
coupling between synapses and the spike- 
initiating zone in the region near the cell 
body (7). Hebb, who postulated such a coin- 
cidence-based learning mechanism to ex- 
plain associative learning, would have been 
pleased by these discoveries, although per- 
haps not surprised (8). 

In the second report, a technical tour de 
force, Markram et al. (4) recorded from neigh- 
boring pyramidal neurons in layer 5 of neo- 
cortical slices and varied the timing of the 
spikes in the presynaptic and 
cells. When the presynaptic action potential 
preceded the postsynaptic action potential, 
the synaptic response increased, but if the 
order was reversed, the synaptic response de- 
creased. The window for synaptic plasticity 
was around 100 ms wide, and a difference in 
spike timing of 10 ms near coincidence 
switched the plasticity from LTP to LTD. 
The discovery that dendrites can transmit 
information about spike timing and that dif- 
ferences in spike timing of a few milliseconds 
are crucial for synaptic plasticity raises the 
stakes in the debate as to whether the precise 
timing of action potentials is important in 
cortical processing (9). 

These remarkable results must now be ~ u t  
into the context of normal information pro- 
cessing in the cortex, which is characterized by 
a constant chatter of ongoing spike activity. 
Every spike in a pyramidal cell could poten- 
tially affect every excitatory synapse of that cell 
that was active within 100 ms. Even if the mean 
synaptic strength were not changed by a par- 
ticular spike, the random walk would wash 
awav anv information stored at the svnaDse. 

r i 

~ h e i e  &e, however, reasons to believe that 
synaptic plasticity is strictly regulated in vivo. 
First, backpropagation of an action potential in 
the dendrite can be throttled by input from 
inhibitory neurons (1 0, 1 1 ), suggesting that 
there may be local control of the invasion of 
backpropagating action potentials into den- 
dritic branches. Second, the delivery of neuro- 
modulators such as acetylcholine and dopa- 
mine, which depends on the behavioral and 
cognitive state of an animal, could affect the 
induction of synaptic plasticity (1 2,13). 

The most direct evidence for the reeula- " 
tion of backpropagating dendritic action po- 
tentials comes from a new techniaue that 
promises to revolutionize cortical physiology. 
Svoboda et al. (1 4) have recently shown that 
cortical neurons can be visualized in vivo by 
means of two-photon laser-scanning micros- 
copy, which allows the full three-dimensional 
dendritic tree of a neuron to be scanned and 
reconstructed. S~ines  on the dendrites of 
cortical pyramidal neurons can be visualized 
(see figure). After injection of a calcium in- 
dicator dye, these authors observed dendritic 
calcium entry during sodium spikes recorded 
from the cell body. Under the conditions 
that they studied, however, these responses 

declined steeply and disappeared in the distal 
apical dendrite, suggesting failure of the back- 
propagating spikes. In addition, widespread 
calcium influx expected for dendritic calcium 
action potentials was not observed in response 
to sensory stimulation. This result suggests 

spective, with live links, can be 
seen in Science Online on the Web 
at http://www.sciencemag.org/ 

that calcium influx triggering synaptic plastic- 
ity may only occur in vivo under special con- 
ditions that have yet to be determined. 

Dendrites have additional levels of com- 1. R. Yuste and D. Tank, Neuron 16. 701 (1996) 
plexity that we are just beginning to under- 
stand (1,15). Many typesofvoltage-dependent 
ion channels are distributed nonuniformly 
throughout neurons, with a wide range of time 
courses for activation and inactivation (2,16). 
A cortical neuron is, therefore, like a city with 
diverse neighborhoods, each with a different 
character, with constant traffic between them. 
Compartmental models of reconstructed neu- 
rons that incorporate detailed biophysical 
properties of ion channels provide a way to 
explore the dynamic properties that emerge 
from the nonlinear interactions between dif- 
ferent parts of the neuron (1 7). 

More has been learned about the secret 
lives of dendrites in the last year than in all 
previous years. At the recent Annual Meet- 
ing of the Society for Neuroscience, there 
was a collective sense that new techniques 
for studying cortical neurons are ushering in 
an exciting era that will lead to many more 
surprises. 

2. D. Johnston, J. Magee, C. Colbert, 6 .  chistie. 
Annu. Rev. Neurosci. 19, 165 (1 996). 

3. J. Magee and D. Johnston. Science 275, 209 
(1997). 

4. H. Markram, J. Lubke, M. Frotscher, 8. Sakmann. 
ibid., p. 213. 

5. R. Yuste and W. Denk, Nature 375, 682 (1995). 
6. 8. Christie. J. Magee. D. Johnston, Learn. Mem. 

3. 160 (1996). 
7. J. Jester, L. Campbell, T. Sejnowski, J. Physiol. 

484, 689 (1995). 
8. L. Nadel, personal communication. 
9. F. Rieke, D. Warland, R. van Steveninck, W. 

Bialek, Spikes: Exploring the Neural Code (MIT 
Press, Cambridge, MA, 1997). 

10. H. Tsubokawa and W. Ross, J. Neurophysiol. 76. 
2896 (1 996). 

11. H. Gaudreau, E. Lang, A. Destexhe. D. Pare. Soc. 
Neurosci. Abstr. 22, 790 (1 996). 

12. P. R. Montaaue and T. J. Seinowski. Learn. Mem. 
1, I (1994),- 
P. Huerta and J. Lisman, Neuron 15, 1053 (1995). 
K. Svoboda, W. Denk, D. Kleinfeld. D. Tank. Soc. 
Neurosci. Abstr. 22, 1058 (1 996). 
I .  Segev. J. Rinzel, G. Shepherd, The Theoretical 
Foundation of Dendritic Function: Selected Pa- 
oers of Wilfrid Rall with Commentaries (MIT ~ ~ ~- 

press. Cambridge, MA, 1995). 
R. R. LlinBs, Science 242, 1654 (1988). 
Z. Mainen and T. Sejnowski. Nature 382, 363 
(1996). 

More Than Just Frequency Detectors? 
Alex M. Thomson 

Synapses, the junctions through which neu- 
rons communicate with each other, can dis- 
play frequency and pattern-dependent be- 
havior-no surprise to those familiar with 
the work of Katz et al. (1 ) in the 1950s and 
1960s on the neuromuscular junction. Now 
two recent studies (2,3),  one on page 221 of 
this issue, present a simplified mathematical 
model of the frequency-dependent behavior 
of one class of synapse to predict the outcome 
of changes in the activity of many similar 
inputs impinging on a single target neuron. 
This is a welcome refinement of more tradi- 
tional models, in which inputs were simply 
assigned a static efficacy, regardless of their 
pattern of activity. 

The experimental observation underly- 
ing these studies is that the connection from 

one cortical pyramidal cell to another exhib- 
its frequency-dependent depression (4); that 
is, a second action potential elicits a smaller 
resDonse than the first. the third a smaller 
response than the second, and so on until a 
plateau or steady-state output is reached (5) 
(see figure, P3+P2 and Pl+P2). The faster 
the rate at which the presynaptic neuron 
fires, the more rapidly and powerfully does 
the connection depress, so that over a large 
range of rates, the summed potential elicited 
at steady state is the same (P3+P2). These 
properties determine that the connections 
transfer little information about steady-state 
frequency. Whether a hundred inputs fire 
steadily at a low or high average rate makes 
little difference to the response. Connec- 
tions like these would be sensitive, however, 
to significant ~ro~ortional changes in fre- - A A - 

The author is in the Department of Physiology, Royal 
quency of individual inputs (as in Pl+P2) or 
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code dynamic, rather than static, information puted. At nondepressing synapses, the cell model. Real pyramidal cells have com- 
and could act as coincidence detectors (6). postsynaptic response was modulated only by plex dendritic trees, with some inputs aris- 

With the more detailed electrophysi- large absolute changes in input firing rates. ing close to the cell body and generating 
ological data available to them (3, Markram Modulating the low-frequency input had relatively large and fast events there. 0 th -  
and Tsodyks discuss this dynamic behavior little effect. However, at depressing synapses ers arising more distally are degraded and 
in relation to changes in synaptic effi- a small change in av- slowed in their transfer. Moreover, volt- 
cacy. By manipulating experimen- erage population fir- age-dependent events that can dramati- 
tally the probability that transmitter ng rate was extremely cally alter the shape and amplitude of syn- 
will be released by a single aptic potentials can be elicited in 
action potential, they test the dendrites. It is therefore impres- 
the hypothesis that each sive how closely the model proposed 
connection has a given by Tsodyks reproduces the effects of 
maximum output, deter- single inputs in Markram's data, al- 
mined by the number of re- though these effects largely in- 
lease sites at that connec- volved relatively proximal inputs 
tion, and that after release distributed among separate den- 
there is inactivation of re- dritic branches (8), limiting nonlin- 
lease sites. It follows that ear interactions between sites. A 
during recovery from inac- more complex picture may emerge 
tivation, only the propor- when many inputs are activated 
tion of the maximum that throughout the dendritic tree. It is 
either has not yet been even possible that the complexities 
used or that has already re- of pyramidal cells will be found to 
covered from inactivation enhance their dynamic sensitivity 
will be available for the to particular spatiotemporal pat- 
next response. The higher terns of inputs. 
the probability that the Is information about firing rate 
first action potential will completely lost within the circuit? Per- 
release transmitter, the Model predictions. Artist's impression of the average postsynaptic re- haps not; some pyramid-to-intemeu- 
lareer the~rowrtionofthe sponses resultrnq from trains of action potentials in pyramidal cell 1 (PI) ron connections. (9) exhibit verv low z 1 . , 
m&imum output that will a"d pyramidal cell 3 (P3) in two target cells, pyramidal cell 2 (P2) and I ,  pm~ilitiesofreleaseandcodeir;Stan- 
have been used, and the given the predictions from (2, 3). P2 receives two strongly depressing in- huency effectively because 

puts, from PI and P3. Once P3 has been firing repetitively for some time, an 
powerfully the 'On- increase in its firing rate alone produces little additional input to P2. P1 has frequency-de- 

nection will depress. The been silent for some time, has recovered from inactivation, and generates pendent facilitation (P3+1) (I0, I )- 
more rapidly the presyn- a significant response in P2 when it starts to fire. ~f both of these spike dis- Several technical advances have 
a ~ t i c  neuron fires in rela- charges occurred together, P2 would respond phasically when P3 starts been responsible for this new and ex- 
tion to the time constant to fire and again when P1 begins, The predicted response at a pyramid- citing in our of 
fQr recovery from inacti- to-interneuron connection (P3-4) is also shown, at which an increase in ci,itry: paired inmcellular record- 

frequency increases input. Regular sprke trains are shown for simplicity, ings in vitro, multi-unit recordings in vation, the power- but are not typical of many pyramidal cells (2, 3, 5). 
fullv and ra~idlv the con- vivo, and models of circuits contain- . , 
nection depresses. Using 
a novel protocol for inducing lasting syn- 
aptic enhancement (akin to long-term poten- 
tiation), Markram and Tsodyks show that 
an increase in the ~robabilitv of transmit- 
ter release increases the low-frequency re- 
sponse, but because the rate of depression 
also increases, the steady-state response to 
higher frequencies is unchanged (similar 
to P3jP2) .  Potentiating the synapses does 
not alter the model neuron's response even 
to many inputs at steady state, but it does 
change the temporal coding of inputs. This 
does not even require a change in mean 
input frequency, provided only that some 
of the previously low-frequency inputs in- 
crease their rate [see also (2,3)]. 

The model proposed by Abbott et al. (2) 
predicts a similar outcome by comparing in- 
puts that display strong frequency-depen- 
dent depression with those that display 
none. A single model cell's responses to 0s- 
cillatory changes in firing frequency of two 
groups of 100 synaps-ne firing at a high 
and the other at a low mean rate-were com- 

effective provided it occurred at previously 
low-frequency inputs. The same absolute 
modulation of rate at the high-frequency in- 
puts was not detected. 

The extent to which these simple math- 
ematical models of synaptic depression 
predict the real cell's responses to many 
inputs remains to be determined experi- 
mentally. Synaptic depression can be modeled 
as a single mechanism with an exponential 
decay [T,, = 0.3 s (2) or 1 s (3)], but it 
should be remembered that the refractori- 
ness of synapses proposed to dominate the 
first phase of depression (4, 7) may decay 
much more rapidly (2 < 50 ms), and that 
other contributory factors with slower ki- 
netics (such as postsynaptic receptor de- 
sensitization and exhaustion of readily 
releasable transmitter pools) dominate at 
lower frequencies. If these mechanisms can 
also be modulated independently, future 
models (2) will need additional components. 

In addition, both of the new studies use a 
simple, single-compartment postsynaptic 

ing thousands of neurons that gener- 
ate specific questions that can then be tack- 
led experimentally. 
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