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Mathematical and Computational 
Challenges in Population Biology 

and Ecosystems Science 
Simon A. Levin,* Bryan Grenfell, Alan Hastings, 

Alan S. Perelson 

Mathematical and computational approaches provide powerful tools in the study of 
problems in population biology and ecosystems science. The subject has a rich history 
intertwined with the development of statistics and dynamical systems theory, but recent 
analytical advances, coupled with the enhanced potential of high-speed computation, 
have opened up new vistas and presented new challenges. Key challenges involve ways 
to deal with the collective dynamics of heterogeneous ensembles of individuals, and to 
scale from small spatial regions to large ones. The central issues-understanding how 
detail at one scale makes its signature felt at other scales, and how to relate phenomena 
across scales-cut across scientific disciplines and go to the heart of algorithmic de- 
velopment of approaches to high-speed computation. Examples are given from ecology, 
genetics, epidemiology, and immunology. 

Mathemat ica l  and computational ap- 
proaches to biological questions, a marginal 
activity a short time ago, are now recog- 
nized as providing some of the  most power- 
ful tools in learning about nature; such ap- 
proaches guide empirical work and provide 
a framework for synthesis and analysis ( 1 ,  
2) .  I n  some areas of biology, such as molec- 
ular biology, the  advent has been recent but 
rapid-for example, as a n  adjunct to the  
analysis of nucleic acid sequences or the 
structural analysis of macromolec~~les.  In  

population biology, in contrast, the  mar- 
riage between mathematical and empirical 
approaches has a century-long history, rich 
in  tradition and in  the  insights it has pro- 
vided. Statistics and stochastic processes, 
for example, derive their origins from bio- 
logical questions, as in Galton's invention 
of the  method of genetic correlations and 
Fisher's creation of the  analysis of variance 
to  study problems in  agriculture ( 1 ) .  
Branching processes were developed to  de- 
scribe genealogical histories, and even such 

SCIENCE VOL. 275 17 JASUARY 1997 



runs forms the  basis for extracting essential 
and more robust features that can be corn- 
pared with data, and that can provide the  
foundation for simplification (10,  1 1 ). Sim- 
plification techniques may include familiar 

classical subjects as dynamical systems the- 
ory have been enriched by contact with 
problems in  population biology [(see 3,  4)]. 

In  recent years, the  nature of the  game 
has chanoed. orimarilv because of the  avail- 

of problems in population biology, from the  
populations of B cells and T cells in the  
immune system, to the  variety of genotypes 
within a population, to the  diversity of pop- 
~ ~ l a t i o n s  in the  biosohere. Thouoh the  na- 

u L 

ability of high-speed dotnputation. Classical 
approaches to  population biology-like 
classical approaches to other problems in  

u 

ture of the  biological problems differs, the  
similarity is what stands out: A n  individual 
organism is a biosphere in  miniature-with 
competition, exploitation, mutualism, suc- 
cession, and nutrient cycling-that pro- 
vides the  stage for evolutionary changes o n  
the  small scale, including selfish and coop- 
erative behaviors. Although the  subdisci- 
plines that  are highlighted have their indi- 
vidual cultures and dvnamics, the  common- 

tools such as renormalization or moment 
closure ( 12) in  approximations that present 
more interpretable representations of pat- 
tern and dynamics. Computation is a n  es- 
sential adjunct to analysis in  developing and 

biology-emphasized deter~ninistic systems 
of low dimensionality, and thereby swept as 
much stochasticity and heterogeneity as 
possible under the  rug. New techniques and 
the  availability of more ooalerf~~l  comouters 

testing these approximations. 
SORTIE provides a case study in the  

range of computational problems that can 
arise with ecological data. Designed to sim- 
ulate the  growth of northeastern forests, 
SORTIE is a stochastic and mechanistic 
model that follows the  fates of individual 

have led to  the  development of highly de- 
tailed models in which a wide variety of 
components and tnechanisms can be incor- 
porated. In  a model of animal grouping, 
every animal can be tracked; in a forest 
model, every tree; in a n  epidetniological 
model, every individual in the  population. 

Because models of this sort may provide 
a n  uniustified sense of verisimilitude, it is 

ality of the  ma themaka1  and computation- 
al challenges can foster oositive feedbacks - 
that would otherwise not  occLir. trees and their offspring. It  uses species- 

specific information o n  growth rates, fecun- 
dity, mortality, and seed dispersal distances, 
as well as detailed, spatially explicit infor- 
mation about local light regimes, which 
change in  response to changing distribu- 
tional patterns of nine dominant or sub- 
dominant species. T h e  outputs are dynamic 
maps of tree species distributions that look 
like real forests (Fig. 1) and match data 
observed in  real forests a t  appropriate levels 
of spatial resolution. Models of this sort, if 
verified, obviously provide powerful tools 
for prediction under various hypothetical 
scenarios of future climate change; more 
reliably, they provide tools for exploring 
hypotheses regarding the  mechanisms un- 
derlying the  maintenance of biodiversity 

Ecology 

T h e  characterization of ecological interac- 
important to recognize them for what they 
are: imitations of reality that represent a t  
best individual realizations of complex pro- 

- 
tlons provides one  of the  most venerable of 
venues for mathematical biology, dating 
back a t  least as far as Volterra's consider- 
ation of the  fluctuations of the  Adriatic 
fisheries. T h e  challenges facing us today- 
for example, in  the  consideration of global 
change and the  loss of biodiversity, and in  
achieving a sustainable future i 6 ) L e l e v a t e  

cesses in  which stochasticity, contingency, 
and nonlinearity underlie a diversitv of oos- , 
sible outcomes. '~ndividual simulations can- 
not  be taken as more than representative of 
this diversity. but reoeated simulations can , , 
provide statistical ensembles that  contain 
robust kernels of truth. T h e  problem be- 
comes one of the  central problems in  sci- 
ence: determining what is signal and what is 
noise by understanding what detail a t  the  

" , , 

the  complexities to  new levels. 
General circulation models are provid- 

ing detailed information o n  likely scenarios 
of climate change and the  global fluxes of 
key elements such as carbon and nitrogen. 
Typically, the  resolution of such models is 
a t  t he  scale of hundreds of kilometers: how 

level of individual uniys is essential to un- 
derstanding more lnacroscopic regularities. 

and ecosystem processes. 
Yet it is fair and i m ~ o r t a n t  to  ask how 

then can ale assess like11 effects o n  natural 
and managed slstems, where the  scales of 
Interest are typically o n  the  order of meters 
or even centlmeters? Even more dtfficult, 
how can we extraoolate from the  level of 

seriously such predictions should be taken. 
Surely, such models should not  be expected 
to  predict where every tree will be a t  each 
point in  time; only aggregate statistical 
properties can be reliably predicted, typical- 
ly over broad spatial and temporal scales. 
T h e  great detail regarding local light re- 

T h e  issues raised above cut across popu- 
lation biology and ecosystems science, from -, 
the  immune system td  the  biosphere. A t  
each level, dynamics can be observed to 
etnerge from the  collective behaviors of in- 
dividual units. T h e  challenge, then,  is to  
d e v e l o ~  mechanistic models that beoin 

effects o n  individual plants and animals to 
changes in the  distribution of individuals " 

from what is understood (or hypothesized) 
about the  interactions of the  individual 
units, and to use cotnputation and analysis 
to  explain emergent behavior in terms of 
the  statistical mechanics of ensembles of 

" 

over longer time scales and broader space 
scales, and hence in  community-level pat- 
terns and the  fluxes of nutrients? 

Individual-based models, such as the for- 
est growth simulators J A B O W A  ( 7 ) ,  
FORET (8), and SORTIE (9), provide a 
point of departure, but the  amount of detail 
in  such models cannot be supported in terms 

gimes may be important to  the  growth of 
individual trees, but forest dynamics can 
respond in predictable ways only to  more 
general features of light regimes. T o  derive 
robust statements about these svstems, it is 

such units. I n  the following sections, this 
challenge is examined for a range of scien- 
tific problems. Many of the  ideas are expli- 

essential to understand what dktail a t  the  
local level affects the  broader scale patterns, 
and what is noise. 

O n e  approach to  this problem [for ex- 
ample, ( l o ) ]  is to  carry out extensive simu- 
lations in  which different degrees of 
smoothing and aggregation are used, to  de- 
termine how much information is lost by 
averaging, and to  find out where error is 
compressed and where it is enlarged in the  
course of this process. SORTIE typically 
involves tens of thousands of trees, each 
having a n  associated light regime resolved 
into 216 pixels. T h e  magnitude of the  sys- 
tem requires high computational power 

cated in  more detail in  ( 1 )  and represent 
conclusions derived more recentlv in  (5) .  

of what we can measure and parameterize. 
T h e  result is that these models oroduce car- , , 

T h e  areas discussed range across a spectrum toons that may look like nature but repre- 
sent no  real systems. However, they do rep- 
resent powerful experimental tools, which 
become more valuable when used to  pro- 
duce exhaustive simulations that allow ex- 

S A Levn is n t i e  Department of Ecology and Evolu- 
tlonaty B~ology, Princeton University, Princeton, NJ 
08544, USA. B. Grenfel IS n t i e  Zoology Department, 
Cambridqe University, Downnq Street, Cambrdqe CB2 

ploration of parameter space and model 
structures; such models permit adequate rep- 
resentation of the full statistical ensemble of 
possible realizations associated with the  
many stochastic elements. T h e  development 
of extensive sets of outputs from multiple 

3EJ, UK.-A. ~ a s t i n ~ s  is n the bivison of ~nvronmental  
Studes, nsttute for Theoretcal Dynamcs, and Center 
for Popuaton Bology, Unversity of Calforna, Davs, CA 
9561 6, USA A S Perelson is at Theoretcal Bology and 
B~ophys~cs, Los Alamos National Laboratory, Los 
Alamos, NM 87545, USA 

even for individual simulations; the tasks 'To w i o m  correspondence should be addressed 
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described above magnify this challenge by 
requiring exploration of statistical ensem- 
bles through multiple runs and complex 
statistical analyses. Simulations carried out 
for heterogeneous environments require an 
interface between large dynamic simula- 
tions and geographic information systems, 
providing real-time feedbacks between the 
two. In some cases, these tasks simply in- 
volve known techniques and many cycles, 
and in other cases they involve the devel- 
opment of new algorithms. There are many 
outstanding theoretical challenges. 

Sim~lification throueh extensive simu- 
lations ' is a powehl Lte-force method, 
but the develo~ment of analvtical aD- 
proaches to simplification transforms art 
into science. Again, there is the need both 
for adapting existing methodologies and for 
developing new ones. SORTIE may provide 
the starting point, but abstracted analytical 
descriptions can potentially reproduce es- 
sential qualitative features, and thereby pro- 
vide more robust and interpretable descrip- 
tions of veeetational dvnamics. Evaluation " 
of such simplifications requires the output 
from extensive simulations. the numerical 
solutions of coupled partial-differential in- 
tegral equations (1 1,  13), and the develop- 
ment of theoretical generalizations that 
may raise sophisticated mathematical chal- 
lenges. The richness of mathematical and 
computational issues is matched only by the 
great potential for increasing our ability to 
understand and predict the dynamics of for- 
ests. Moreover. the creation of interfaces 
between the self-organizing dynamics im- 
plicit in these models and the imposed en- 
vironmental regimes derived from geo- 
graphical information systems, remote sens- 
ing, or the output of climate models allows 
exploration of the interplay between intrin- 
sic and extrinsic factors in shaping vegeta- 
tional patterns. 

Global change and vegetational re- 
sponses to it provide one set of challenges, 
but similar issues exist in the description 
of other ecological phenomena. Popula- 
tions typically are made up of diverse and 
heterogeneous assemblages of individuals, 
each with unique characteristics. As such, 
they differ from the more uniform assem- 
blages usually treated in statistical me- 
chanics, but the challenges are similar. 
How do we represent the mean dynamics 
of such heterogeneous assemblages with- 
out retaining all of the detail, much of it 
irrelevant to the essential dynamics? How 
much information, beyond variances and 
covariances, do we need to retain in order 
to provide reasonable descriptions, and 
how can we close up those descriptions in 
terms of the dynamics of the higher mo- 
ments? Similar questions exist classically 
not only in the physical sciences, but also 
in evolutionary biology (14). Evolution 
feeds off the variances and covariances 
within populations, and in return helps to 
shape that variance-covariance structure. 
The recognition of this phenomenon, and 
of ways to deal with it, has provided some 
of the most powerful approximations to 
the dynamics of quantitative inheritance. 

The maintenance of biological diversi- 
ty and approaches to sustainable use raise 
similar issues. The heterogeneous distribu- 
tion of resources and exploiters is a fact of 
overwhelming importance to understand- 
ing dynamic interactions, as well as an 
ecological and evolutionary consequence 
of those interactions (1 1, 13). Thus, the 
description of the dynamics of aggrega- 
tions of fish, krill, birds, or foraging ver- 
tebrates requires an understanding of how 
factors at the level of individuals deter- 
mine the cohesion, fusion, and fission of 
groups, and of the consequences of those 
processes and patterns for ecological inter- 

Fig. 1. Visualization of a Qhectare SCnI I r  Ivlest, 500 years into the simulation. Each cylinder repre- 
sents an individual, where height and cylinder diameter are based on species-specific parameters (96). 
Green, Eastem hemlock; purple, beech; yellow, yellow birch. 

actions such as harvesting for food or pre- 
dation. Again, a powerful starting point is 
the individual: Lagrangian descriptions of 
individual movements make attractive 
cartoons (1 5) and can provide a basis for 
analysis; and again, extensive simulations 
can provide the foundation for the explo- 
ration of robust cause-and-effect relations 
and for the extraction of statistical me- 
chanical and Eulerian field descri~tions 
that capture the essence of the dynamics. 
In the same manner as for the veeetational 

u 

systems the interplay between extrinsic 
and intrinsic factors can also be explored 
through computation-for example, by 
imposing flow regimes derived from 
Navier-Stokes equations upon the dynam- 
.its of attraction and repulsion in marine 
systems (1 6). 

Spatial heterogeneity is the most obvi-. 
ous of ways that nonuniform distributions 
may be important, but other dimensions 
provide even greater challenges. In epide- 
miology (see below), heterogeneous mixing 
among different risk groups can provide a 
fundamentally altered view of disease dy- 
namics, especially for sexually transmitted 
diseases (STDs). Regarding biological di- 
versity, although it is widely acknowledged 
that species are being lost at rates never 
before experienced, what is equally impor- 
tant is the loss of diversity at other scales- 
not only within species (genetic diversity, 
or even simply the loss of populations), but 
also within functional groups of species per- 
forming essential ecosystem functions. The 
most important consequences of the disap- 
pearance of biodiversity may be in the loss 
of such ecosystem services as the mainte- 
nance of fluxes of nutrients and pollutants, 
the mediation of climate and weather, and 
the stabilization of coastlines. 

In developing priorities for the conserva- 
tion of biodiversity, it becomes important to 
identify and understand the most fragile and 
critical components of ecological systems, in 
terms of their capability to sustain these 
services. Again, this means understanding 
the degree to which aggregate behavior is 
linked to the dynamics of higher moments 
representing distributional features. The ap- 
proach is the same as discussed previously 
[for example, (1 7)]: extensive simulations of 
detailed models, comparison with aggregat- 
ed models, and the development of rules for 

- relating these models to one another and for 
providing simplified descriptions. In all of 
these problems, there are common mathe- 
matical and computational challenges that 
range from techniques for representing and 
accessing data sets, to algorithms for simu- 
lation of large-scale spatially stochastic sys- 
tems, to the development and analysis of 
simplified descriptions. These themes will 
reappear below. 
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cheory developed by Hamilton (34) based 
on inclusive fitnesses can exnlain why in- 

Genetics and Evolution cently, there have been substantial efforts 
(14) to integrate the long tradition of using 
statistical approaches to model the dynamics 
of quantitative traits with the more mecha- 
nistic genetic approaches, and hence to pro- 

The heritage of tnathetnatics in evolution- 
ary and genetic studies has been extraordi- 
nary, beginning with the work of the three 
g~ants-Fisher, Haldane, and Wrlght-and 
continuing to this dav. Althoueh much of 

di~~iduals might forego their 0;X.n fitnesses to 
help relatives, but the evolution of altruism 
between unrelated indi~~iduals is much 
more diff~cult to explain. 

The central issue In the e\.olution of 
vide a rigorous basis for treating quantitative 
traits. The problem of closure arises agaln, 
and even under sitnplihing assumptions 
concerning the relation between genotype 
and phenotype, further approximations are 
required to obta~n a closed systetn of equa- 
tions (14, 27). Confirmation of the appro- 

the basic Framework df genetics 
thus has roots deep in the history of the 
subject, contemporary questions ranging 
from the very bas~c (18) to the applied [for 
example, conservation biology (1 9) and the 

altruistn is to determine how cooperation 
can evolve through Individual selection. A 
simple model system is provided by the fa- 
tniliar gatne of prisoner's dilemma, for which 
the game theoretic solution (for a single 
encounter) is noncooperation (Fig. 2). Evo- 
lutionary biologists have been able to ex- 
plain the e\.olution of altruism by focusing 
on multiple repetitions of the gatnes and on 
correlations that arise in time or snace; such 

use of transgenic organisms] are raising new 
and important mathematical challenges. 
Despite the relative sitnplicity of the under- 

priateness of these approxitnat~ons ultimate- 
ly rests on comparisons with both natural 
and artificial populations as well as on the 

lying genetic models, complexities ranging 
from tnultinle l oc~  to snatial factors to the 

results of cotnputer simulations. 
The study of cotnplex adaptations can 

lead to questions about the evolution of 
e\.ol\.ability itself (28, 29). How does selec- 
tion act to modif\; the capability of organ- 
isms to adapt to chang~ng environments? 
This can become an extraordinarily com- 

role of frequency dependence in evolution 
(20) lead to probletns that require sophisti- 
cated computational approaches. The con- 
siderations underlying the management and 
analysis of eenetlc seauence data are well 

correlations affect realized payoffs because 
they affect who plays with whom. 

In particular, when the game is played 
repeatedly, as in Iterated prisoner's d~lemtna 
(35). it can be shown that tit-for-tat, which 

kno\k;  hence, the foliowing discussion fo- 
cuses on other facets of evolution and ge- 
netics that lead to deep cotnputational and 
mathematical challenges, especially regard- 
lne dvnam~cs. 

, , ,  

consists of beginn~ng with cooperation and 
then using the strategy used by the other 
"player" in the pre~ious interaction, is better 
than the pure defect~ng strategy [and that no 
pure strategy is an ESS (36)l. Sophisticated 
simulations (37) allow exploration of rnore 
complex ESSs in which individuals remetn- 
ber past interactions, and the result is a 
greater ease of evolving cooperati~~e strate- 
eies. Snatial localization of interactions fur- 

plex question; one intriguing avenue to 
identihing the kinds of questions that arlse 
has been to create "artificial life" through 
computer simulations [for example, (3L1)], 
and hence to ex~lore how the rules that 

- ~ l t h o u ~ h  the dynamics of alleles at sin- 
gle loci were well understood in the 1920s, 
the inclusion of just one more locus leads to 
tnodels whose dynamics are still not com- 
pletely understood, even in the determinis- 
tic case (21 ). A full understanding of the 
behavior of these two-locus models has re- 

govern evolution de\.elop and becotne mod- 
~fied. Often, the resulting simulations are so 
seductive that the boundary between truth 
and fiction becomes blurred, but the poten- 
tial for developing novel insights cannot be 
denied. Needless to say, the computational 
problems that arise are substantial and are 
leading to new innovations in programming. 

The flow between cotnputation and bi- 
ology is not one-way; as in the example of 

- 
ther increases the probability that the same 
partners will play the game repeatedly and 
facilitate evolution of cooneratives. quired the use of a variety of computat~onal 

approaches, from straightforward sitnulation 
[for example, (22)] to tnore cotnplex anal- 

In general, the introduction of explicit 

yses based on optimization (23) or the use 
of cotnputer algebra systetns. The consider- 
ation of as few as three loci leads to models 
whose behavior can onlv be understood bv 

artificial life, computation can draw inspi- 
ration from biology. A case in point in- Player 1 

Coouerate Defect vo11.e~ the lnvocatlon of e\.olut~onary pro- 
cesses that use a varlety of dlstlnct ap- 
proaches (29, 31, 32), all of whlch have at 
least some of the fortnal structure of genetlc 
systetns, to so11.e very complex optltnlzatlon 

means of numerical app;oaches, except fo; 
some very special cases (21, 24); yet the 
number of loci exhibiting genetic variation 
in populations of higher organisms is well 
into the thousands. Including all this cotn- 

- 
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problems by identifying strategies with 
computer "genotypes." For various reasons, 
the solutions found by such approaches may 
bear little similarity to how natural selec- 
tion so11.e~ similar problems (32). Histori- 
cally, the search for optimization principles 
to annlv to natural evolutionarv systems has 

" 

plex~ty leads to the cons~deration of popu- 
lations in which the number of possible 
genotypes could be much larger than the 
population. Thus, stochastic effects become 
Daratnount, and even the simulation of such 

Reward for 
mutual 

cooperation 

Temptation 
payoff 

populations (25) leads to problems of sub- 
stantial computational difficulty (26). 

Faced with the imnossibilitv of construct- 

Sucker's 
payoff 

Punishment 
for mutual 
defection A A  , , , 

had limited success, largely because of fre- 
quency dependence (the dependence of rel- 
ative fitnesses on the frequencies of types in 

ing a theory of evoluiion of characters con- 
trolled at many loci bv detailed consider- 

the populations); that is, evolution is best 
understood as a problem in game theory 

Fig. 2. Payoff matrix In the prisoner's dllemma 
game. where each box lists the payoff to player 2 
when players 1 and 2 play the par of strategies 
indcated [redrawn from (97)l. The game is a prs- 
oner's dilemma f the reward for cooperaton is 
greater than the average of the sucker's payoff 
and the temptation payoff. and the payoffs are 
ordered so that temptation payoff > reward for 
cooperation > punshment > sucker's payoff. In 
an evolutonary sense. the problem is to explain 
how strateges involvng cooperaton among non- 
related ndivduas evolve. 

ation of what 'is on at each locus, 
evolutionarv biologists have turned to more 

rather than optimization theory. 
To address nroblems of freauencv d e ~ e n -  

tnacroscopi; representations at the level of 
the phenotype, an attractive option because 
of the ease of observation and descrintion. 

, A 

dence, which arise naturally in the consid- 
eration of most interesting ecological prob- 
letns. Mavnard Smith introduced the no- 

The simplest such approaches in1.011.e quan- 
titative traits, such as height or weight, or 
other traits of ecological interest that repre- 
sent the sum of multiple small effects. Re- 

, , 
tion of an evolutionarily stable strategy 
(ESS) (33), which has been used extensive- 
ly to understand the evolution of behavior, 
especially altruistic behaviors. An elegant 

SCIENCE \'OL. 275 17 JANUARY 1997 



space produces further complications, lead- 
ing to results that depend fundamentally on 
population structure and movement rules. 
The underlying principle is that the evolu- 
tion of traits for which fitnesses are frequen- 
cy-dependent requires knowledge of which 
individuals are interacting; thus, for large 
populations, simulations (.38, 39) are need- 
ed to understand dynamics in spatially 
structured populations. Prisoner's dilemma 
is a caricature, and more biologically rele- 
vant studies are beginning to show the im- 
portance of the spatial localization of inter- 
actions in the evolution of both cooperative 
and ,antagonistic behaviors (38, 40). Sub- 
stantial questions remain to be explored, 
including the evolution of more complex 
behaviors [for example, (41)] and coevolu- 

tionary questions. For parasite-host systems, 
the problem has been well studied [for ex- 
ample, (42)], but more diffuse interactions 
involving many species introduce challeng- 
es similar to those that arise in going from 
two loci to many loci. Fundamental chal- 
lenges exist in understanding how commu- 
nity properties emerge from the evolution 
of component species, an issue that is at the 
core of research into biodiversity. 

Infectious Diseases 

The mathematical theory of the population 
biology of infectious diseases dates back at 
least as far as Daniel Bernoulli's mathemat- 
ical analysis of smallpox control in 1760. 
The main impetus for this highly successful 

field has been the great impact of disease on 
human health and agriculture, both histor- 
ically and in facing the threat of acquired 
immunodeficiency syndrome (AIDS) and 
other emerging diseases. However, parasite 
ecology-which effectively links ecological 
and immunological dynamicealso pre- 
sents a number of fundamental questions for 
mathematical and computational research. 
Simple models have been remarkably suc- 
cessful in capturing many features of host- 
parasite dynamics and control (43, 44). 
However, as with ecology, the interaction 
between spatial and genetic heterogeneity, 
nonlinearity, and stochasticity can compli- 
cate this picture. 

A major preoccupation for epidemiolog- 
ical modeling is how transmission varies 
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metapopulations (101). However, modeling anything approaching the full ways (108). 

with social or geographical space (44, 45). strategies. Depending on the problem, all spatial grain. Notifiable infectious diseases 
A key theoretical issue here is how, and in scales-from the individual level to big cit- are unusually well provided here (Fig. 3), 
what detail, to represent spatial variations ies-may be important, both in terms of with large and often as yet uncomputerized 
in the intrinsically nonlinear contact pro- social space [family and school infection spatiotemporal data sets. These data pro- 
cess underlying transmission. One of the dynamics (55)] and in terms of geographic vide a huge potential testbed for developing 
best illustrations of this process is provided spread and coherency (Fig. 3). As in ecol- methods for characterizing spatiotemporal 
by the highly dynamic spatiotemporal epi- ogy and evolution, a central question is: dynamics in nonlinear, nonstationary sto- 
demic pattern of measles (Fig. 3) (46-49). How spatially aggregated and parsimonious chastic systems. An encouraging develop- 
An important set of analyses of simple, a model can provide useful results in a given ment is that the current, generally nonpara- 
homogeneous models predicted the possi- context? This is particularly important in metric, approaches to characterizing chaos 
bility of chaotic dynamics (50); however, comparisons between directly transmitted and other nonlinear behaviors are increas- 
the resulting large-amplitude epidemics human infections-where long-range move- ingly incorporating lessons from mechanis- 
generate unrealistically low persistence of ments may bring infection dynamics com- tic epidemiological models (49, 57, 58). 
infection in small communities (51). Add- paratively close to mean field behavior (in The main focus for modeling social 
ing successive layers of social and geograph- which every individual is assumed to have space (the space of social interactions) and 
ical space-and moving from deterministic equal contact with every other individual, disease is, of course, on AIDS and other 
to stochastic models-improves spatial re- thus experiencing the mean or average sexually transmitted infections. Simple 
alism and may reduce the propensity for field)-and the equivalent infections in models illustrated clearly that heterogene- 
chaos (46, 47, 52-54). natural populations, where more restricted ities in contact rates can substantially alter 

The major computational challenge in movements and host population dynamics the predicted course of epidemics (43). This 
these highly nonlinear stochastic systems is add extra complexities (56). area has seen an explosion of research, both 
to represent hierarchical spatial complexity It is risky to model at a given level of in data analysis of contact structures and in 
and especially its impact on vaccination detail without having data at the relevant graph-theoretic and other approaches to 
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modelillg (43,  5 9 ,  69) .  h4odels and data 
analysis are most productive when com- 
bined, especially in allo\ving the  observa- 
tions to  limit the  universe of uossible net- 
works. T h e  major co~nputational challenge 
is ho\v to deal with the  complexity of net- 
xorks, where concurrency of partnerships 
often means tha t  closure t o  a few moments 
of the  d i s t r i b ~ ~ t i o n  is difficult ( 6 9 ) .  This  , , 

problem is especially acute given the  sen- 
sitivity of obtaillillg data for S T D  net- 
\\-orks, in  tha t  the  nature of the  11etwork is 
generally only partially and imperfectly 
k n o ~ v n  161 ). T h e  use of mathematical 
models for human  itnmunodeficiency virus 
(HIV)  transnlissioll will be especially im- 
portant in  assessi~lg the  impact of poten- 
tial vaccines (62) .  Ano the r  major compu- 
tational challenge-which developed with 
the  AIDS epidemic and is currently being 
applied t o  allother pathogen, t h e  bovine 
s p ~ n g i f o r m  encephalopathy agent (63)- 
is to estimate the  parameters of transmis- 
sion models from disease incidence and 
other demographic data. 

O n e  hope for the future for both of these 
areas is net~vork information embedded in  
viral genotnes. A body of recent work indi- 
cates exciting possibilities for estirnati~lg ep- 
idemiological parameters from the  birth and 
death processes of pathogen evolutionary 
trees (64) .  More generally, new mathemat- 
ical and computational techniques \\'ill he 
needed to  understand the epidemiological 
implicatiolls of the  rapidly accumulati~lg 
Ja ta  o n  pathogen sequences, especially in 
the  context of parasite genetic diversity and 
the  host immunological response to  it (65).  

T h e  other major area of current epidemi- 
ological interest, the  impact of host and 
parasite genetic heterogeneity and coevolu- 
tion (66) ,  has a distinguished history in 
population genetics ancl epidemiology. 
Ho\\zever, the  re^-olutio~~ in 110th genome 
research and molecular epidemiology is nom 
prm-iding the  foundations for much more 
detailed explorations of the dynamics of host 
and parasite strains. ,411 important linked 
area here is the i l~~es t ion  of immunoepide- 
miology (67)-modeling the population-dy- 
namic implicatiolls of the immunological 
processes described in the next section. 
These approaches come together, for exam- 
ple, in recent \vork o n  the  strain dynamics of 
malaria (68) ,  in which moJels of ohser~,ed 
strain and immunological 1-ar ia t io~~ indicate 
a set of cocirc~llating straills rather than the  
traditional homogeneo~~s  picture of a single, 
highly trallslnissible entity. 

T h e  major comp~~ta t iona l  question is 
again to represent hierarchical spatial dy- 
namics, hut with the  aclded prolllem (and 
hence the added d i m e ~ ~ s i o ~ ~ a l i t y )  of com- , , 
plex \vithin-host dynamics and host-para- 
site genetic diversity. T h e  genetic dynamics 

of a wide variety of pathogens, from influ- 
enza (69) and HIV to macroparasitic Ivorms 
(79) and plant parasites (66),  have major 
implications for the  dynamics of control, 
the  e v o l ~ ~ t i o n  of resistance, and the  emer- 
gence of new pathogens. 

These issues present a range of tech~lical 
computational problems in the  assilnilatio~l 
and analysis of data and model construc- 
tio11. For instance, lnornellt c l o s ~ ~ r e  (1 2 )  is a 
promising possibility for approximating the  
relatively smooth stochastic dynamics of 
hellninth \vorm i~lfections and some plant 
pathogens (66).  By contrast, the  spikey dy- 
namics and frequent local extillctions of 
Infection in measles and influenza seem to 
require more cotnputer-i~~tensive slmula- 
tion approaches. 

Over the  next f e ~ v  years, \ve foresee fur- 
ther major development in colnputatiollal 
approaches to  the  complexities of host-par- 
asite spatial and genetic dynamics. Two 
areas that are likely to  be of particular in- 
terest are integrating dynamics at the epi- 
demiological, genetic, and immunological 
levels and exploring the  n e \ ~ ~  dynarnical 
properties of systems revealed by parasite 
control strategies (Fig. 3) .  I11 terms of im- 
pact o n  human welfare, research (XI the  
dynamics of infectious diseases in del-elop- 
ing llatiolls is a n  important priority. 

immunology and Virology 

Historically, mathematical and computa- 
t io~ la l  methods have not  played a large role 
in immunology and virology. This is I - I ~ \ \ ~  

changing, and impressi1.e ad\-ances have 
come from the  use of sinlple models applied 
to  the  illterpretatioll of quantitative data. 

T h e  best example is in  AIDS research. 
'4s is \\,ell l t~lown,  AIDS develops slo\vly; 
the  average time from HIV infection to  the  
developnlellt of f ~ ~ l l - b l o ~ v n  AIDS is allout 
10 years. Modelillg of the  progression to  
AIDS has received considerable a t t e ~ l t i o ~ l  
and has heen able to  capture much of the  
observed phenomenology (71.  72).  T h e  
suggestion that progression to AIDS in- 
\-011-es a dil-ersity threshold (72) has gener- 
ated debate, new theory, and new experi- 
me~ltatioll  (73) .  T h e  role of the  immune 
resp(>nse in determining the  pace of clisease 
progression has yet to he clarified, but 
mathematical lnodeli~lg has helped focus 
attention o n  the  role of cytotoxic T cells 
(74.  75). Other  key areas in which model- 
ing has played and will continue to play a n  
ilnporta~lt  role are the  understanding of 
ho\v HIV evolves resista~lce to antiretrol-i- 
ral drugs and the  design of treatment strat- 
egies (76) .  

Much of the  10-year period until AIDS 
develops has heen characterixd as a period 
of clinical latency, with lo\\' but collstant 

levels of v i r ~ ~ s  and infected cells in  circula- 
tion. Giving HIV-1-infected patients po- 
tent ant~retrovlral  d r ~ ~ g s  and us111g sllnple 
dv~lamlcal models to  analvze the  enaulne 
decline in viral load has led to ilnportant 
insights into the  in  vivo processes involved 
in  HIV infection. This analysis established 
that HIV is rapidly replicating alld cleared 
from the  bodv 177) and revealed that the  , , 

average rate of HIV production was greater 
than 10  billio11 virus particles per day, that 
free virus particles were cleared with a half- 
life that is probably 6 h o ~ ~ r s  or less, and that 
productively infected T cells had a life-span 
of about 1.5 days (78) .  These results, ~ v h i c h  
derive from mathematical modeling, firmly 
nut to rest the  view of AIDS as a slorv 
disease in which llttle happens for years 
after infection. and reolaced it ~ v i t h  a new 
paradigm in ~ v h i c h  rapid viral dytlamics was 
the  centerpiece. Most important, uncover- 
ing the  rapid replicatioll of HIV led to a 
new understalldillg of the  observed rapid 
el-olution of the  virus and the  seemi~wlv - ,  
inevitable emergence of drug-resistant 
forms of HIV-1. 111 part as a result of this 
increased understanding, treatment proto- 
cols using a single drug are being replaced 
hy protocols usi11g co~nhi~latiolls of antiret- 
roviral drugs, which have a greater antiret- 
roviral effect a n J  \vhich increase the  num- 
ber of lnutatiolls needed for resista~lce. T h e  
early clinical results of colnbination thera- 
py, along with mathematical modeling, 
have llorv heen used to  ohtail1 lnilliinal 
estimates for h o ~ v  long therapv needs to he 

A ,  

maintained until HI? is eliminated from 
the  body (79).  

T h e  new fillding that HIV uses two re- 
ceptors for entry into target cells-a prima- 
ry receptor (CD4)  and a coreceptor [a che- 
moltille receptor, either fusin   ow renamecl 
CXCR4) or CCR51 (8C)-provides new 
challe~lges a1-d opportunities for modeling. 
Using concepts from population genetics. 
researchers have arpued that individuals - 
1vho are homorygous for a 32-nucleotide 
deletion in the  CCR5 eerie are resistant to  

u 

HIV-1 i~ l fec t io~ l  and otherwise show n o  
drastic ilecrease in fitness as a result of this 
deleti011 181 ). T h e  homozvuous defect is ~, , L2 

found in approximately 1% of Caucasians of 
Western European ancestry (81).  Models of 
HIV-1 dynamics have ass~lmeil that infec- 
tion is a single-step process. New lnodels 
need to account for coreceptors and for the 
interesting finding that high-affinity hind- 
illg of HIV-1 gp120 to the  first HIV recep- 
tor, CD4,  causes conformational changes in 
gp120 that lead to the  creation of a new 
recognition site o n  gp120 for CCR5 (82) .  
Lastly, CCR5 has heen identified as the  
major coreceptor for macropllage-tropic 
HIV-1 strains. Although some mathemati- 
cal lnodels have co~lsidered macrophage in- 
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fection (79 ,  83 ) .  none yet have incorporat- 
ed coreceptors. 

Opportunities also exist for moileling to 
provide insights into the  d>-namics of other 
infectious cliseases. Hepatitis, n~h ich  current- 
ly infects Inore than 250 lnillion people 
norld~riile,  is a n  inlportant target fix mod- 
eling, and work in this ilirection has begun 
(84).  blodels that incorporate immune re- 
spollses anil ileal n-ith the  issue of drug re- 
sistance that can arise iluring treatment are 
of great importance and can yielcl insights 
into treatment strategies for tuberc~~losis, 
HI\', and other infectious agents (76. 85 ) .  

Spatial cc~nsiilerations, which play a 
large role in ecological and epiJerniologica1 
moiieling, also enter into virological and 
imm~~nological  problems. For example, in 
humans, detection of ~.irus is most easily 
done in the  l~loocl, yet virus can be distrib- 
uted t h r o u g h o ~ ~ t  the  bocly. Models and ex- 
perinlents now neeci to aciilress the  question 
of obserl~aliilitv-tliat is, holv  ell ilo mea- 
surements in hlooci reflect other compart- 
ments? Ken. experiments and lnoJels are 
being designed that take into consideration 
bodily coinpartlnents lvl~ere 1-irus and T 
cells are found, for example, lylnph nodes 
(86).  Also, b e c a ~ ~ a e  c l r~~gs are transported 
t h r o ~ ~ g h  tissues, d r ~ ~ g  collcentratiolls vary in 
space ancl time. Lloilels neeil to he de~.el-  
oped that allow for Jrug transport and Jif- 
fering concentrations at ilifferent locations. 
although sonle nlocieling has heen initiated 
in other contexts (87) .  Such moilels are 
particularly relevant for agents such as 
lnonoclonal antiboiiies that can rapiilly 
hinil to cells as they move through t i s s ~ ~ e  
(88). T h e  implication of spatial and tempo- 
ral graciients for the generation anii selec- 
t ion of '{rug-resistant organisms needs to he 
esamined. 

In l~asic imm~~nolog\- ,  issues related to  
mutation also have been the  focus of math- 
enlatical moileling anil intense experimen- 
tation (89,  92). D ~ ~ r i n g  the course of a n  
irnni~lne response, B lymphocytes within 
gerniinal centers can rapiclly mutate the  
genes that code for antil-ocl\- variahle re- 
gions. T h e  immune s\-stem thus pro~,icles a n  
en1.ironment in which e \ ~ o l ~ ~ t i o n  occurs on 
a time scale of n-eelis. .4mong the  large 
n ~ ~ m b e r  of mutant B cells that are generat- 
ed, selection chooses for survival those R 
cells that have increaseel binding aftinitr for 
the  antigcn that iliitiatecl the response. Af- 
ter 2 to  3 n-eeks, antibodies can have i n -  
proveil their equilibrium billiling c ~ l i s t a n t  
for antigen hy one to two orclers of magni- 
tude, ancl lnay ha\-e suatainecl aa many as 19 
point mutations. Holv can the  immune sys- 
tem generate anil select ~ .ar iants  with liigli- 
er fitness this rapidly and this effectively? 
An optimal control lnociel has suggested 
that mutation sliould be turneil on and oft 

episodically in  order to  allolv nexv 1,ariants 
t ime to  expanil without lleing s~~lijectei{ to  
the  generally ileleterious effects of muta- 
t ion (92) .  Time-~.arying mutation co~11J 
be implemented by hal-ing cells recycle 
t h r o ~ ~ g h  one  region of the  germinal center,  
ln~l ta t ing \vl~ile there,  and proliferating in  
a ilifferent region of the  germinal center 
(92) .  This s~~gges t ion  has generated new 
experimental investigations of events that  
occur within gerlninal centers (91 ) .  Op-  
portunities exist for a range of models that  
aildress basic c l~~est ions  allout in vivo cell 
pop~l la t ion Jynaniics and el-elution, as 
ne l l  as Inore Jetailed questions invo11-ing 
the  immunological ~nechallislns underly- 
ing affinity maturation. 

Control of the  i r n ~ n ~ ~ n e  response is an- 
other area ripe for modeling. \Y7hat deter- 
mines the  intensity of a response? How is 
the  response shut off xvhen the  antigen is 
eliminateJl Feeilback mechanisms may ex- 
ist t o  control the response intensity, re- 
sponse length, anil type of response (cellular 
or antibod\-). Some moclels of a basic feecl- 
back lnechallisln involving two types of 
helper T cells, TH1 and T,,2, have been 
developed (92) ;  others are neecied. Regula- 
tory lnechallisnis inr-olve interactions 
anlong Inany cell pop~llatiolls that commu- 
nicate by direct cell-cell contact and 
through the  secretion of cytokines. Dia- 
grams representing the  elelnellts of regula- 
tory schelnes colnnlonly have scores of ele- 
ments. Recause of the complexities in- 
vol~,ed,  theorists ha1.e an  opportunity to  
lead experimentation by providing sugges- 
tions as to  what neeils to  be measured anil 
ho\v s ~ ~ c h  nieasLlrelnents can be used to  
provicle a n  insightf~ll \-ielv of possilile con- 
trol mechanisms. 

A fundamental feature of the  i lnrn~lne 
system is its di~-ersity.  Successful r ecogn-  
t ion of antigens appears to  require a rep- 
ertoire of a t  least 10' different lymphocyte 
clones. T h e  cliversity of the  imlnune sys- 
tem has challenged experimentalists, anil 
many recent ail~.ances have conle from 
developing experimental moilels with lim- 
iteil immune cliversity. H o ~ v e ~ , e r ,  moclels 
baseil o n  ecological colicepts lnay proviile 
insights into the  control o t  clonal iliversity 
(75, 93) .  ancl niodern computational 
methocls now nialte it practical to  consicler 
moclels n-ith tens of t h o ~ ~ s a n i l s  of clones. 
Thus,  it is possible to  ilevelop moilels that  
start t o  approach the sire of sinall ilnln~llle 
systems. Simulations have suggested that 
from simple rules of cell response, emergent 
phenomena arise that may have i i n ~ u ~ ~ n o -  
logicdl significance (94).  T h e  challenge in 
 sing computation is to clevelop lnoiiels that 
adilress important questions, are realistic 
enough to capture the relevant immunology. 
and yet are simple e n o ~ ~ g h  to  be revealing. 

Conclusions 

T h e  prol~lems discussed aliove are distin- 
g~lished 1iy their centrality to basic anil 
applieil biological research as well as by the  
mathematical and colnp~~tat ional  challeng- 
es they pose. In this regard, they are in a 
great tradition that reaches back to  Galton 
and Fisher, t o  Lotka and Volterra, with 
such recent examples as the  contrillution of 
population lliology to the  developlnent of 
the  theory of chaos (1 , 3 ,  5 .  95) .  This is not  
surprising; the  central issues-understand- 
ing ho\\- Jetail at one scale nlaltes clear its 
signature o n  other scales, ancl how to relate 
phenoniena across scales-cut across scien- 
tific disciplines, and indeed go to  the  heart 
of algorithmic development of approaches 
to high-speed computation. 

Imaginative anil efficient colnp~~tat ional  
approaches are essential in dealing with tlle 
over~vhel~lling complexity o t  biological sys- 
tems. Such approaches sho~~lc l  comprise the  
storage and retrieval of vast arnounts of 
informatloll as nel l  as the  development of 
s i ln~~ la t ion  methoils that must interact with 
those ilata structures anel cieal n-ith colnples 
hierarchical systems, taking ail\-antage 
where possible of parallel structures ancl 
synilnetries that allow simplification and 
efficient organization of computational 
steps. T h e  potential for henefits to mathe- 
lnatics anil computational sciences as well 
as to  the  applications of these methods n-ill 
create a rich m ~ ~ t ~ ~ a l i s m ,  in which the  rate 
of advance is nonlinear. T h e  face of the  
science of colnp~~tat ional  population biolo- 
gy anil ecosystems science will change in 
the  next Jecade. Key challenges involve 
lvays to iiescribe tlle Jynamics of systems 
that are aggregates of heterogeneous units, 
representing the  behavior of the lneans and 
lowest nloments in closeil form. Spatlal het- 
erogeneity and spatial 1ocali:aticin of inter- 
actions introiluce qualitatively new Jynam- 
ics, and they present theoretical and com- 
putational issues that are silnilar across a 
range of biological levels. 
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Approach to the Molecular this porti& of ~ ~ C N C I  drug discovery- 
development process is shown in Fig. 1. 
Compounds for testing have come princi- 
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Since 1990, the National Cancer Institute (NCI) has screened more than 60,000 com- 
pounds against a panel of 60 human cancer cell lines. The 50-percent growth-inhibitory 
concentration (GI,,) for any single cell line is simply an index of cytotoxicity or cytostasis, 
but the patterns of 60 such GI,, values encode unexpectedly rich, detailed information 
on mechanisms of drug action and drug resistance. Each compound's pattern is like a 
fingerprint, essentially unique among the many billions of distinguishable possibilities. 
These activity patterns are being used in conjunction with molecular structural features 
of the tested agents to explore the NCl's database of more than 460,000 compounds, 
and they are providing insight into potential target molecules and modulators of activity 
in the 60 cell lines. For example, the information is being used to search for candidate 
anticancer drugs that are not dependent on intact p53 suppressor gene function for their 
activity. It remains to be seen how effective this information-intensive strategy will be at 
generating new clinically active agents. 

D r u g  discovery is heing transformed hy 
nen7 developinents in  tnolecular cell biology 
and the  infornlation sciences. A case in  
point is the  drug discovery program con- 
ducted by the  Developnlental Therapeutics 
Progranl (DTP) of the  NCI. Before 1985, 
the NCI  used inice bearing murine leuke- - 
lnia P388 cells to screen n e ~ \ ~  compounds for 
anticancer activity. Tha t  strategy identified 

agents active against leukemias but relatil-e- 
1y few that were effective against soliil tu- 
mors, including the inost coinmoll human 
carcinomas. Hence, the  NCI  established a 
primary screen in which compounds are 
tested in  ~ ' i t ro  for their ability to inhibit 
growth of 62 ilifferent human cancer cell 
lines ( 1  ). Included are melanomas, leuke- 
mias, and cancers of breast, prostate, lung, 

and products of hlotechnology are also be- 
ing screened. 

This "disease-oriented" strategy for drug 
discovery n7as based o n  the  hypothesis that 
selective activity in vitro against cancer cell 
lines from a particular organ \vould predict 
selective activity against corresponding tu- 
tnors in humans. Tha t  concent is being - 
tested as agents progress through clinlcal 
trials, and the  answer is not vet clear. How- 
ever, patterns of activity observed in the  
screen have proved predictive in an  even 
more no~verful wav a t  the  nlolecular level: 
They i rovide incisive lnforn~ation o n  the  
lnechanisnls of action of the  comvounds 
tested and o n  molecular targets and modu- 
lators of activity n~ l th in  the  cancer cells. 
T h e  cell lines are not fully representative of 
solid tumors in humans, but their patterns 
of pharmacological response are rich in  in- 
formation. W e  refer to this test system as a 
"screen," but it has also hecome a way to 
"profile" or "fingerprint" potential thera- 
peutic agents. 

T h e  patterns of activity \\ere first ana- 
lyzed by the  COMPPlRE algorithm (2 ) .  
Given one compound as a "seed," COM- 
PARE searches the  database of screened 
agents for those most similar to the  seed in 
their patterns of activity against the  panel 
of 60 cell lines. Similarity in pattern often 
indicates similarity in  nlechanisin of action, 
Inode of resistance, and molecular structure 
(2 ) .  Thls form of analysis has been applied 
productively to topoisonlerase I1 inhibitors 
( 3 ) ,  pyrimidine hiosynthesis inhihitors ( q ) ,  
and tuhulin-active compouniis (5), anlong 
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