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Interaction of the Thiol-Dependent Reductase
ERp57 with Nascent Glycoproteins

Jason D. Oliver, Fimme J. van der Wal, Neil J. Bulleid,
Stephen High*

Calnexin and calreticulin interact specifically with newly synthesized glycoproteins in the
endoplasmic reticulum (ER) and function as molecular chaperones. The carbohydrate-
specific interactions between ER components and glycoproteins synthesized in isolated
canine pancreatic microsomes were analyzed using a cross-linking approach. A car-
bohydrate-dependent interaction between newly synthesized glycoproteins, the thiol-
dependent reductase ERp57, and either calnexin or calreticulin was identified. The
interaction between ERp57 and the newly synthesized glycoproteins required trimming
of the N-linked oligosaccharide side chain. Thus, it is likely that ERp57 functions as part
of the glycoprotein-specific quality control machinery operating in the lumen of the ER.

The lumen of the ER contains a number of
molecular chaperones that assist in the later
stages of protein biosynthesis and folding
(1, 2). A number of studies have highlight-
ed specific interactions between newly syn-
thesized glycoproteins and the putative
chaperones calnexin and calreticulin (3-6).
The binding of calnexin and calreticulin to
newly synthesized proteins is normally char-
acterized by a specific requirement for cor-
rectly processed, asparagine-linked (N-
linked), carbohydrate side chains. In com-
bination with uridine 5’-diphosphate
(UDP)—glucose:glycoprotein glucosyltrans-
ferase (7), calnexin and calreticulin are
thought to mediate a quality control cycle
for newly synthesized glycoproteins (2, 8, 9).
The function of this cycle is to ensure that
only correctly folded and assembled proteins
exit the ER and gain access to later compart-

School of Biological Sciences, University of Manchester,
2.205 Stopford Building, Oxford Road, Manchester M13
9PT, UK.

*To whom correspondence should be addressed. E-mail:
shigh@fs2.scg.man.ac.uk

86

ments of the secretory pathway (2, 10).
Here, we used model substrates derived
from the secretory protein preprolactin
(PPL) (11) to determine the effect of N-
linked glycosylation on the interactions be-
tween newly synthesized polypeptides and
ER proteins. When the PPL92.CHO tran-
script was translated in vitro in the presence
of canine pancreatic microsomes, a glyco-
sylated 62—amino acid prolactin fragment
(PL62.CHO) was generated. In contrast,
translation of the PPL92.Con transcript
generated a nonglycosylated 62—amino acid
fragment (PL62.Con). The interactions be-
tween both PL62.CHO and PL62.Con and
ER components were analyzed with the use
of the membrane-permeable cross-linking
reagent  succinimidyl  4-(N-maleimido-
methyl) cyclohexane carboxylate (SMCC),
a heterobifunctional reagent that principal-
ly cross-links lysines to cysteines. Two
groups of cross-linking partners could be
identified: (i) ER proteins that interacted
with both glycosylated and nonglycosylated
polypeptides, exemplified by protein disul-
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fide isomerase (PDI) (Fig. 1A); and (ii) ER
proteins that interacted only with glyco-
sylated polypeptides. Calnexin and calre-
ticulin, which interact principally with gly-
coproteins, were observed to cross-link to
PL62.CHO (Fig. 1B) but not to PL62.Con
(Fig. 1A). A weaker 160-kD product (Fig.
1B) presumably represented a ternary cross-
linking adduct of calnexin, PL62.CHO, and
a third unidentified component.

In addition to antisera that recognized cal-
nexin, calreticulin, and PDI, a number of
antisera to other ER luminal proteins were
screened for immunoprecipitation of glycosyl-
ation-dependent (that is, PL62.CHO-specif-
ic) cross-linking products (12). We were able
to identify ERp57 (13), a thiol-dependent
reductase (14) and putative cysteine protease
(15), as a strong cross-linking partner of
PL62.CHO but not of PL62.Con (compare
Figs. 1A and 1B). This result suggested that,
like calnexin and calreticulin, ERp57 inter-
acts specifically with glycoproteins.

When immunoprecipitation was per-
formed under “native” conditions (6), a
69-kD cross-linking product was coprecipi-
tated with both calnexin and calreticulin
(Fig. 1B). This 69-kD product was absent
when samples were denatured with SDS
before immunoprecipitation (Fig. 1B). The
glycosylated PL62.CHO product had an ap-
parent molecular mass of 9 kD (11), which
implied that a 60-kD cross-linking partner
was coprecipitated with the calnexin and
calreticulin cross-linking products. A similar
60-kD calnexin-associated protein, denoted
CAP-60, coprecipitates with adducts of the
Glut-1 glucose transporter and calnexin (6).

The 69-kD cross-linking product ob-
tained with PL62.CHO had a similar mo-
bility to those obtained with both PDI and
ERp57 (Fig. 1B). To establish whether
CAP-60 was actually one of these compo-
nents, we performed sequential immunopre-



cipitations. After native immunoprecipita-
tion, samples were denatured with SDS and
reprecipitated. The 97- and 160-kD cal-
nexin-derived cross-linking products were
reprecipitated with anti-calnexin serum,
but CAP-60 was no longer observed and
could not be reprecipitated with anti-PDI
serum (Fig. 2A). Likewise, the 71-kD cal-
reticulin cross-linking product was repre-
cipitated by the anti-calreticulin serum, but
no products were recognized by anti-PDI
serum (Fig. 2A). In a control experiment,
anti-PDI serum worked well in sequential
immunoprecipitations of PDI cross-linking
products (Fig. 2A). A similar experiment

Fig. 1. Glycosylation of import-
ed polypeptides leads to specif-
ic interactions with ER proteins.
PPL92.CHO and PPL92.Con
mRNAs (77) were translated ina
wheat germ lysate supplement-
ed with canine pancreatic mi-
crosomes and [33S]methionine
(20, 21). The microsomes were
isolated and incubated with 1
mM  SMCC (19, 22). (A)
PL62.Con cross-linking prod-
ucts were immunoprecipitated
before (native) or after (denatur-
ing) denaturation with 1% SDS
(6). Affinity-purified anti-ERp57
(23), a nonrelated control serum
(NRS), and rabbit antisera ()
specific for prolactin (PL), cal-
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showed that the 69-kD cross-linking prod-
uct, which associated with both calnexin
and calreticulin, was reprecipitated with an-
tibodies specific for ERp57 (Fig. 2B) (16).
Thus, CAP-60 was in fact ERp57 and in-
teracted with glycoproteins in combination
with calnexin and calreticulin.

To investigate further the interaction be-
tween ERp57 and glycoproteins, we analyzed
two authentic glycosylated secretory proteins
(17) by cross-linking. Both yeast pro—a factor
and human interferon-y (IFN-y) were found
to be cross-linked to ERp57 and calreticulin
(Fig. 3, B and C). Thus, ERp57 could be

cross-linked to a variety of glycoproteins.
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ing products were analyzed exactly as above. Samples were resolved by electrophoresis on 12%
SDS-polyacrylamide gels and visualized with a Fujix BAS-2000 bioimaging system and software. The
apparent molecular masses of calnexin and calreticulin are 88 and 60 kD, respectively. The prominent
97-kD cross-linking product immunoprecipitated by the anti-calnexin serum is a PL62.CHO-calnexin
adduct. Stars denote the 71-kD calreticulin cross-linking product, the arrowheads show the CAP-60
product, and the solid circle is a minor 160-kD calnexin-containing adduct. In this and subsequent
figures, molecular size markers (in kilodaltons) are at the sides of lanes.

A
Fig. 2. Identification of

B
L

CAP-60 by sequential im-
munoprecipitation  using
PPL92.CHO mRNA. (A)
After immunoprecipitation
with anti-calnexin, anti-
calreticulin, or anti-PDI
sera, samples were dena-
tured with SDS and repre-
cipitated with antibodies
specific for calnexin, cal-
reticulin, PDI, or the nas-
cent chain (PL). Control
lanes show products ob-
tained after the first round
of immunoprecipitation.
(B) After immunoprecipi-
tation with anti-calnexin,
anti-calreticulin, and anti-
PDI sera, samples were
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denatured with SDS and reprecipitated with sera specific for calnexin, calreticulin, or PDI, or with
affinity-purified anti-ERp57 (23). Control lanes show products obtained after the first round of
immunoprecipitation. The symbols in the lanes have the same meanings as in Fig. 1.
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Calnexin and calreticulin interact pref-
erentially with glycoprotein substrates that
have been enzymatically processed to bear
the monoglucosylated form of the N-linked
carbohydrate side chain (2). To determine
the role of glucose trimming in promoting
the interaction of glycoproteins with
ERp57, we used castanospermine to specif-
ically inhibit the glucosidases responsible
for this processing (9). The efficacy of the
castanospermine treatment was established
by comparing the mobility of the glycopro-
teins with and without the treatment (5).
In each case, castanospermine caused a re-
duction in the mobility of the glycosylated
proteins due to the increase in the number
of glucose residues present on the carbohy-
drate side chain (Fig. 3D). The interactions
of calnexin (Fig. 3A), calreticulin (Fig. 3, A
to C), and ERp57 (Fig. 3, A to C) were all
substantially inhibited by castanospermine
treatment. In contrast, cross-linking to PDI
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Fig. 3. The interaction of ERp57 with glycoproteins

-46 requires trimming of the oligosaccharide side

chains. mRNAs encoding PPL92.CHO, S. cerevi-
siae prepro—a factor (PPa), and human IFN-vy (17)
were translated in the presence of canine pancre-
atic microsomes, and imported polypeptides were
cross-linked to interacting components with
SMCC (22). The glucosidase inhibitor castanosper-
mine (CST) was included at 1 mM during the trans-
lation reaction as indicated (-, no CST added). (A to
C) Cross-linking products were denatured with 1%
SDS and then analyzed by immunoprecipitation
with anti-calnexin, anti-calreticulin, or anti-PDI sera
or affinity-purified anti-ERp57 (23). (D) Castano-
spermine treatment inhibits glucose trimming, re-
sulting in a reduced mobility for each glycoprotein
examined. The major glycosylated forms of each
polypeptide after timming are indicated by stars;
the number of stars indicates the number of N-
linked carbohydrate side chains present (24).
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was either unaffected (Fig. 3, A and B) or
only partially inhibited (50%) (Fig. 3C).
Thus, like calnexin and calreticulin,
ERp57 binding required glucose trimming
of the N-linked carbohydrate side chains.
We propose that ERp57 functions in com-
bination with calnexin and calreticulin as a
molecular chaperone of glycoprotein bio-
synthesis. We observed a time-dependent
decrease in the amount of the PL62.CHO
cross-linking products with calnexin, calre-
ticulin, and the associated ERp57 (I8).
This suggested that the interaction between
ERp57 and nascent glycoproteins was tran-
sient, like other molecular chaperone-sub-
strate interactions (3, 5, 19). We believe a
specific modulation of glycoprotein folding
could be achieved by coupling the lectin-
like properties of calnexin and calreticulin
(2) with the thiol-dependent reductase ac-

tivity of ERp57 (14).
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Early Onset of Reproductive Function in Normal
Female Mice Treated with Leptin

Farid F. Chehab,* Khalid Mounzih, Ronghua Lu, Mary E. Lim

Numerous studies have revealed an association between nutritional status, adiposity,
and reproductive maturity. The role of leptin, a hormone secreted from adipose tissue,
in the onset of reproductive function was investigated. Normal prepubertal female mice
injected with leptin grew at a slower rate than controls as a result of the hormone’s
thinning effects, but they reproduced up to 9 days earlier than controls and showed
earlier maturation of the reproductive tract. These results suggest that leptin acts as a
signal triggering puberty, thus supporting the hypothesis that fat accumulation enhances

maturation of the reproductive tract.

A link between body fat content and the
onset of puberty in females was first pro-
posed over 30 years ago (I, 2). More re-
cent studies documenting delayed puberty
in lean female ballet dancers (3, 4) and
accelerated puberty in obese females (5)
support the concept that a metabolic sig-
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nal produced by adipose tissue may control
the onset of reproductive function (6).
The ability of leptin, a hormone secreted
by adipose tissue, to restore fertility to
mice that are genetically deficient in lep-
tin (7) suggests that this hormone may be
a signal triggering the onset of reproduc-
tive function.

To explore this possibility, we injected
human recombinant leptin into normal pre-
pubertal female mice and monitored its cit-
culatory levels over time (8). Leptin had a





