 
indicates that the agent tends to be selectively active against cell lines that express the target in large 
amounts (or in functional form). A dark blue point (high negative correlation) indicates the opposite 
tendency (selective potency against cell lines that have less target or function). The 113 columns 
correspond to 76 distinct target molecules or functions, some represented multiple times in different 
mathematical transformations. Compounds and targets are cluster-ordered as explained in the text. To 
the right is shown one 61 -leaf "twig" of the overall 3989-leaf cluster tree of compounds. Symbols for 
mechanisms of action (6, 8) are as follows: TI, topoisomerase 1 inhibitors; T2, topoisomerase 2 
inhibitors; A, alkylating agents; Pt, platinum compounds (of the cisplatin-carboplatin family); Pt-Si, 
platinum agents containing a silane moiety; ?, mechanism unknown; PCNA, proliferating cell nuclear 
antigen determined from 2D gels (column 16) (14); p53 seq, p53 sequence, wild-type versus mutant 
(30); p53 fu., p53 function in a yeast-based assay (30); p53 prot., p53 protein expression by protein 
immunoblot (columns 29 and 30) (30); hsp, heat shock-related proteins (Hsp60, Hsc70, Hsp90, Grp75, 
Grp78) from 2D gels (columns 40 to 45) (14); gadd45, mdm2, and p21, GADD45, MDM2, and 
p21C'P7/WAF7 mRNA induction in response to y-irradiation (columns 54 to 57, 60, and 61 to 64, 
respectively) (30); G,, G, arrest in response to y-irradiation, assessed by flow cytometly (columns 65 to 
69) (30); mrp, mRNA expression levels for the MRP multidrug resistance transporter (columns 75 and 76) 
(1 8); mdr, MDR-1 mRNA (1 6) and function in terms of rhodamine efflux (columns 81 to 88) (1 7); TGF-aR, 
transforming growth factor* receptor mRNA (columns 89 to 91); EGFR, epidermal growth factor 
receptor (column 92) (37); and Ras, FMS sequence, wild-type versus mutant (38). 

screening and profiling systems in which 
agents are tested in multiple assays-for 
example, against mammalian cells, yeast 
mutants, bacteria, or biochemical targets. 

Figure 2 shows a color-coded DISCOV- 
ERY pattern map relating a T database of 
113 target vectors to an A database of 3989 
nonconfidential compounds deemed suffi- 
ciently interesting in the initial screen to be 
tested more than once. This map was ob- 
tained by an algorithm we term "clustered 
correlation" (ClusCor). Each database was 
treated as a mathematical matrix, and the 
following four steps were applied: (i) each 
row of A and T was normalized by its mean 
and standard deviation; (ii) the two matri- 
ces were multiplied to obtain A-T', where 
the prime symbol indicates the matrix 
transpose; (iii) each entry was divided by 
n - 1, where n (=60) is the number of cell 
lines, producing a matrix of Pearson corre- 
lation coefficients relating activity and tar- 
get pattern; and (iv) the rows and columns 
of the product matrix were rearranged into 
"cluster order." Only with this last step did 
patterns emerge. 

The 3989 compounds were cluster-or- 
dered (21) along the ordinate on the basis 
of their activity patterns across the 60 cell 
lines. Thus, compounds with the most near- 
ly identical patterns appear side by side. 
Because this clustering of compounds was 
done independently of targets, the coherent 
pattern observed as patches of color vali- 
date the hypothesis that the activity pat- 
terns and targets are related. The possibility 
that these patterns were created spuriously 
by the clustering process is ruled out by the 
lack of pattern features in Fig. 5A. Figure 
5A shows the result when the 60. activity 
values for each drug were randomly permut- 
ed before the calculation and clustering al- 
gorithm that had produced Fig. 2 were ap- 
plied. The 1 13 targets were cluster-ordered 
along the abscissa in Fig. 2 on the basis of 
their apparent effect on activities of com- 
pounds in the database. Thus, targets with 
the most similar columns of correlation co- 
efficients appear side by side. 

To illustrate the result of the clustering 
process, the right-hand side of Fig. 2 shows 
one small 61-leaf "twig" of the overall 
3989-leaf cluster tree. Compounds similar 
in mechanism of action cluster together. 
Among the classes that are organized in a 
coherent way elsewhere in Fig. 2 are the 
Tax01 (paclitaxel) analogs (taxanes): 34 of 
the 37 taxanes in the database appear side 
by side (compounds 620 to 653), and the 
other 3 are found on nearby twigs (com- 
pounds 655, 658, and 701). The largest 
chemically coherent set of compounds is a 
set of 72 thiosemicarbazones (compounds 
1491 to 1579, with small gaps occupied by 
phenylhydrazones) (22). Most of the tin- 
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containing molecules in the database are whereas the diaminocyclohexyl platinum 
contiguous (compounds 2034 to 2062). The compounds, which have very different 
closely related clinical agents cisplatin and pharmacological behavior (23), fall else- 
carboplatin fall side by side (compounds where in the map (compounds 2838 to 
3260 and 3261) within one cluster of 11 2849). Perhaps more important than the 
structurally related platinum analogs, branches with known agents, however, are 

those that contain no familiar compounds. 
The DISCOVERY program set, as its 

b - =  C 
-3 ;:. *- 

name implies, was developed primarily to 
I .  f g g s  

1 - -  explore and organize these new classes of 
' 

< ! f 4 f compounds. X Although some degree of coherent clus- s 3 5  8 8  5 
3 3 - tering was expected for families of mole- 
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L-AUNOSINE R 260 = 1.2 X lo1' for a11 possible binary 
patterns and to 460 = 1.3 X if four 

OIHYORO-5-AUeYTIOINE R 
5-FLUOROURACIL R levels of sensitivity could be reliably distin- 

guished. Each compound displays a unique 

YODAZOLE T2 "fingerprint" pattern, defined by a point in 
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,wolunoi n the 60D space (one dimension for each cell 
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line) of possible patterns. In information 

DAUNOMYCIW T2 
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theoretic terms, the transmission capacity 
MENOGARIL T2 of this communication channel is very 

MITOXAIITROWE T2 
PIROXANTRONE T2 large, even after one allows for experimen- 

RUBlofM"M"N: g 
w-18 T2 1 tal noise and for biological realities that 

constrain the compounds to particular re- 
gions of the 60D space. Although the ac- 
tivity data have been accumulated over a 
6-year period, the experiments have been 
reproducible enough to generate. the pat- 
terns of coherence described here (24). . - ,  

Each patch of color in Fig. 2 suggests a 
~ossible correlation between targets and 
Lompounds. The dark blue patch ?or com- 
pounds 513 to 667 indicates that these 
compounds are highly negative in their cor- 
relation with targets 81 to 88, which are all 
indices of Pgp/Mdr-1 expression and func- 
tion (16-18). Several lines of evidence in- 
dicate the significance of this observation. 
(i) We analyzed cell screen data for a set of 
35 com~ounds of diverse structure and 
mechanism that had been reported previ- 
ously on the basis of transport assays to be 
Mdr-1 substrates (17, 25). Of these, 18 
(5 1%) fell within the blue patch, a percent- 
age 13-fold greater than the 4% (15513989) 
expected by chance alone. The probability 
(exact binomial) of such an extreme event 
happening by chance is <0.0001. (ii) Al- 
though 18 of 35 reported substrates fell 
within the patch, 0 of 12 compounds re- 
ported not to be substrates (1 7, 25) did so 
(P = 0.0010 by one-sided Fisher's exact test 
for the associated 2 by 2 table). (iii) It has 
been reported (17) that Mdr-1 substrates 
tend to be natural products, high in molec- 
ular weight, and often cationic. We find by 
linear discriminant analysis that these three 
factors predict with a sensitivity of 78% and 
a specificity of 84% which compounds will 
be found in the blue patch (P < 0.0001). 
These findings further validate the patterns 
seen in Fig. 2. 

Columns 76 and 77 in Fig. 2 are indices 
of messenger RNA (mRNA) expression for 

I - 
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Fb. 3. R&&bf-l f l  pathwey 4.6 
~olecuhr targets and pattems of ac- 
dty for dinically'evaluated mtkancer 
W s .  The compwnds have been 

by their presumed principal 

1 
lechanisms of action. A nwnber of 1.3 
jdltional antitubulin agents have been added to 
crease represmWm of that category. Cdor 
ding indicates the Pearson conelation ooeffi- 

sent relating agent to target. A2, guanine-N2 al- 
kylator; A7, guanine-N7 alkylatar; AC, chloroethyl- 

irrg alWor; D, DNArRNA antimetabdiie; PS, 
' 

W n  synthesis inhibitor; R, RNA antimetabolite; 
F, anthlate RNA antimetabdlte; T2, topoisom- 

erase II inhibitor; nl, antitubulin (antimitotic) 
ment. The data on p53 pathway parameters are 

3t-n (30). 

Fig. 4. Histograms 
showing the relation be- 
tween p53 status and 
patterns of growth inhibi- 
tion in the screen (A) for a 
set of 86 phase Il-evalu- 
able clinical agents and 
(B) for a set of 3989 mul- 
tiply tested compounds. 
Most of the clinical 
agents appear more ac- 
tive in the presence of 
wild-type p53; the other 
compounds show a 
lesser trend in the same 
direction. The parameter 
calculated for each drug 
has the form of a Wilcox- 
on rank sum P value. P 
> 0.5 indicates a com- 

Clinical agents 

Taxol 

Screened compounds 

Taxol 

+More active in 
p53 mutants ~ i ~ c o x o n  P value active in 

p53 wild type 4 
pound that tends in this 
screening assay to be more active in the cells with wild-typep53; P < 0.5 indicates the opposite tendency. 
Values >0.975 or ~0 .025  would be required to reject the null hypothesis of equal median activities in p53 
wild-type and mutant cells for any single compound. The data on p53 sequence are from (30). 
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Mrp, another transport molecule associated 
with multidrug resistance (18). There is 
only a slight overlap between the Mdr-l- 
and Mrp-sensitive families of compounds. 
As indicated by columns 40 to 45, high 
basal levels of heat shock proteins (Hsp60, 
Hsp90, Hsc70, Grp75, and Grp78) correlate 
positively with activity for a large set of 
agents, including some of those in the group 
sensitive to Mdr-1. This type of analysis 
makes it possible to cross-compare multiple 
targets for their expression levels and for 

their apparent impact on the activities of 
different classes of agents (26). 

Activity Patterns and p53 
Pathway Status 

The p53 tumor-suppressor gene is mutated 
in more than 50% of human tumors, more 
than any other gene examined to date (27). 
p53 functions as a transcriptional regulator 
with the ability to both transactivate and 
suppress gene transcription (28). It is acti- 

Fig. 5. Four types of "clustered correlation" (ClusCor) matrices involving the S, A, and T databases. 
(A) Activity vectors of the compounds were randomly permuted, and all calculations (including 
clustering) were then done exactly as for Fig. 2. The lack of apparent pattern verifies that clustering 
did not spuriously create the patterns seen in Fig. 2. (B) A normalized 1.1' database, which 
cross-correlates patterns of target expression. Targets with the most similar patterns of expression 
appear side by side. Because a target's expression is 100% correlated with itself by definition, all 
values on the principal diagonal are color-coded red. Because of the clustering, targets positively 
correlated in their expression produce red patches straddling the diagonal. (C) A normalized 
(A=T1).(A.T') database, similar to (B) except that targets are characterized, not in terms of their 
expression levels, but in terms of their correlations with activity patterns of the 3989 compounds. (D) 
An Sf-(A-T') database. This database relates 2D substructures of the compounds (20) to targets 
through the activity patterns of the compounds. 
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vated in response to DNA damage and can 
orchestrate a number of cellular responses 
to genotoxic stress, including G1 arrest and 
apoptosis (29). A large cluster of com- 
pounds (numbers 2802 to 3309) is positive- 
ly correlated with intact p53 pathway status 
(as indicated by a large red patch in Fig. 2). 
The indices of 1353 status assessed in the 
cells include p5j sequence, basal p53 pro- 
tein level. 1353 function in a veast-based , A 

assay, Gl  checkpoint integrity, and y-ray 
induction of the p53-regulated genes 
p2 1 CIP'lWAF', MDM2, and GADD45 (30). 
The activity patterns of most of these com- 
pounds are inversely correlated with expres- 
sion levels of p53 protein, as would be 
expected given that the protein is overex- 
pressed in most p53-mutant cell types (29). 

Compounds 2802 to 3309 include- a 
large percentage of the familiar cytotoxic 
antitumor agents. Of 86 agents considered 
evaluable on the basis of phase I1 clinical 
trials (31 ), 45 appear in this relatively small 
region of the map, giving an odds ratio of 
(45/41)/(463/3440) = 8.2: 1 (P < 0.0001 
by Fisher's exact test). This odds ratio sub- 
stantially understates the enrichment of 
this region of the map with clinical agents 
because the region is artificially enlarged by 
the many analogs synthesized on the basis 
of the clinical molecules (21 ). 

The correlation of p53 pathway factors 
with activity patterns for a subset of the 
clinical agents with defined mechanisms of 
action (6, 8) is shown in Fig. 3. Most, 
although not all, of the agents damage 
DNA, and in this assay they tended to be 
more potent in p53 wild-type cells than in 
p53 mutant ones (32). The principal excep- 
tion was the set of antimitotic tubulin- 
active agents, including Taxol, which gen- 
erally do not show any clear correlation 
with p53 status. Examination of a previous- 
ly defined set (6, 8 )  of 123 standard anti- 
cancer agents (which overlaps with the set 
of clinical agents studied here) yields simi- 
lar results (30). . , 

The large majority of clinical agents ap- 
pear in this assay to be more active on 
average in the p53 wild-type cells (Fig. 4A). 
In contrast, the p53 association is much less 
pronounced for the set of 3989 multiply 
tested molecules (Fig. 4B) or for all com- 
pounds tested. We examined compounds at 
the left of Fig. 4B for agents that might be 
effective in p53-mutant human tumors. In 
this search for "p53-inverse" (or at least 
"p53-indifferent") compounds, we used the 
COMPARE and DISCOVERY program 
sets to generate lists of candidates on the 

%, 

basis of various sets of explicit criteria (20, 
33). Selected compounds are being tested in 
p53-isogenic human cell sets (34), and lead 
compounds that perform favorably will be 
further evaluated in vivo. 



Target-Target and 
Target-Structure Correlations 

As lnd~cated bv the  ClusCor lllatrlces 
shown in Fig. 5 ,  'the databases o n  activity, 
molecular structure, and targets have impli- 
cations for basic biology and pharmacology 
as lvell as for drug disco\-ery per se. T h e  
correlation of each target's pattern of ex- 
pression across the  60 cell lines n-ith that of 
each other target is shall-11 in  Fig. 5B. Val- - - 
ues of the  correlation coefficient o n  the  
main d i a g o ~ ~ a l  are, by definition, unity be- 
cause each target is 190'h correlated n.it11 
itself. T h e  red patches of high correlation 
straddling the  diago~lal appear because the  
targets are listed o n  both ordillate and ab- 
scissa in cluster order o n  the  basis of pat- 
terns of expression. Clusters of targets relat- 
ed to bldr-1, heat shock proteins, and p53 
function shon. hioh degrees of internal cor- 

L 7  c> 

relation. In  lnany illsta~lces (for example, 
that of p53 and i~lduction of the  donn-  
stream genes 112 1 ""lii"'F1, GADD45, and 
LIDA.42) this observation reflects the  
known hiochelnical relationships (27,  29) ,  
further ~a l ida t ing  the  significance of pat- 
terns seen in Figs. 2 and 5. 

A similar pattern of correlation is s h o a n  
in Fig. jC, n-hich relates targets to  each 
other, not in  terms of their levels of exnres- 
sion, but in terms of their relation to activ- 
ity profiles for the 3989 cornpo~~nds  in the  
database. Again, the  same three families of 
targets are highly correlated. As the cells 
are characteri~ed n.it11 resnect to more and 
more targets, these correlatio~ls xi11 gener- 
ate a n  increasing number of testable cell - 
biological hypotheses for further study. T h e  
relation of targets to chemical substructures 
of compounds through the  database of ac- 
tivity patterns is sllo\vn in Fig. 5D. Al- 
though no~lrandom patterns are apparent, 
the\- are less pronounced, and other, non-  
linear  neth hods of analvsis ( i l lc l~~dinn ones 
based o n  genetic algorithm and neural net- 
\\-c~rks) may prove to be better suited for 
analysis of this type of relationship. 

Hypothesis Generation in the 
Molecular Pharmacology of 

Cancer 

T h e  approach to drug discovery and molec- 
ular pharmacology presented here serves a 
number of functions. ( i )  It suggests novel 
targets and lnechanisms of action or modu- 
lation. (ii) It detects inhibition of integrat- 
ed biochemical pathlvays not adequately 
represented by any single molecule or mo- 
lecular interaction. (This feature of cell- 
based assays is likely to  lie Inore i~uportant  
in the  development of therapies for cancer 
than it is for most other diseases; in the  case 
of cancer, one is fighting the  plasticity of a 

poorly controlled genome and the selective 
evolutionary pressures for development of 
drug resistance.) (iii) It provides candidate 
~ n o l e c ~ ~ l e s  for secondary testing in hiochem- 
ical assays; conversely, it provides a n-ell- 
characterized biological assay in  vitro for 
compounds emerging from biochemical 
screens. (iv) It "fingerpri~lts" tested com- 
pounds xvith respect to a large number of 
possible targets and modulators of activity. 
( v )  It provides sucll fingerprints for all pre- 
viously tested co~npounds n-11e1lever a new 
target is assessed in many or all of the  69 
cell lines. ( In  contrast. if a batterv of assavs 
for different biochemical targets were ap- 
plied to, for example, 6L1,00L1 compounds, it 
ivould be necessary to retest all of the corn- 
pounds for any I lea  target or assay.) (vi)  It 
links the molecular pharmacology n i t h  
emerging databases o n  molecular markers in  
microdissected human tumors-1vhic11, un- 
der the  rubric of this article, constitute clin- 
ical (C) databases (35) .  (vii) It provides the  
basis for pharmacophore development and 
searches of an  S database for additional 
candidates. If an  agent lvith a desired action 
is already k n o \ \ - ~ ~ ,  its fingerprint patterns of 
activity call be used by COIZIPARE, DIS- 
COVERY, neural networks, and other pat- 
tern-recognition technologies to find simi- 
lar comvounds. 

This approach to  drug discovery and mo- 
lecular pharmacology can he likened to  a 
clinical trial xvith 6L1 patients (cell types), 
each profiled lvith respect to a variety of 
molecular markers and each treated a-ith 
69,990 different agents, one a t  a time. It can 
also be considered as a hypothesis generator 
based o n  a set of 6L1,0L10 X 60 = 3.6 million 
pllarn~acology experiments. T h e  important 
n-ord here is "hypothesis." Information from 
the  cell lines is funda~llentally correlative 
and subject to  confounding influences. Hy- 
potheses generated must be tested hy means 
of biochemical assavs or isooenic systems 
that differ, insofar as possible: with respect 
to j ~ ~ s t  one factor. Conversely, hypotheses 
based o n  experiments with particular iso- 
genic cell sets can he assessed for generality 
according to  xhether  they correctly predict 
responses for most of the  69 cell lines in 
the  screen. For example, the  overall im- 
nact of 1353 f ~ ~ n c t i o n  on cellular chemo- 
sensitivity can  be affected by multiple ge- 
notypic and phenotypic factors tha t  deter- 
mine t h e  balance between p53-mediated 
apoptosis o n  the  one  hand and G, arrest 
and D N A  repair o n  the  other (29) ;  results 
obtained for one  parental cell type can  be 
misleading if generalized to  others. T h e  
target and activity databases have, in- 
creasingly, provided us with a basis for 
rational choice of parental and transfected 
cell pairs to  use in  experiments addressing 
particular biological questions. 
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