11.
12.
18.
14.
16.
16.
17.
18.

19.
20.

21,

22,

283.

24,

25,

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.
36.
37.

38.

G. Salton, Ed., The SMART Retrieval System: Exper-
iments in Automatic Document Processing (Pren-
tice-Hall, Englewood Cliffs, NJ, 1971).

M. E. Williams, Science 228, 445 (1985).

F. W. Lancaster and E. G. Fayen, Information Re-
trieval On-Line (Melville, Los Angeles, 1973).

R. K. Summit, in Proceedings of the 22nd National
Conference of the Association on Computing Ma-
chinery (Thompson, 1967), pp. 51-56.

C. T. Meadow, Database (October 1988), p. 23.

D. B.McCarnand J. Leiter, Science 181, 318 (1973).
G. Salton and M. McGill, Introduction to Modern
Information  Retrieval (McGraw-Hill, New York,
1983).

R. S. Marcus and J. F. Reintjes, IEEE Trans. Syst.
Man Cybern. 12, 116 (March-April 1982).

M. E. Williams, J. Am. Soc. Inf. Sci. 37, 204 (1986).
B. R. Schatz, in Proceedings of IEEE Globecom 187
(IEEE, New York, November 1987), pp. 1181-1186.
For example, as a member of the Internet Research
Task Force, | was one of the few members of the
generation after the pioneers invited to speak at the
20th Anniversary Symposium for the ARPANET at
the University of California at Los Angeles in 1989.
My talk, “Telesophy: Towards World-Wide Informa-
tion Spaces,” although full of technical details and
projections, seemed grand and futuristic at that point
(August 1989).

B. R. Schatz, ‘Telesophy,” Bellcore TM-ARH-
002487 (August 1984).

__,inProceedings of the 5th IEEE International
Conference on Data Engineering (IEEE, New York,
1989), pp. 188-197.

D. C. Engelbart and W. K. English, in Proceedings of
the Fall Joint Computer Conference (AFIPS Press,
New York, 1968), vol. 33, part 1, pp. 395-410.

C. F. Herot, Assoc. Comput. Mach. Trans. Database
Syst. 5, 493 (1980).

An inspiration for knowledge regions was T. Nelson,
who designed a grand system called Xanadu to han-
dle all the world’s knowledge as a single hyperlitera-
ture across multiple collections. His unimplemented
treatise, Literary Machines (1981), contained many
suggestions for building new documents by annotat-
ing and linking parts of old.

A. Goldberg and D. Robson, Smalltalk-80: The Lan-
guage and lts Implementation (Addison-Wesley,
Reading, MA, 1983).

B. Kahle et al., Electron. Networking 2, 59 (spring
1992).

B. Kahle, personal communication. Kahle developed
the WAIS software at Thinking Machines with fund-
ing from Apple Computer and later started WAIS
Inc., which was purchased by America Online.

B. R. Schatz and J. B. Hardin, Science 265, 895
(1994).

The two predominant Web browsers are derived
from Mosaic: Netscape Navigator was built by the
original developers after they left NCSA, and Mi-
crosoft's Internet Explorer has at its core a licensed
version of Enhanced Mosaic which is produced by
Spyglass as the official commercial distributor of
NCSA Mosaic. Historically, Telesophy played a role
in Mosaic as well, because | have been the scientific
advisor for information systems at NCSA since 1989,
and Mosaic was one of several attempts at NCSA to
reproduce the functionality of Telesophy for the gen-
eral scientific community.

Lycos is a spin-off company from digital library
projects at Carnegie-Mellon University. See http://
www.lycos.com/

Alta Vista was a project, now a service, from Digital
Equipment Corporation’s Research Laboratories.
See http://altavista.digital.com/

B. Schatz and H. Chen, IEEE Comput. 29, 22 (May
1996).

The May 1996 special issue of IEEE Computer con-
tains overview articles from all six DLI projects. See
http://www.computer.org/pubs/computer/dii/

B. Schatz et al., Computer 29, 28 (May 1996).

E. van Herwinjnen, Practical SGML (Kluwer, Boston,
1994).

F. W. Lancaster, Vocabulary Control for Information
Retrieval (Information Resources Press, Arlington,
VA, 1986).

334

39. C. Lynch and H. Molina-Garcia, Eds., “Interoperabil-
ity, Scaling, and the Digital Libraries Research Agen-
da,” 22 August 1995. Available at http://www.
hppc.gov/reports/report-nco/reports/iita-diw/
main.html. The Information Infrastructure Technolo-
gy and Applications (IITA) group is the highest level
technical committee of the Federal NIl Program.

40. S. Nadis, Science 272, 1419 (1996).

41. H. Chen et al., IEEE Trans. Pattern Anal. Mach. Intell.
18, 771 (1996).

42. H. Chen, J. Martinez, T. Ng, B. Schatz, J. Am. Soc.

Inf. Sci. 48, 17 (1997).

P. B. Kantor, Annu. Rev. Inf. Sci. Technol. 29, 53

(1994).

44, R. T. Niehoff, J. Am. Soc. Inf. Sci. 27, 3 (1976).

45. The vocabulary switching computation used biblio-
graphic abstracts from Compendex (engineering and
science) and Inspec (electrical engineering and com-
puter science). Compendex has 40 broad subject
classes (for example, computer science) and 600
class codes total. Inspec is narrower and deeper than
Compendex, and the computation included about
150 classes at its highest level, the same as the lowest
level of Compendex:-Because Inspec has roughly
2500 classes all together, the collection spanned in
total about (600/150)2500 = 10,000 community re-
positories across all of science and engineering. This
size is similar to that calculated by Licklider, who stat-
ed 100 fields and 1000 subfields, because communi-
ties are the next deeper level (for example, Smalltalk is
a community within the subfield of programming lan-
guages, within the field of computer science). A typical
community repository in this computation or in the
previous molecular biology computations has 5000

43.

documents, at 20 kilobytes per document for full text.

The size of a subfield literature is thus 10 times this, 1

gigabyte, just as computed by Licklider. The vocabu-

lary switching computation thus spanned a represen-
tative set of all scientific literature (it used abstracts,
not documents, and a sample of communities, so it

did not compute the complete literature in toto).

B. R. Schatz, “Information Analysis in the Net: The

Interspace of the Twenty-First Century”, a CIC Fo-

rum White Paper for America in the Age of Informa-

tion: A Forum, Committee on Information and Com-
munications (CIC) of the National Science and Tech-
nology Council, July 1995. Available at http://www.
hpcce.gov/cic/forum/CIC_Cover.html. The CIC is one
of nine committees reporting directly to the-Science

Adviser to the President of the United States.

47. B. R. Schatz, "Building the Interspace,” http://csl.
ncsa.uiuc.edu/interspace.html

48. J. M. Nyce and P. Kahn, From Memex to Hypertext:
Vannevar Bush and the Mind’s Machine (Academic
Press, San Diego, CA, 1991).

49. | thank the members of the DLI project at the Univer-
sity of lllinois in general and the Interspace project in
particular, especially H. Chen, K. Powell, and C. Her-
ring. C. Bourne, who was a pioneer in the early days
of online information retrieval, carefully reviewed the
historical details and suggested many corrections. L.
Smith and P. Cochrane also kindly helped with the
periods that predated my direct experiences. K.
Powell helped with preparation of the figures. Sup-
port was provided through NSF-ARPA-NASA DLI
grant IRI-94-11318COOP and my NSF Young Inves-
tigator award IRI-9257252 in science information
systems.

46.

Mathematical and Computational
Challenges in Population Biology
and Ecosystems Science

Simon A. Levin,* Bryan Grenfell, Alan Hastings,
Alan S. Perelson

Mathematical and computational approaches provide powerful tools in the study of
problems in population biology and ecosystems science. The subject has a rich history
intertwined with the development of statistics and dynamical systems theory, but recent
analytical advances, coupled with the enhanced potential of high-speed computation,
have opened up new vistas and presented new challenges. Key challenges involve ways
to deal with the collective dynamics of heterogeneous ensembles of individuals, and to
scale from small spatial regions to large ones. The central issues—understanding how
detail at one scale makes its signature felt at other scales, and how to relate phenomena
across scales—cut across scientific disciplines and go to the heart of algorithmic de-
velopment of approaches to high-speed computation. Examples are given from ecology,

genetics, epidemiology, and immunology.

Mathematical and computational ap-
proaches to biological questions, a marginal
activity a short time ago, are now recog-
nized as providing some of the most power-
ful tools in learning about nature; such ap-
proaches guide empirical work and provide
a framework for synthesis and analysis (I,
2). In some areas of biology, such as molec-
ular biology, the advent has been recent but
rapid—for example, as an adjunct to the
analysis of nucleic acid sequences or the
structural analysis of macromolecules. In
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population biology, in contrast, the mar-
riage between mathematical and empirical
approaches has a century-long history, rich
in tradition and in the insights it has pro-
vided. Statistics and stochastic processes,
for example, derive their origins from bio-
logical questions, as in Galton’s invention
of the method of genetic correlations and
Fisher’s creation of the analysis of variance
to study problems in agriculture (I).
Branching processes were developed to de-
scribe genealogical histories, and even such



classical subjects as dynamical systems the-
ory have been enriched by contact with
problems in population biology [(see 3, 4)].

In recent years, the nature of the game
has changed, primarily because of the avail-
ability of high-speed computation. Classical
approaches to population biology—Ilike
classical approaches to other problems in
biology— emphasized deterministic systems
of low dimensionality, and thereby swept as
much stochasticity and heterogeneity as
possible under the rug. New techniques and
the availability of more powerful computers
have led to the development of highly de-
tailed models in which a wide variety of
components and mechanisms can be incor-
porated. In a model of animal grouping,
every animal can be tracked; in a forest
model, every tree; in an epidemiological
model, every individual in the population.

Because models of this sort may provide
an unjustified sense of verisimilitude, it is
important to recognize them for what they
are: imitations of reality that represent at
best individual realizations of complex pro-
cesses in which stochasticity, contingency,
and nonlinearity underlie a diversity of pos-
sible outcomes. Individual simulations can-
not be taken as more than representative of
this diversity, but repeated simulations can
provide statistical ensembles that contain
robust kernels of truth. The problem be-
comes one of the central problems in sci-
ence: determining what is signal and what is
noise by understanding what detail at the
level of individual units is essential to un-
derstanding more macroscopic regularities.

The issues raised above cut across popu-
lation biology and ecosystems science, from
the immune system to the biosphere. At
each level, dynamics can be observed to
emerge from the collective behaviors of in-
dividual units. The challenge, then, is to
develop mechanistic models that begin
from what is understood (or hypothesized)
about the interactions of the individual
units, and to use computation and analysis
to explain emergent behavior in terms of
the statistical mechanics of ensembles of
such units. In the following sections, this
challenge is examined for a range of scien-
tific problems. Many of the ideas are expli-
cated in more detail in (I) and represent
conclusions derived more recently in (5).
The areas discussed range across a spectrum
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of problems in population biology, from the
populations of B cells and T cells in the
immune system, to the variety of genotypes
within a population, to the diversity of pop-
ulations in the biosphere. Though the na-
ture of the biological problems differs, the
similarity is what stands out: An individual
organism is a biosphere in miniature—with
competition, exploitation, mutualism, suc-
cession, and nutrient cycling—that pro-
vides the stage for evolutionary changes on
the small scale, including selfish and coop-
erative behaviors. Although the subdisci-
plines that are highlighted have their indi-
vidual cultures and dynamics, the common-
ality of the mathematical and computation-
al challenges can foster positive feedbacks
that would otherwise not occur.

Ecology

The characterization of ecological interac-
tions provides one of the most venerable of
venues for mathematical biology, dating

back at least as far as Volterra’s consider--

ation of the fluctuations of the Adriatic
fisheries. The challenges facing us today—
for example, in the consideration of global
change and the loss of biodiversity, and in
achieving a sustainable future (6)—elevate
the complexities to new levels.

General circulation models are provid-
ing detailed information on likely scenarios
of climate change and the global fluxes of
key elements such as carbon and nitrogen.
Typically, the resolution of such models is
at the scale of hundreds of kilometers; how
then can we assess likely effects on natural
and managed systems, where the scales of
interest are typically on the order of meters
or even centimeters! Even more difficult,
how can we extrapolate from the level of
effects on individual plants and animals to
changes in the distribution of individuals
over longer time scales and broader space
scales, and hence in community-level pat-
terns and the fluxes of nutrients?

Individual-based models, such as the for-
est growth simulators JABOWA (7),
FORET (8), and SORTIE (9), provide a
point of departure, but the amount of detail
in such models cannot be supported in terms
of what we can measure and parameterize.
The result is that these models produce car-
toons that may look like nature but repre-
sent no real systems. However, they do rep-
resent powerful experimental tools, which
become more valuable when used to pro-
duce exhaustive simulations that allow ex-
ploration of parameter space and model
structures; such models permit adequate rep-
resentation of the full statistical ensemble of
possible realizations associated with the
many stochastic elements. The development
of extensive sets of outputs from multiple
SCIENCE »
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runs forms the basis for extracting essential
and more robust features that can be com-
pared with data, and that can provide the
foundation for simplification (10, 11). Sim-
plification techniques may include familiar
tools such as renormalization or moment
closure (12) in approximations that present
more interpretable representations of pat-
tern and dynamics. Computation is an es-
sential adjunct to analysis in developing and
testing these approximations.

SORTIE provides a case study in the
range of computational problems that can
arise with ecological data. Designed to sim-
ulate the growth of northeastern forests,
SORTIE is a stochastic and mechanistic
model that follows the fates of individual
trees and their offspring. It uses species-
specific information on growth rates, fecun-
dity, mortality, and seed dispersal distances,
as well as detailed, spatially explicit infor-
mation about local light regimes, which
change in response to changing distribu-
tional patterns of nine dominant or sub-
dominant species. The outputs are dynamic
maps of tree species distributions that look
like real forests (Fig. 1) and match data
observed in real forests at appropriate levels
of spatial resolution. Models of this sort, if
verified, obviously provide powerful tools
for prediction under various hypothetical
scenarios of future climate change; more
reliably, they provide tools for exploring
hypotheses regarding the mechanisms un-
derlying the maintenance of biodiversity
and ecosystem processes.

Yet it is fair and important to ask how
seriously such predictions should be taken.
Surely, such models should not be expected
to predict where every tree will be at each
point in time; only aggregate statistical
properties can be reliably predicted, typical-
ly over broad spatial and temporal scales.
The great detail regarding local light re-
gimes may be important to the growth of
individual trees, but forest dynamics can
respond in predictable ways only to more
general features of light regimes. To derive
robust statements about these systems, it is
essential to understand what detail at the
local level affects the broader scale patterns,
and what is noise.

One approach to this problem [for ex-
ample, (10)] is to carry out extensive simu-
lations in which different degrees of
smoothing and aggregation are used, to de-
termine how much information is lost by
averaging, and to find out where error is
compressed and where it is enlarged in the
course of this process. SORTIE typically
involves tens of thousands of trees, each
having an associated light regime resolved
into 216 pixels. The magnitude of the sys-
tem requires high computational power
even for individual simulations; the tasks
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described above magnify this challenge by
requiring exploration of statistical ensem-
bles through multiple runs and complex
statistical analyses. Simulations carried out
for heterogeneous environments require an
interface between large dynamic simula-
tions and geographic information systems,
providing real-time feedbacks between the
two. In some cases, these tasks simply in-
volve known techniques and many cycles,
and in other cases they involve the devel-
opment of new algorithms. There are many
outstanding theoretical challenges.

Simplification through extensive simu-
lations is a powerful brute-force method,
but the development of analytical ap-
proaches to simplification transforms art
into science. Again, there is the need both
for adapting existing methodologies and for
developing new ones. SORTIE may provide
the starting point, but abstracted analytical
descriptions can potentially reproduce es-
sential qualitative features, and thereby pro-
vide more robust and interpretable descrip-
tions of vegetational dynamics. Evaluation
of such simplifications requires the output
from extensive simulations, the numerical
solutions of coupled partial-differential in-
tegral equations (11, 13), and the develop-
ment of theoretical generalizations that
may raise sophisticated mathematical chal-
lenges. The richness of mathematical and
computational issues is matched only by the
great potential for increasing our ability to
understand and predict the dynamics of for-
ests. Moreover, the creation of interfaces
between the self-organizing dynamics im-
plicit in these models and the imposed en-
vironmental regimes derived from geo-
graphical information systems, remote sens-
ing, or the output of climate models allows
exploration of the interplay between intrin-
sic and extrinsic factors in shaping vegeta-
tional patterns.

Global change and vegetational re-
sponses to it provide one set of challenges,
but similar issues exist in the description
of other ecological phenomena. Popula-
tions typically are made up of diverse and
heterogeneous assemblages of individuals,
each with unique characteristics. As such,
they differ from the more uniform assem-
blages usually treated in statistical me-
chanics, but the challenges are similar.
How do we represent the mean dynamics
of such heterogeneous assemblages with-
out retaining all of the detail, much of it
irrelevant to the essential dynamics? How
much information, beyond variances and
covariances, do we need to retain in order
to provide reasonable descriptions, and
how can we close up those descriptions in
terms of the dynamics of the higher mo-
ments? Similar questions exist classically
not only in the physical sciences, but also
in evolutionary biology (14). Evolution
feeds off the variances and covariances
within populations, and in return helps to
shape that variance-covariance structure.
The recognition of this phenomenon, and
of ways to deal with it, has provided some
of the most powerful approximations to
the dynamics of quantitative inheritance.

The maintenance of biological diversi-
ty and approaches to sustainable use raise
similar issues. The heterogeneous distribu-
tion of resources and exploiters is a fact of
overwhelming importance to understand-
ing dynamic interactions, as well as an
ecological and evolutionary consequence
of those interactions (11, 13). Thus, the
description of the dynamics of aggrega-
tions of fish, krill, birds, or foraging ver-
tebrates requires an understanding of how
factors at the level of individuals deter-
mine the cohesion, fusion, and fission of
groups, and of the consequences of those
processes and patterns for ecological inter-

Fig. 1. Visualization of a 9-hectare SORTIE forest, 500 years into the simulation. Each cylinder repre-
sents an individual, where height and cylinder diameter are based on species-specific parameters (96).
Green, Eastern hemlock; purple, beech; yellow, yellow birch.
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actions such as harvesting for food or pre-
dation. Again, a powerful starting point is
the individual: Lagrangian descriptions of
individual movements make attractive
cartoons (15) and can provide a basis for
analysis; and again, extensive simulations
can provide the foundation for the explo-
ration of robust cause-and-effect relations
and for the extraction of statistical me-
chanical and Eulerian field descriptions
that capture the essence of the dynamics.
In the same manner as for the vegetational
systems the interplay between extrinsic
and intrinsic factors can also be explored
through computation—for example, by
imposing flow regimes derived from
Navier-Stokes equations upon the dynam-

-ics of attraction and repulsion in marine

systems (16).

Spatial heterogeneity is the most obvi-
ous of ways that nonuniform distributions
may be important, but other dimensions
provide even greater challenges. In epide-
miology (see below), heterogeneous mixing
among different risk groups can provide a
fundamentally altered view of disease dy-
namics, especially for sexually transmitted
diseases (STDs). Regarding biological di-
versity, although it is widely acknowledged
that species are being lost at rates never
before experienced, what is equally impor-
tant is the loss of diversity at other scales—
not only within species (genetic diversity,
or even simply the loss of populations), but
also within functional groups of species per-
forming essential ecosystem functions. The
most important consequences of the disap-
pearance of biodiversity may be in the loss
of such ecosystem services as the mainte-
nance of fluxes of nutrients and pollutants,
the mediation of climate and weather, and
the stabilization of coastlines.

In developing priorities for the conserva-
tion of biodiversity, it becomes important to
identify and understand the most fragile and
critical components of ecological systems, in
terms of their capability to sustain these
services. Again, this means understanding
the degree to which aggregate behavior is
linked to the dynamics of higher moments
representing distributional features. The ap-
proach is the same as discussed previously
[for example, (17)]: extensive simulations of
detailed models, comparison with aggregat-
ed models, and the development of rules for

- relating these models to one another and for

providing simplified descriptions. In all of
these problems, there are common mathe-
matical and computational challenges that
range from techniques for representing and
accessing data sets, to algorithms for simu-
lation of large-scale spatially stochastic sys-
tems, to the development and analysis of
simplified descriptions. These themes will
reappear below.



Genetics and Evolution

The heritage of mathematics in evolution-
ary and genetic studies has been extraordi-
nary, beginning with the work of the three
giants—Fisher, Haldane, and Wright—and
continuing to this day. Although much of
the basic framework of population genetics
thus has roots deep in the history of the
subject, contemporary questions ranging
from the very basic (18) to the applied [for
example, conservation biology (19) and the
use of transgenic organisms] are raising new
and important mathematical challenges.
Despite the relative simplicity of the under-
lying genetic models, complexities ranging
from multiple loci to spatial factors to the
role of frequency dependence in evolution
(20) lead to problems that require sophisti-
cated computational approaches. The con-
siderations underlying the management and
analysis of genetic sequence data are well
known; hence, the following discussion fo-
cuses on other facets of evolution and ge-
netics that lead to deep computational and
mathematical challenges, especially regard-
ing dynamics.

Although the dynamics of alleles at sin-
gle loci were well understood in the 1920s,
the inclusion of just one more locus leads to
models whose dynamics are still not com-
pletely understood, even in the determinis-
tic case (21). A full understanding of the
behavior of these two-locus models has re-
quired the use of a variety of computational
approaches, from straightforward simulation
[for example, (22)] to more complex anal-
yses based on optimization (23) or the use
of computer algebra systems. The consider-
ation of as few as three loci leads to models
whose behavior can only be understood by
means of numerical approaches, except for
some very special cases (21, 24); yet the
number of loci exhibiting genetic variation
in populations of higher organisms is well
into the thousands. Including all this com-
plexity leads to the consideration of popu-
lations in which the number of possible
genotypes could be much larger than the
population. Thus, stochastic effects become
paramount, and even the simulation of such
populations (25) leads to problems of sub-
stantial computational difficulty (26).

Faced with the impossibility of construct-
ing a theory of evolution of characters con-
trolled at many loci by detailed consider-
ation of what is going on at each locus,
evolutionary biologists have turned to more
macroscopic representations at the level of
the phenotype, an attractive option because
of the ease of observation and description.
The simplest such approaches involve quan-
titative traits, such as height or weight, or
other traits of ecological interest that repre-
sent the sum of multiple small effects. Re-

cently, there have been substantial efforts
(14) to integrate the long tradition of using
statistical approaches to model the dynamics
of quantitative traits with the more mecha-
nistic genetic approaches, and hence to pro-
vide a rigorous basis for treating quantitative
traits. The problem of closure arises again,
and even under simplifying assumptions
concerning the relation between genotype
and phenotype, further approximations are
required to obtain a closed system of equa-
tions (14, 27). Confirmation of the appro-
priateness of these approximations ultimate-
ly rests on comparisons with both natural
and artificial populations as well as on the
results of computer simulations.

The study of complex adaptations can
lead to questions about the evolution of
evolvability itself (28, 29). How does selec-
tion act to modify the capability of organ-
isms to adapt to changing environments?
This can become an extraordinarily com-
plex question; one intriguing avenue to
identifying the kinds of questions that arise
has been to create “artificial life” through
computer simulations [for example, (30)],
and hence to explore how the rules that
govern evolution develop and become mod-
ified. Often, the resulting simulations are so
seductive that the boundary between truth
and fiction becomes blurred, but the poten-
tial for developing novel insights cannot be
denied. Needless to say, the computational
problems that arise are substantial and are
leading to new innovations in programming.

The flow between computation and bi-
ology is not one-way; as in the example of
artificial life, computation can draw inspi-
ration from biology. A case in point in-
volves the invocation of evolutionary pro-
cesses that use a variety of distinct ap-
proaches (29, 31, 32), all of which have at
least some of the formal structure of genetic
systems, to solve very complex optimization
problems by identifying strategies with
computer “genotypes.” For various reasons,
the solutions found by such approaches may
bear little similarity to how natural selec-
tion solves similar problems (32). Histori-
cally, the search for optimization principles
to apply to natural evolutionary systems has
had limited success, largely because of fre-
quency dependence (the dependence of rel-
ative fitnesses on the frequencies of types in
the populations); that is, evolution is best
understood as a problem in game theory
rather than optimization theory.

To address problems of frequency depen-
“dence, which arise naturally in the consid-
eration of most interesting ecological prob-
lems, Maynard Smith introduced the no-
tion of an evolutionarily stable strategy
(ESS) (33), which has been used extensive-
ly to understand the evolution of behavior,
especially altruistic behaviors. An elegant
SCIENCE -«
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theory developed by Hamilton (34) based
on inclusive fitnesses can explain why in-
dividuals might forego their own fitnesses to
help relatives, but the evolution of altruism
between unrelated individuals is much
more difficult to explain.

The central issue in the evolution of
altruism is to determine how cooperation
can evolve through individual selection. A
simple model system is provided by the fa-
miliar game of prisoner’s dilemma, for which
the game theoretic solution (for a single
encounter) is noncooperation (Fig. 2). Evo-
lutionary biologists have been able to ex-
plain the evolution of altruism by focusing
on multiple repetitions of the games and on
correlations that arise in time or space; such
correlations affect realized payoffs because
they affect who plays with whom.

In particular, when the game is played
repeatedly, as in iterated prisoner’s dilemma
(35), it can be shown that tit-for-tat, which
consists of beginning with cooperation and
then using the strategy used by the other
“player” in the previous interaction, is better
than the pure defecting strategy [and that no
pure strategy is an ESS (36)]. Sophisticated
simulations (37) allow exploration of more
complex ESSs in which individuals remem-
ber past interactions, and the result is a
greater ease of evolving cooperative strate-
gies. Spatial localization of interactions fur-
ther increases the probability that the same
partners will play the game repeatedly and
facilitate evolution of cooperatives.

In general, the introduction of explicit

Player 1
Cooperate Defect
()
B Reward for Sucker’s
g mutual payoff
8 cooperation
8 .
~
s
8
o
5 . Punishment
g Teg';;ggo” for mutual
a defection

Fig. 2. Payoff matrix in the prisoner’s dilemma
game, where each box lists the payoff to player 2
when players 1 and 2 play the pair of strategies
indicated [redrawn from (97)]. The game is a pris-
oner’s dilemma if the reward for cooperation is
greater than the average of the sucker’s payoff
and the temptation payoff, and the payoffs are
ordered so that temptation payoff > reward for
cooperation > punishment > sucker’s payoff. In
an evolutionary sense, the problem is to explain
how strategies involving cooperation among non-
related individuals evolve.
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space produces further complications, lead-
ing to results that depend fundamentally on
population structure and movement rules.
The underlying principle is that the evolu-
tion of traits for which fitnesses are frequen-
cy-dependent requires knowledge of which
individuals are interacting; thus, for large
populations, simulations (38, 39) are need-
ed to understand dynamics in spatially
structured populations. Prisoner’s dilemma
is a caricature, and more biologically rele-
vant studies are beginning to show the im-
portance of the spatial localization of inter-
actions in the evolution of both cooperative
and antagonistic behaviors (38, 40). Sub-
stantial questions remain to be explored,
including the evolution of more complex
behaviors [for example, (41)] and coevolu-
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tionary questions. For parasite-host systems,
the problem has been well studied [for ex-
ample, (42)], but more diffuse interactions
involving many species introduce challeng-
es similar to those that arise in going from
two loci to many loci. Fundamental chal-
lenges exist in understanding how commu-
nity properties emerge from the evolution
of component species, an issue that is at the
core of research into biodiversity.

Infectious Diseases

The mathematical theory of the population
biology of infectious diseases dates back at
least as far as Daniel Bernoulli’s mathemat-
ical analysis of smallpox control in 1760.
The main impetus for this highly successful
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field has been the great impact of disease on
human health and agriculture, both histor-
ically and in facing the threat of acquired
immunodeficiency syndrome (AIDS) and
other emerging diseases. However, parasite
ecology—which effectively links ecological
and immunological dynamics—also pre-
sents a number of fundamental questions for
mathematical and computational research.
Simple models have been remarkably suc-
cessful in capturing many features of host-
parasite dynamics and control (43, 44).
However, as with ecology, the interaction
between spatial and genetic heterogeneity,
nonlinearity, and stochasticity can compli-
cate this picture.

« A major preoccupation for epidemiolog-
ical modeling is how transmission varies
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Fig. 3. The spatiotemporal dynamics of measles illustrate the major open
computational problems presented by heterogeneities in infectious disease
transmission. (A) Time series of total weekly measles notifications for 60
towns and cities in England and Wales, for the period 1944 to 1994; the
vertical blue line represents the onset of mass vaccination around 1968. (B)
An image plot, showing the breakdown of cases for individual centers,
ranked by population size; red indicates zero notifications, and other colors
represent cases on a topological scale, from blue (small) to green and brown
(large). The large-scale prevaccination dynamics are well represented by
age-structured deterministic models (46, 47, 54, 98-101). (C and D) Pattern
comparisons. The average observed hiennial pattern (= SE) is compared in
(C) with the limit cycles of the best-fit deterministic model (solid line) [see (47,
98) for more details]. By contrast with homogeneous models, which tend to
predict large-amplitude chactic dynamics (50), this age-structured formula-
tion indicates that stochastically perturbed coexisting limit cycles may be the
norm (702). A horizontal line in (B) marks the population threshold—the
critical community size (CCS) (103)—above which measles persisted endem-
ically, without local extinction of infection, in the prevaccination era. Recent
developments of stochastic models can begin to capture this threshold (54),
though much more needs to be done in explaining fully the complex spatio-
temporal structure summarized in (B). The framing of explicit spatial struc-
ture—as “patch” models (46, 99), pair approximations to individual-level
interactions (704), and power-law approaches to irregular epidemics in small
populations (105—shows promise for exploring the persistence of measles
metapopulations (707). However, modeling anything approaching the full
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hierarchical spatial dynamics will require refinements to computational and
analytical approaches and to nonlinear statistical analyses of the balance
between deterministic and stochastic dynamics (58). One of the most inter-
esting questions for such models is to explore the emergent spatial effects of
vaccination. The CCS in (B) remained remarkably constant during most of the
vaccine era (53, 106), and there was considerable persistence of measles
even in the 1990s when high vaccine uptake greatly reduced its incidence.
Preliminary analyses (53) indicate that this may be the result of a “rescue
effect” arising from the observed decorrelation of epidemics caused by vac-
cination (707). This is illustrated in (D), which shows how simulated epidemics
in two coupled centers (center 1, solid blue line; center 2, dashed red ling)
show global extinctions of infection, when the epidemics are in phase (top
panel). Moving the epidemics out of phase (bottom panel) eliminates fade-
outs attributable to cross-infection between the centers; details are given in
(63). Global fadeouts of infection in the two centers are denoted by breaks in
the green line on the time axis. The triangle and X in each panel illustrate the
phase shift; these points, which are a year apart in the top panel, are brought
together in the bottom panel by shifting center 2's dynamics forward in time.
Long-term changes in the availability of susceptibles, as a result of birth rate
trends, can also affect the spatiotemporal dynamics of infection in complex
ways (108).

with social or geographical space (44, 45).
A key theoretical issue here is how, and in
what detail, to represent spatial variations
in the intrinsically nonlinear contact pro-
cess underlying transmission. One of the
best illustrations of this process is provided
by the highly dynamic spatiotemporal epi-
demic pattern of measles (Fig. 3) (46—49).
An important set of analyses of simple,
homogeneous models predicted the possi-
bility of chaotic dynamics (50); however,
the resulting large-amplitude epidemics
generate unrealistically low persistence of
infection in small communities (51). Add-
ing successive layers of social and geograph-
ical space—and moving from deterministic
to stochastic models—improves spatial re-
alism and may reduce the propensity for
chaos (46, 47, 52-54).

The major computational challenge in
these highly nonlinear stochastic systems is
to represent hierarchical spatial complexity
and especially its impact on vaccination

strategies. Depending on the problem, all
scales—from the individual level to big cit-
ies—may be important, both in terms of
social space [family and school infection
dynamics (55)] and in terms of geographic
spread and coherency (Fig. 3). As in ecol-
ogy and evolution, a central question is:
How spatially aggregated and parsimonious
a model can provide useful results in a given
context? This is particularly important in
comparisons between directly transmitted
human infections—where long-range move-
ments may bring infection dynamics com-
paratively close to mean field behavior (in
which every individual is assumed to have
equal contact with every other individual,
thus experiencing the mean or average
field)—and the equivalent infections in
natural populations, where more restricted
movements and host population dynamics
add extra complexities (56).

It is risky to model at a given level of
detail without having data at the relevant
SCIENCE
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spatial grain. Notifiable infectious diseases
are unusually well provided here (Fig. 3),
with large and often as yet uncomputerized
spatiotemporal data sets. These data pro-
vide a huge potential testbed for developing
methods for characterizing spatiotemporal
dynamics in nonlinear, nonstationary sto-
chastic systems. An encouraging develop-
ment is that the current, generally nonpara-
metric, approaches to characterizing chaos
and other nonlinear behaviors are increas-
ingly incorporating lessons from mechanis-
tic epidemiological models (49, 57, 58).
The main focus for modeling social
space (the space of social interactions) and
disease is, of course, on AIDS and other
sexually transmitted infections. Simple
models illustrated clearly that heterogene-
ities in contact rates can substantially alter
the predicted course of epidemics (43). This
area has seen an explosion of research, both
in data analysis of contact structures and in
graph-theoretic and other approaches to
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modeling (43, 59, 60). Models and data
analysis are most productive when com-
bined, especially in allowing the observa-
tions to limit the universe of possible net-
works. The major computational challenge
is how to deal with the complexity of net-
works, where concurrency of partnerships
often means that closure to a few moments
of the distribution is difficult (60). This
problem is especially acute given the sen-
sitivity of obtaining data for STD net-
works, in that the nature of the network is
generally only partially and imperfectly
known (61). The use of mathematical
models for human immunodeficiency virus
(HIV) transmission will be especially im-
portant in assessing the impact of poten-
tial vaccines (62). Another major compu-
tational challenge—which developed with
the AIDS epidemic and is currently being
applied to another pathogen, the bovine
spongiform encephalopathy agent (63)—
is to estimate the parameters of transmis-
sion models from disease incidence and
other demographic data.

One hope for the future for both of these
areas is network information embedded in
viral genomes. A body of recent work indi-
cates exciting possibilities for estimating ep-
idemiological parameters from the birth and
death processes of pathogen evolutionary
trees (64). More generally, new mathemat-
ical and computational techniques will be
needed to understand the epidemiological
implications of the rapidly accumulating
data on pathogen sequences, especially in
the context of parasite genetic diversity and
the host immunological response to it (65).

The other major area of current epidemi-
ological interest, the impact of host and
parasite genetic heterogeneity and coevolu-
tion (66), has a distinguished history in
population genetics and epidemiology.
However, the revolution in both genome
research and molecular epidemiology is now
providing the foundations for much more
detailed explorations of the dynamics of host
and parasite strains. An important linked
area here is the question of immunoepide-
miology (67)—modeling the population-dy-
namic implications of the immunological
processes described in the next section.
These approaches come together, for exam-
ple, in recent work on the strain dynamics of
malaria (68), in which models of observed
strain and immunological variation indicate
a set of cocirculating strains rather than the
traditional homogeneous picture of a single,
highly transmissible entity.

The major computational question is
again to represent hierarchical spatial dy-
namics, but with the added problem (and
hence the added dimensionality) of com-
plex within-host dynamics and host-para-
site genetic diversity. The genetic dynamics
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of a wide variety of pathogens, from influ-
enza (69) and HIV to macroparasitic worms
(70) and plant parasites (66), have major
implications for the dynamics of control,
the evolution of resistance, and the emer-
gence of new pathogens.

These issues present a range of technical
computational problems in the assimilation
and analysis of data and model construc-
tion. For instance, moment closure (12) is a
promising possibility for approximating the
relatively smooth stochastic dynamics of
helminth worm infections and some plant
pathogens (66). By contrast, the spikey dy-
namics and frequent local extinctions of
infection in measles and influenza seem to
require more computer-intensive simula-
tion approaches.

Over the next few years, we foresee fur-
ther major development in computational
approaches to the complexities of host-par-
asite spatial and genetic dynamics. Two
areas that are likely to be of particular in-
terest are integrating dynamics at the epi-
demiological, genetic, and immunological
levels and exploring the new dynamical
properties of systems revealed by parasite
control strategies (Fig. 3). In terms of im-
pact on human welfare, research on the
dynamics of infectious diseases in develop-
ing nations is an important priority.

Immunology and Virology

Historically, mathematical and computa-
tional methods have not played a large role
in immunology and virology. This is now
changing, and impressive advances have
come from the use of simple models applied
to the interpretation of quantitative data.

The best example is in AIDS research.
As is well known, AIDS develops slowly;
the average time from HIV infection to the
development of full-blown AIDS is about
10 years. Modeling of the progression to
AIDS has received considerable attention
and has been able to capture much of the
observed phenomenology (71, 72). The
suggestion that progression to AIDS in-
volves a diversity threshold (72) has gener-
ated debate, new theory, and new experi-
mentation (73). The role of the immune
response in determining the pace of disease
progression has yet to be clarified, but
mathematical modeling has helped focus
attention on the role of cytotoxic T cells
(74, 75). Other key areas in which model-
ing has played and will continue to play an
important role are the understanding of
how HIV evolves resistance to antiretrovi-
ral drugs and the design of treatment strat-
egies (76).

Much of the 10-year period until AIDS
develops has been characterized as a period
of clinical latency, with low but constant
SCIENCE »
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levels of virus and infected cells in circula-
tion. Giving HIV-1-infected patients po-
tent antiretroviral drugs and using simple
dynamical models to analyze the ensuing
decline in viral load has led to important
insights into the in vivo processes involved
in HIV infection. This analysis established
that HIV is rapidly replicating and cleared
from the body (77) and revealed that the
average rate of HIV production was greater
than 10 billion virus particles per day, that
free virus particles were cleared with a half-
life that is probably 6 hours or less, and that
productively infected T cells had a life-span
of about 1.5 days (78). These results, which
derive from mathematical modeling, firmly
put to rest the view of AIDS as a slow
disease in which little happens for years
after infection, and replaced it with a new
paradigm in which rapid viral dynamics was
the centerpiece. Most important, uncover-
ing the rapid replication of HIV led to a
new understanding of the observed rapid
evolution of the virus and the seemingly
inevitable emergence of drug-resistant
forms of HIV-1. In part as a result of this
increased understanding, treatment proto-
cols using a single drug are being replaced
by protocols using combinations of antiret-
roviral drugs, which have a greater antiret-
roviral effect and which increase the num-
ber of mutations needed for resistance. The
early clinical results of combination thera-
py, along with mathematical modeling,
have now been used to obtain minimal
estimates for how long therapy needs to be
maintained until HIV is eliminated from
the body (79).

The new finding that HIV uses two re-
ceptors for entry into target cells—a prima-
ry receptor (CD4) and a coreceptor [a che-
mokine receptor, either fusin (now renamed
CXCR4) or CCR5] (80)—provides new
challenges and opportunities for modeling.
Using concepts from population genetics,
researchers have argued that individuals
who are homozygous for a 32-nucleotide
deletion in the CCR5 gene are resistant to
HIV-1 infection and otherwise show no
drastic decrease in fitness as a result of this
deletion (81). The homozygous defect is
found in approximately 1% of Caucasians of
Western European ancestry (81). Models of
HIV-1 dynamics have assumed that infec-
tion is a single-step process. New models
need to account for coreceptors and for the
interesting finding that high-affinity bind-
ing of HIV-1 gp120 to the first HIV recep-
tor, CD4, causes conformational changes in
gpl20 that lead to the creation of a new
recognition site on gpl120 for CCR5 (82).
Lastly, CCR5 has been identified as the
major coreceptor for macrophage-tropic
HIV-1 strains. Although some mathemati-
cal models have considered macrophage in-



fection (79, 83), none yet have incorporat-
ed coreceptors.

Opportunities also exist for modeling to
provide insights into the dynamics of other
infectious diseases. Hepatitis, which current-
ly infects more than 250 million people
worldwide, is an important target for mod-
eling, and work in this direction has begun
(84). Models that incorporate immune re-
sponses and deal with the issue of drug re-
sistance that can arise during treatment are
of great importance and can yield insights
into treatment strategies for tuberculosis,
HIV, and other infectious agents (76, 85).

Spatial considerations, which play a
large role in ecological and epidemiological
modeling, also enter into virological and
immunological problems. For example, in
humans, detection of virus is most easily
done in the blood, yet virus can be distrib-
uted throughout the body. Models and ex-
periments now need to address the question
of observability—that is, how well do mea-
surements in blood reflect other compart-
ments!? New experiments and models are
being designed that take into consideration
bodily compartments where virus and T
cells are found, for example, lymph nodes
(86). Also, because drugs are transported
through tissues, drug concentrations vary in
space and time. Models need to be devel-
oped that allow for drug transport and dif-
fering concentrations at different locations,
although some modeling has been initiated
in other contexts (87). Such models are
particularly relevant for agents such as
monoclonal antibodies that can rapidly
bind to cells as they move through tissue
(88). The implication of spatial and tempo-
ral gradients for the generation and selec-
tion of drug-resistant organisms needs to be
examined.

In basic immunology, issues related to
mutation also have been the focus of math-
ematical modeling and intense experimen-
tation (89, 90). During the course of an
immune response, B lymphocytes within
germinal centers can rapidly mutate the
genes that code for antibody variable re-
gions. The immune system thus provides an
environment in which evolution occurs on
a time scale of weeks. Among the large
number of mutant B cells that are generat-
ed, selection chooses for survival those B
cells that have increased binding affinity for
the antigen that initiated the response. Af-
ter 2 to 3 weeks, antibodies can have im-
proved their equilibrium binding constant
for antigen by one to two orders of magni-
tude, and may have sustained as many as 10
point mutations. How can the immune sys-
tem generate and select variants with high-
er fitness this rapidly and this effectively?
An optimal control model has suggested
that mutation should be turned on and offt

episodically in order to allow new variants
time to expand without being subjected to
the generally deleterious effects of muta-
tion (90). Time-varying mutation could
be implemented by having cells recycle
through one region of the germinal center,
mutating while there, and proliferating in
a different region of the germinal center
(90). This suggestion has generated new
experimental investigations of events that
occur within germinal centers (91). Op-
portunities exist for a range of models that
address basic questions about in vivo cell
population dynamics and evolution, as
well as more detailed questions involving
the immunological mechanisms underly-
ing affinity maturation.

Control of the immune response is an-
other area ripe for modeling. What deter-
mines the intensity of a response! How is
the response shut off when the antigen is
eliminated? Feedback mechanisms may ex-
ist to control the response intensity, re-
sponse length, and type of response (cellular
or antibody). Some models of a basic feed-
back mechanism involving two types of
helper T cells, T;;1 and T2, have been
developed (92); others are needed. Regula-
tory mechanisms involve interactions
among many cell populations that commu-
nicate by direct cell-cell contact and
through the secretion of cytokines. Dia-
grams representing the elements of regula-
tory schemes commonly have scores of ele-
ments. Because of the complexities in-
volved, theorists have an opportunity to
lead experimentation by providing sugges-
tions as to what needs to be measured and
how such measurements can be used to
provide an insightful view of possible con-
trol mechanisms.

A fundamental feature of the immune
system is its diversity. Successful recogni-
tion of antigens appears to require a rep-
ertoire of at least 10° different lymphocyte
clones. The diversity of the immune sys-
tem has challenged experimentalists, and
many recent advances have come from
developing experimental models with lim-
ited immune diversity. However, models
based on ecological concepts may provide
insights into the control of clonal diversity
(75, 93), and modern computational
methods now make it practical to consider
models with tens of thousands of clones.
Thus, it is possible to develop models that
start to approach the size of small immune
systems. Simulations have suggested that
from simple rules of cell response, emergent
phenomena arise that may have immuno-
logical significance (94). The challenge in
using computation is to develop models that
address important questions, are realistic
enough to capture the relevant immunology,
and yet are simple enough to be revealing.
SCIENCE »
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Conclusions

The problems discussed above are distin-
guished by their centrality to basic and
applied biological research as well as by the
mathematical and computational challeng-
es they pose. In this regard, they are in a
great tradition that reaches back to Galton
and Fisher, to Lotka and Volterra, with
such recent examples as the contribution of
population biology to the development of
the theory of chaos (1, 3, 5, 95). This is not
surprising; the central issues—understand-
ing how detail at one scale makes clear its
signature on other scales, and how to relate
phenomena across scales—cut across scien-
tific disciplines, and indeed go to the heart
of algorithmic development of approaches
to high-speed computation.

Imaginative and efficient computational
approaches are essential in dealing with the
overwhelming complexity of biological sys-
tems. Such approaches should comprise the
storage and retrieval of vast amounts of
information as well as the development of
simulation methods that must interact with
those data structures and deal with complex
hierarchical systems, taking advantage
where possible of parallel structures and
symmetries that allow simplification and
efficient organization of computational
steps. The potential for benefits to mathe-
matics and computational sciences as well
as to the applications of these methods will
create a rich mutualism, in which the rate
of advance is nonlinear. The face of the
science of computational population biolo-
gy and ecosystems science will change in
the next decade. Key challenges involve
ways to describe the dynamics of systems
that are aggregates of heterogeneous units,
representing the behavior of the means and
lowest moments in closed form. Spatial het-
erogeneity and spatial localization of inter-
actions introduce qualitatively new dynam-
ics, and they present theoretical and com-
putational issues that are similar across a
range of biological levels.
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Since 1990, the National Cancer Institute (NCI) has screened more than 60,000 com-
pounds against a panel of 60 human cancer cell lines. The 50-percent growth-inhibitory
concentration (Glg) for any single cell line is simply an index of cytotoxicity or cytostasis,
but the patterns of 60 such Gl values encode unexpectedly rich, detailed information
on mechanisms of drug action and drug resistance. Each compound’s pattern is like a
fingerprint, essentially unique among the many billions of distinguishable possibilities.
These activity patterns are being used in conjunction with molecular structural features
of the tested agents to explore the NClI's database of more than 460,000 compounds,
and they are providing insight into potential target molecules and modulators of activity
in the 60 cell lines. For example, the information is being used to search for candidate
anticancer drugs that are not dependent on intact p53 suppressor gene function for their
activity. It remains to be seen how effective this information-intensive strategy will be at

generating new clinically active agents.

Drug discovery is being transformed by
new developments in molecular cell biology
and the information sciences. A case in
point is the drug discovery program con-
ducted by the Developmental Therapeutics
Program (DTP) of the NCI. Before 1985,
the NCI used mice bearing murine leuke-
mia P388 cells to screen new compounds for
anticancer activity. That strategy identified

agents active against leukemias but relative-
ly few that were effective against solid tu-
mors, including the most common human
carcinomas. Hence, the NCI established a
primary screen in which compounds are
tested in vitro for their ability to inhibit
growth of 60 different human cancer cell
lines (1). Included are melanomas, leuke-
mias, and cancers of breast, prostate, lung,
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colon, ovary, kidney, and central nervous
system origin. A highly schematic view of
this portion of the NCI drug discovery—
development process is shown in Fig. 1.
Compounds for testing have come princi-
pally from synthetic chemistry and natural
product sources, but combinatorial libraries
and products of biotechnology are also be-
ing screened.

This “disease-oriented” strategy for drug
discovery was based on the hypothesis that
selective activity in vitro against cancer cell
lines from a particular organ would predict
selective activity against corresponding tu-
mors in humans. That concept is being
tested as agents progress through clinical
trials, and the answer is not yet clear. How-
ever, patterns of activity observed in the
screen have proved predictive in an even
more powerful way at the molecular level:
They provide incisive information on the
mechanisms of action of the compounds
tested and on molecular targets and modu-
lators of activity within the 'cancer cells.
The cell lines are not fully representative of
solid tumors in humans, but their patterns
of pharmacological response are rich in in-
formation. We refer to this test system as a
“screen,” but it has also become a way to
“profile” or “fingerprint” potential thera-
peutic agents.

The patterns of activity were first ana-
lyzed by the COMPARE algorithm (2).
Given one compound as a “seed,” COM-
PARE searches the database of screened
agents for those most similar to the seed in
their patterns of activity against the panel
of 60 cell lines. Similarity in pattern often
indicates similarity in mechanism of action,
mode of resistance, and molecular structure
(2). This form of analysis has been applied
productively to topoisomerase II inhibitors
(3), pyrimidine biosynthesis inhibitors (4),
and tubulin-active compounds (5), among
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