
suggested space group P2,2,2,, Integrated n te rs -  
tes  of 396 refectons were extracted w th  use of the 
crogram EXTRA [A. Altomare e i  a/. , J A,opl. Cn//sial- 
logr. 28, 842 (1 395)] Drect methods n the orogram 
SIRPOV~J [A. Altomare et a/. , ibid. 27, 435 (1 99 i ) ]  
\!/ere used to obta~r a set of metal coord~rates. 
These coordnates could ae apcroximatey related to 
those of the cubc chase, ard  'n.tia oxyger postiors 
were rferred from the ow-pressure structure Com- 
a r e d  x-ray a rd  neutron Retved reinemert, n t a l y  
w~ th  metal-oxyger d~starces heavily restra~red to 
chem~cally se rsae  values to prevent dvergence, 
followed by marua shfts of ce.ian O atoms led 
evertualy to a chemcay  sensbe model, n exce- 
e r t  agreemert w ~ t h  both x-ray a rd  neutron data. 
Rei~remerts were cerforlned r the GSAS sute of 
orograms [A C. Larsor and R. B Vor Dreele; Los 
A amos Natona Laboratory (1 994)] 

10 For f ~ n a  refinemert, h~gher ouaty  d~ffractior data 
were used. The x-ray data \!/as collected from 5' to 
100' (a',,, ,, = 1 005 Ai v i~th a steo sze of 0 02' a rd  a 
countrg tlme of i 5  s oer step 14522 data coints) 
Neutror data from SEPD Bark 1, ~ y t h  a t m e  of f ght 
of 6 to 29.5 ms (0 803 to 3 95 A) ard  4699 data 
po r t s ,  were used. Because temperature factors re- 
f ~ r e d  froln oowder data are subject to a number of 
systematic errors, temoeratllre factors were n~tlally 
set at 0 01 A2 for metal atoms ard  0 015 A2 for 0 
atoms. An aasorot~on correct~on for reutror data 
ard  a surface roughness correctlor [P. Suortt~ 
J. Appl. Crystallogr. 5, 325 11 972i] for x-ray data 
were apoed.  Absorpt~on oarameters were then 
f~xed, and eauated sotrocc temperature factors o r  
r d v ~ d u a  elements were allowed to ref~re On sua- 
sequert free refrement of temperature factors ind- 
v~dual values rema~ned w ~ t h n  acceptable I ln~ts  m -  
pur~t~es of 1 1 ob VVO, and 0.8% ZrO, were included 
In the ref~remert as add~t~ona chases. 

11 A bo rd  d~stances and angles he w ~ t h ~ r  norlnaly 
oaserved <arges. Bord valences [!18i; I. D Brown 
and D Atermatt,Acta Crystallogr 6 41, 244 11 9851, 
N E Brese ard  Ivi O Keefe, io~d,  47, 192 (1 331 i] for 
metal atoms r the structure are chemcay  reason- 
able Z r l ,  4 3. Zr2. i . 3 ,  Zr3, i . i ,  VVl 6 I ;  VV2, 6.5, 
W3 5.6, W4, 5.9, W5, 5.6, ard  WE, 5.8 The 0 
vaerces rarge from 1.8 to 2 2 w th  only "termna" 
oxygers 0 1  04 ard  0 1  05 havng s ghtly o w  calcu- 
lated valences 11.6 ard  1.7, rescect~veyl. 

12. There IS some ouest~on as to what const~tutes a true 
VV-O aond n -he str~ctest sense and what IS a weaker 
W. . .O nteract~on. We choose here to define a W-O 
bord as one less thar 2 3 A Us rg  the valence method 
of Brown and lVu 178), th~s d e f ~ r ~ t ~ o r  correspords i o  
rteract~ons contr~aut~rg greater tha? 6% ;f the total 
valerce sum of Vi' be~rg cons~dered as full bonds A 
coord~rat~on of 4+1 1s inte?ded to ilnc y four shod 
1<2 3 4 and ore longer (2 3 to 2 6 4 nteracton 

13. For aoi ' l  cub~c an6 orthorhomb~c forms, a,  12i s 
deflned as sn where a,,, = (b, - VTi)i[(T2 - 
T.)%,]. 

14 A P Gddy, M. T Dove. G. S Pawey V Hene,Acta 
Crystallogr. A 49, 637 : I  393) I P Swarsor  ard  M. 
T. Doue, Phys. Cliem Miner. 22, 61 11395): K D. 
Hammords M T Doue, A P. Gddy, V. Hene, B 
V\irker,Am, Mineral 81, 1057 (1 936): and refererc- 
es therein. 

15. Colnpress~blty, def~red as p = -: I  'l/l(dV:dP). Llr- 
ear regresson of s x  cell caralneters between 0 and 
6 kbar yielded rear  comcress~b~l~t~es -(/ ,:I ,ildl'dP) 
of 0.53 X 10-5  0 i 7  x and 0 47 x 
kbar-' for a, b and c resoectlve y. 

16 J.-E. Jorgersen, J. D Jorgersen, B. Batogg, J. P 
Reme~ka, J. D. Axe, Phys. Rev. B 33 4793 (1986). 

17 Retved refinemert of hgh-pressure data was oer- 
formed with the use of Bark 2 data of SEPD T m e f  
f g h t  ranged from i 5 to 26 ms (d  = 0.806 to i 5GA) 
b~~elding 3071 data conts Data at 0, 1 .0. 3 1 5.2, 
ard  6.2 kaar were refned to x2/;wR,o values of 1 li 
6.5 15 i4 .0 .  1.4:3.8, 15 '3 .9  ard  1 i:3.8O0, re- 
spectively. Precse deterlnratior o' indv dual bo rd  
dstances ard  anglesfor a structure t hs  complex (33 
atoms r a r  asymmetr~c umti s diff cult gver the 
lower resouton of the data obtaned i r  the blab- 
pressure cell Average d starces a '  ,,(Zr-0) = 

2.063 - (9 X 1 0 - 9  P), d,,,i 'A-0) = 1 809 - (2 

x lo-% P), d,, Zr-VV) = 3.80 - 12 x 1 0-4 X P), 
W-W) = 3.904 - (3 x lo-" P )  lpressure in 

kiobars y e d s  dstances In angstroms). Average Zr- 
0-VV angle 160 3 - 10.1 i x P) 
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Disease Extinction and Community Size: 
Modeling the Persistence of Measles 

M. J. Keeling and 6. T. Grenfell 

A basic issue in ecology is the relation between extinction and population size. One of 
the clearest manifestations of a population threshold for extinction is the critical com- 
munity size below which infections like measles do not persist. The current generation 
of stochastic models overestimates the observed critical community size for measles, 
generating much less persistence of infection than is observed. The inclusion of a more 
biologically realistic model for the duration of infection produced a much closer fit to the 
actual critical community size and explains previously undescribed high-frequency os- 
cillations in measles incidence. 

T h e  relation between disease persistence 
and community size can be explored 
through the pattern of fadeouts of infection 
[three or Inore weeks without reported cases 
(1-5)]. The observed critical community 
s i x  (CCS) for measles is about 25C,L?CC to 
4CC,L?L?C (Fig. 1A).  These fig~lres are based 
on a large prevaccinatlon data set for 6C 
to\\-ns ln England and Wales for the years 
1944 to 1968, but they are also typical of 
the pattern observed for U.S. cities (2)  and 
islands (3).  Belo\\, the CCS, the infection 
often becomes extinct in the troughs be- 
tween epidemics and must be reintroduced 
from an external source. 

Fadeout pattern predictions from the 
best current nonspatial stochastic rnodel 
(6-1 3 ) significalltlv overestimate the C C S  
(Fig. 1 ~ ) :  many more fadeouts 
than observed for to\vns with populations 
over 25@,C@@. Thli discrepancy is even 
Inore marked in a comparison of the ob- 
served and expected total weeks of fadeout 
per year (Fig. 1B). Although this standard 
model [the realistic age-structured (RAS) 
model (1 C-14)] captures the deterministic 
dynamlcs of measles epldelnics very well (5, 
1 Q, 13 ), its stochastic dvna~nics are ~lnstable 
In populations below about 1 million, gen- 
eratlng many more fadeouts than observed 
(4-6). A number of authors have sought an 
explanation for this failure of current mod- 
els in terms of spatial hetero~eneities in - 
transmission, on  both large spatlal scales (4.  
15-17) and at the individual (family and 
school) level (1 6).  Although inclusion of 
spatial heterogelleities reduces the predict- 

Depa-tmert of Zoology, Unversty of Cambr~dge Cam 
brdge CB2 3EJ, UK 

ed degree of fadeout, even quite complicat- 
ed spatial models cannot currently capture 
the low observed level of the C C S  (4,  
15-25). 

The fact that the CCS applies to a wide 
range of communities, from cities to islands, 
indicates that we should seek a more generic 
explanation, one rooted in the biology of 
transmission. We propose that the problem 
arises because current models are too sensi- 
tive to stochastic fluctuations. v,~hlch arise 
from the use of long-tailed expollelltial dis- 
tributions for the incubation and infectlous 
periods. This exponential formulation arises 
from the standard assumption that move- 
ment from the exposed to the infectious class 
and then into the recovered class occurs at 
constant rates n and g, respectively (6). 

We can modify the standard model to 
allow for these effects by assurnillg llorlual 
distributions for the incubation and infec- 
tious periods (19). Adore complex distribu- 
tlons could be used (6) ,  but evidence from 
the detailed study of transmissioll in farni- 
lies (20) indicates that the periods show 
llrnited variation. and the data are well 
described by Infectious periods normally 
distributed about their means. The use of 
more discrete perlods has been considered 
previously (21 ) but seldom in thls context 
of seasonally forced stochastic models. The 
revised stochastic model tends to produce 
more concentrated pulses of mfection, so 
I\-e will call it the pulsed realistic age-struc- 
tured (PRAS) model. 

Support for the new model is provided 
by a comparison of Fourier spectra for sim- 
ulated epidemic time series from the stan- 
dard (RAS) and modified (PRAS) models 
with the obserl~ed pattern for England and 
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Wales (Fig. 2). The observed spectrum (Fig. 
2A) shows the well-known peaks associated 
with biennial and annual (seasonal) epi- 
demics (4 ,6 ,8 ,9 ) .  In addition, the analysis 
reveals a previously unreported high-fre- 
quency peak, reflecting low-amplitude epi- 
demics with periods of 2 to 3 weeks. Both 
models capture the annual and biennial 
~ e a k s  accurately (Fig. 2B) (6, 10, 13); how- 
ever. the standard RAS model cannot re- 
produce the high-frequency pulses, whereas 
the PRAS model does reflect variation at 
this time scale. Essentially, the more uni- 
form infectious ~ e r i o d  of the PRAS model 
produces "generation pulses" of infection 
(22), which are apparent in the real data. 
These pulses are especially apparent in the 
data for small communities. 

The impact of this uniformity of infec- 
tion on the predicted CCS is shown in Fig. 
1. The match to the observed number and 

total duration of fadeouts is much closer 
than with the standard RAS model. This 

F Population rite (In thousands) 

Fig. 1. Comparison of fadeout in real data with 
predictions from the RAS and PRAS models. Sol- 
id black dots represent data from 60 towns in 
England and Wales for the prevaccination era 
(1 944 to 1968); blue gives results for the standard 
RAS model; and red, for the new PRAS model. (A) 
Average number of fadeouts (three or more con- 
secutive weeks without case notifications) per 
year. (B) Total number of weeks per year that are 
part of a fadeout. The solid lines in (B) are the 
mean fadeout results from a 100-year simulation 
of the stochastic RAS and PRAS models, with 10 
infected imports per year. The shaded regions 
represent the 95% confidence limits. From the 
simulations we can calculate the probability of a 
week being part of a fadeout; these probabilities 
were then used to find the confidence limits, as- 
suming a 24-year sample size (corresponding to 
1 944 to 1 968) rather than 1 00 years. 

I I 
lo-' 100 10' 

lo-' 1 00 10' 
Frequency (yeart) 

Fig. 2. The average Fourier spectra from the En- 
gland and Wales data and from simulations. Before 
the Fourier spectrum was taken, each series was 
normalized, setting the mean to zero and the vari- 
ance to unity; therefore, when the average was 
taken, all simulated and observed data contributed 
equally, irrespective of the population size. (A) Av- 
erage for the 60 towns. In addition to the strong 
annual and biennial peaks, there is a marked in- 
crease in power at high frequencies. (B) Results 
from 10 stochastic simulations with a population 
size of 50,000. The solid lines are a smoothed av- 
erage of the spectra for the two models (the red line 
is for the PRAS model, blue for the RAS model) and 
the dashed lines show the expected standard de- 
viation. (Inset) Close-up of the high-frequency end 
of the spectra, where the improvements from the 
revised model are clear at around 2 to 3 weeks. 

Fig. 3. Comparison of in- 
fectiousness in the RAS 
and PRAS models. The 
solid lines represent cal- 
culations for the normal- 
ly distributed infectious 
times of the PRAS mod- 
el, and the dashed lines 
are for the exponentially 
distributed times of the 
RAS model. The models 

correspondence occurs essentially because 
the normally distributed infection periods 
of the PRAS model cause infectiousness to 
be more evenly distributed among individ- 
uals, and the model is therefore much less 
vulnerable to stochastic fadeout. The mech- 
anism can be illustrated with a simple ana- 
lytical model (Fig. 3). Figure 3A shows the 
difference between the assumptions about 
the duration of infection made for the two 
models: The PRAS model, with its more 
discrete infectious period, has the majority 
of infections lasting between 4 and 6 days, 
whereas the standard RAS model assumes a 
lower proportion of people infected at the 
early stages, with a long exponential tail 
generating an appreciable probability of in- 
fection after 20 days. The associated 
amount of variation in the infectious ~ e r i -  
ods is reflected in the variance of the basic 
reproduction ratio of infection Ro (6). The 
parameter Var(Ro) represents the stochas- 
ticitv in the s~read of infection and is there- 
fore related to the probability of zero trans- 
mission (Fig. 3B), which is much higher 
with the exponential distribution produced 
by the standard model (23). This difference 
occurs because the RAS model relies on a 
few infectious individuals who retain the 
disease for a long time to spread the infec- 
tion. Therefore, the RAS model has far 
more individuals who do not ~roduce anv 
secondary cases, as compared to the PRAS 
model (Fig. 3B). The greater persistence of 
the pulsed model is unaffected if we equate 
the average generation gap of the infection 
[serial interval between cases (24)] rather 
than the infectious period. 

All of these patterns of infection were 
generated using isolated populations with a 
low stochastic influx of infectives to re- 
introduce infection (5, 9, 13); however, 
changing this influx level within realistic 
limits does not qualitatively alter the im- 
movement made bv the PRAS model. Of 
course, explicit spatial heterogeneity will be 

Time since berornlng 
infectious (days) 

have the same basic reproduction ratio of infection R,, which is proportional to the area under the curves. (A) 
The expected proportion of individuals still infectious as a function of time since entering the infectious class. 
If the time spent in the exposed class is also incorporated into the graph, then for the PRAS model, infectious 
individuals exist as a distinct pulse, whereas the RAS model exhibits an even slower decay than shown. (B) 
The probability of an individual not causing any secondary infections [P(O)] as a function of the proportion 
susceptible for the two models. The values were computed taking P = 4 and IE(P,) = 5 days and demonstrate 
that the differences between the two models are most pronounced when there is a large number of 
susceptibles in the population, although a sizable difference is seen for all realistic densities of susceptibles. 
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required to  explain fully the  persistence of 
the  disease in a llletapopulation where there 
is n o  inilux from an  external source (5) .  

In  summary, inclusion of a more realis- 
tic infection period in  chiliihood disease 
models generates the  high-frequency puls- 
illg seen in  the  real data and produces 
Inore realistic levels of persistence, as re- 
flected in  the  lower C C S .  This  improved 
fit is likely to be a generic result for infec- 
tions that  occur as self-extinguishing epi- 
demics. More generally, this well-docu- 
nlented example underlines (25)  the  idea 
that  the  assumption of constant transition 
rates (and therefore exponentially distrib- 
uted times), which is often made in ecol- 
ogy, may need to  be reevaluated if we are 
to  fully understand patterns of stochastic 
fl l~ctuations and extinctions. 
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How Thiamine Diphosphate Is 
Activated in Enzymes 

Dorothee Kern,*-! Gunther Kern,? Holger Neef, Kai Tittmann, 
Margrit Killenberg-Jabs, Christer Wikner, Gunter Schneider, 

Gerhard Hubner 

The controversial question of how thiamine diphosphate, the biologically active form of 
vitamin B,, is activated in different enzymes has been addressed. Activation of the 
coenzyme was studied by measuring thermodynamics and kinetics of deprotonation at 
the carbon in the 2-position (C2) of thiamine diphosphate in the enzymes pyruvate 
decarboxylase and transketolase by use of nuclear magnetic resonance spectroscopy, 
proton/deuterium exchange, coenzyme analogs, and site-specific mutant enzymes. 
Interaction of a glutamate with the nitrogen in the 1'-position in the pyrimidine ring 
activated the 4'-amino group to act as an efficient proton acceptor for the C2 proton. 
The protein component accelerated the deprotonation of the C2 atom by several orders 
of magnitude, beyond the rate of the overall enzyme reaction. Therefore, the earlier 
proposed concerted mechanism or stabilization of a C2 carbanion can be excluded. 

Coenzymes exert their catalytic activity 
after binding to a specific protein compo- 
nent.  Therefore, it is crucial to understand 
how the  reactivity of distinct groups of co- 
enzymes is increased hy interaction with the  
protein. 

T h e  coenzyme thiamine diphosphate 
(ThDP; Fig. I ) ,  the  biologically active deriv- 
ative of v i ta~nin B,, is used b\- different en- 
zymes that perform a a ide  range of catalytic 
functions. These include decarhoxylation of 
2-oxo acids and transketolation. Althoueh 
the free coenzyme can assist some of these 
reactions, the  protein environment potently 
accelerates the overall enzyme reaction hy up 
to a factor of lC1', as determined for pyru- 

vate decarboxylase (PDC; E.C. 4.1.1.1) (1  ). 
T h e  reactive C2  atom, located between the 
nitrogen and sulfur in the thiazolium ring, is 
the nucleophile that attacks the carhonyl 
carhon of the different substrates (2).  For 
this reaction, the C2-ThDP atom must be 
activated by the enzyme environment. T h e  
deprotonation of C 2  (Fig. 1)  is the key reac- 
tion, because (i)  this initial reaction is the 
only common step for all T h D P  enzymes and 
(ii) the rate constant for this C-H dissocia- 
tion is far too s ~ l ~ a l l  in the  free coenzyme 
compared with that of the elltire enzyme 
reaction (3). T h e  C2-ThDP activation in 
enzymes has been discussed for decades. In 
an  early model, stahilization of ThDP C2- 
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