18.
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suggested space group P2,2,2,. Integrated intensi-
ties of 396 reflections were extracted with use of the
program EXTRA [A. Altomare et al., J. Appl. Crystal-
logr. 28, 842 (1995)]. Direct methods in the program
SIRPOW [A. Altomare et al., ibid. 27, 435 (1994)]
were used to obtain a set of metal coordinates.
These coordinates could be approximately related to
those of the cubic phase, and initial oxygen positions
were inferred from the low-pressure structure. Com-
bined x-ray and neutron Rietveld refinement, initially
with metal-oxygen distances heavily restrained to
chemically sensible values to prevent divergence,
followed by manual shifts of certain O atoms led
eventually to a chemically sensible model, in excel-
lent agreement with both x-ray and neutron data.
Refinements were performed in the GSAS suite of
programs [A. C. Larson and R. B. Von Dreele; Los
Alamos National Laboratory (1994)].

. For final refinement, higher quality diffraction data

were used. The x-ray data was collected from 5° to
100° (d,,i, = 1.005 A) with a step size of 0.02° and a
counting time of 45 s per step (4522 data points).
Neutron data from SEPD Bank 1, with a time of flight
of 6 t0 29.5 ms (0.803 to 3.95 A) and 4699 data
points, were used. Because temperature factors re-
fined from powder data are subject to a number of
systematic errors, temperature factors were initially
set at 0.01 A2 for metal atoms and 0.015 A2 for O
atoms. An absorption correction for neutron data
and a surface roughness correction [P. Suortti,
J. Appl. Crystallogr. 5, 325 (1972)] for x-ray data
were applied. Absorption parameters were then
fixed, and equated isotropic temperature factors on
individual elements were allowed to refine. On sub-
sequent free refinement of temperature factors, indi-
vidual values remained within acceptable limits. Im-
purities of 1.1% WO, and 0.8% ZrO, were included
in the refinement as additional phases.

. All bond distances and angles lie within normally

observed ranges. Bond valences ((78); . D. Brown
and D. Altermatt, Acta Crystallogr. B 41, 244 (1985);
N. E. Brese and M. O’Keefe, ibid. 47, 192 (1991)] for
metal atoms in the structure are chemically reason-
able: Zr1, 4.3; Zr2, 4.3; Zr3, 4.4; W1, 6.1; W2, 6.5;
W3, 5.6; W4, 5.9; W5, 5.6; and W6, 5.8. The O
valences range from 1.8 to 2.2 with only “terminal”
oxygens 0104 and O105 having slightly low calcu-
lated valences (1.6 and 1.7, respectively).

. There is some question as to what constitutes a true

W-O bond in the strictest sense and what is a weaker
W+ O interaction. We choose here to define a W-O
bond as one less than 2.3 A. Using the valence method
of Brown and Wu (78), this definition corresponds to
interactions contributing greater than 6% of the total
valence sum of W being considered as full bonds. A
coordination of 4+1 is intended to imply four short
(<2.3 A) and one longer (2.3 to 2.6 A) interaction.

For both cubic and orthorhombic forms, o, (2) is
defined as Ysx,, where «, = (Vy, — V)T, —
T)Vpl.

A.P.Giddy, M. T. Dove, G. S. Pawley, V. Heine, Acta
Crystallogr. A 49, 697 (1993); |. P. Swainson and M.
T. Dove, Phys. Chem. Miner. 22, 61 (1995), K. D.
Hammonds, M. T. Dove, A. P. Giddy, V. Heine, B.
Winkler, Am. Mineral. 81, 1057 (1996); and referenc-
es therein.

. Compressibility, defined as B = —(1/V)(@V/dP). Lin-

ear regression of six cell parameters between 0 and
6 kbar yielded linear compressibilities —(/ ,// ,)(dl/dP)
of 0.63 X 1072, 0.47 X 1078, and 0.47 X 107°
kbar=1 for a, b, and ¢, respectively.

. J.-E. Jorgensen, J. D. Jorgensen, B. Batlogg, J. P.

Remeika, J. D. Axe, Phys. Rev. B 33, 4793 (1986).

. Rietveld refinement of high-pressure data was per-

formed with the use of Bank 2 data of SEPD. Time of
flight ranged from 4.5 t0 26 ms (d = 0.806 to 4.56 A),
yielding 3071 data points. Data at O, 1.0, 3.1, 5.2,
and 6.2 kbar were refined to x2/wRp values of 1.1/
6.5, 1.6/4.0, 1.4/3.8, 1.5/3.9, and 1.4/3.8%, re-
spectively. Precise determination of individual bond
distances and angles for a structure this complex (33
atoms in an asymmetric unit) is difficult given the
lower resolution of the data obtained in the high-
pressure cell. Average distances: d,(Zr-O) =
2.089 — (9 X 107* X P); d, 4(W-0) = {809 - (2
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X 1074 X P); davg(Zr-W) = 3.80 = (2 X 1074 X P);

Javg(W-W) = 3.904 — (3 X 1073 X P) (pressure in

kilobars yields distances in angstroms). Average Zr-

O-W angle: 160.3 — (0.14 X P).

I. D. Brown and K. K. Wu, Acta Crystallogr. B 32,
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Disease Extinction and Community Size:
Modeling the Persistence of Measles

M. J. Keeling and B. T. Grenfell

A basic issue in ecology is the relation between extinction and population size. One of
the clearest manifestations of a population threshold for extinction is the critical com-
munity size below which infections like measles do not persist. The current generation
of stochastic models overestimates the observed critical community size for measles,
generating much less persistence of infection than is observed. The inclusion of a more
biologically realistic model for the duration of infection produced a much closer fit to the
actual critical community size and explains previously undescribed high-frequency os-

cillations in measles incidence.

The relation between disease persistence
and community size can be explored
through the pattern of fadeouts of infection
[three or more weeks without reported cases
(1-5)]. The observed critical community
size (CCS) for measles is about 250,000 to
400,000 (Fig. 1A). These figures are based
on a large prevaccination data set for 60
towns in England and Wales for the years
1944 to 1968, but they are also typical of
the pattern observed for U.S. cities (2) and
islands (3). Below the CCS, the infection
often becomes extinct in the troughs be-
tween epidemics and must be reintroduced
from an external source.

Fadeout pattern predictions from the
best current nonspatial stochastic model
(6-13) significantly overestimate the CCS
(Fig. 1A), generating many more fadeouts
than observed for towns with populations
over 250,000. This discrepancy is even
more marked in a comparison of the ob-
served and expected total weeks of fadeout
per year (Fig. 1B). Although this standard
model [the realistic age-structured (RAS)
model (10-14)] captures the deterministic
dynamics of measles epidemics very well (5,
10, 13), its stochastic dynamics are unstable
in populations below about 1 million, gen-
erating many more fadeouts than observed
(4-6). A number of authors have sought an
explanation for this failure of current mod-
els in terms of spatial heterogeneities in
transmission, on both large spatial scales (4,
15-17) and at the individual (family and
school) level (16). Although inclusion of
spatial heterogeneities reduces the predict-

Department of Zoology, University of Cambridge, Cam-
bridge CB2 3EJ, UK.
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ed degree of fadeout, even quite complicat-
ed spatial models cannot currently capture
the low observed level of the CCS (4,
15-25).

The fact that the CCS applies to a wide
range of communities, from cities to islands,
indicates that we should seek a more generic
explanation, one rooted in the biology of
transmission. We propose that the problem
arises because current models are too sensi-
tive to stochastic fluctuations, which arise
from the use of long-tailed exponential dis-
tributions for the incubation and infectious
periods. This exponential formulation arises
from the standard assumption that move-
ment from the exposed to the infectious class
and then into the recovered class occurs at
constant rates a and g, respectively (6).

We can modify the standard model to
allow for these effects by assuming normal
distributions for the incubation and infec-
tious periods (19). More complex distribu-
tions could be used (6), but evidence from
the detailed study of transmission in fami-
lies (20) indicates that the periods show
limited variation, and the data are well
described by infectious periods normally
distributed about their means. The use of
more discrete periods has been considered
previously (21) but seldom in this context
of seasonally forced stochastic models. The
revised stochastic model tends to produce
more concentrated pulses of infection, so
we will call it the pulsed realistic age-struc-
tured (PRAS) model.

Support for the new model is provided
by a comparison of Fourier spectra for sim-
ulated epidemic time series from the stan-
dard (RAS) and modified (PRAS) models
with the observed pattern for England and
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Wales (Fig. 2). The observed spectrum (Fig.
2A) shows the well-known peaks associated
with biennial and annual (seasonal) epi-
demics (4, 6, 8, 9). In addition, the analysis
reveals a previously unreported high-fre-
quency peak, reflecting low-amplitude epi-
demics with periods of 2 to 3 weeks. Both
models capture the annual and biennial
peaks accurately (Fig. 2B) (6, 10, 13); how-
ever, the standard RAS model cannot re-
produce the high-frequency pulses, whereas
the PRAS model does reflect variation at
this time scale. Essentially, the more uni-
form infectious period of the PRAS model
produces “generation pulses” of infection
(22), which are apparent in the real data.
These pulses are especially apparent in the
data for small communities.

The impact of this uniformity of infec-
tion on the predicted CCS is shown in Fig.
1. The match to the observed number and
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Fig. 1. Comparison of fadeout in real data with
predictions from the RAS and PRAS models. Sol-
id black dots represent data from 60 towns in
England and Wales for the prevaccination era
(1944 to 1968); blue gives results for the standard
RAS model; and red, for the new PRAS model. (A)
Average number of fadeouts (three or more con-
secutive weeks without case notifications) per
year. (B) Total number of weeks per year that are
part of a fadeout. The solid lines in (B) are the
mean fadeout results from a 100-year simulation
of the stochastic RAS and PRAS models, with 10
infected imports per year. The shaded regions
represent the 95% confidence limits. From the
simulations we can calculate the probability of a
week being part of a fadeout; these probabilities
were then used to find the confidence limits, as-
suming a 24-year sample size (corresponding to
1944 to 1968) rather than 100 years.
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total duration of fadeouts is much closer

than with the standard RAS model. This
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Fig. 2. The average Fourier spectra from the En-
gland and Wales data and from simulations. Before
the Fourier spectrum was taken, each series was
normalized, setting the mean to zero and the vari-
ance to unity; therefore, when the average was
taken, all simulated and observed data contributed
equally, irrespective of the population size. (A) Av-
erage for the 60 towns. In addition to the strong
annual and biennial peaks, there is a marked in-
crease in power at high frequencies. (B) Results
from 10 stochastic simulations with a population
size of 50,000. The solid lines are a smoothed av-
erage of the spectra for the two models (the red line
is for the PRAS model, blue for the RAS model) and
the dashed lines show the expected standard de-
viation. (Inset) Close-up of the high-frequency end
of the spectra, where the improvements from the
revised model are clear at around 2 to 3 weeks.

correspondence occurs essentially because
the normally distributed infection periods
of the PRAS model cause infectiousness to
be more evenly distributed among individ-
uals, and the model is therefore much less
vulnerable to stochastic fadeout. The mech-
anism can be illustrated with a simple ana-
lytical model (Fig. 3). Figure 3A shows the
difference between the assumptions about
the duration of infection made for the two
models: The PRAS model, with its more
discrete infectious period, has the majority
of infections lasting between 4 and 6 days,
whereas the standard RAS model assumes a
lower proportion of people infected at the
early stages, with a long exponential tail
generating an appreciable probability of in-
fection after 20 days. The associated
amount of variation in the infectious peri-
ods is reflected in the variance of the basic
reproduction ratio of infection R, (6). The
parameter Var(R,) represents the stochas-
ticity in the spread of infection and is there-
fore related to the probability of zero trans-
mission (Fig. 3B), which is much higher
with the exponential distribution produced
by the standard model (23). This difference
occurs because the RAS model relies on a
few infectious individuals who retain the
disease for a long time to spread the infec-
tion. Therefore, the RAS model has far
more individuals who do not produce any
secondary cases, as compared to the PRAS
model (Fig. 3B). The greater persistence of
the pulsed model is unaffected if we equate
the average generation gap of the infection
[serial interval between cases (24)] rather
than the infectious period.

All of these patterns of infection were
generated using isolated populations with a
low stochastic influx of infectives to re-
introduce infection (5, 9, 13); however,
changing this influx level within realistic
limits does not qualitatively alter the im-
provement made by the PRAS model. Of
course, explicit spatial heterogeneity will be

Fig. 3. Comparison of in-

_ : 1.00—— A 100 B
fectiousness in the RAS 809
and PRAS models. The 208 N
solid lines represent cal- & 8:; = ™~
culations for the normal- ¢ 0.5 N S0
ly distibuted infectious 04 *
times of the PRAS mod- 833 -
el, and the dashed lines a_°- 0.1 !
are for the exponentially 55 4 6 8 707214 76 16 20 0 T 020
distributed times of the Time since becoming Proportion susceptible
infectious (days)

RAS model. The models

have the same basic reproduction ratio of infection Ry, which is proportional to the area under the curves. (A)
The expected proportion of individuals still infectious as a function of time since entering the infectious class.
If the time spent in the exposed class is also incorporated into the graph, then for the PRAS model, infectious
individuals exist as a distinct pulse, whereas the RAS model exhibits an even slower decay than shown. (B)
The probability of an individual not causing any secondary infections [P(0)] as a function of the proportion
susceptible for the two models. The values were computed taking B = 4 and E(P)) = 5 days and demonstrate
that the differences between the two models are most pronounced when there is a large number of
susceptibles in the population, although a sizable difference is seen for all realistic densities of susceptibles.
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required to explain fully the persistence of
the disease in a metapopulation where there
is no influx from an external source (5).

In summary, inclusion of a more realis-
tic infection period in childhood disease
models generates the high-frequency puls-
ing seen in the real data and produces
more realistic levels of persistence, as re-
flected in the lower CCS. This improved
fit is likely to be a generic result for infec-
tions that occur as self-extinguishing epi-
demics. More generally, this well-docu-
mented example underlines (25) the idea
that the assumption of constant transition
rates (and therefore exponentially distrib-
uted times), which is often made in ecol-
ogy, may need to be reevaluated if we are
to fully understand patterns of stochastic
fluctuations and extinctions.
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How Thiamine Diphosphate Is
Activated in Enzymes
Dorothee Kern,*t Gunther Kern,i Holger Neef, Kai Tittmann,

Margrit Killenberg-Jabs, Christer Wikner, Gunter Schneider,
Gerhard Hubner

The controversial question of how thiamine diphosphate, the biologically active form of
vitamin B,, is activated in different enzymes has been addressed. Activation of the
coenzyme was studied by measuring thermodynamics and kinetics of deprotonation at
the carbon in the 2-position (C2) of thiamine diphosphate in the enzymes pyruvate
decarboxylase and transketolase by use of nuclear magnetic resonance spectroscopy,
proton/deuterium exchange, coenzyme analogs, and site-specific mutant enzymes.
Interaction of a glutamate with the nitrogen in the 1’-position in the pyrimidine ring
activated the 4'-amino group to act as an efficient proton acceptor for the C2 proton.
The protein component accelerated the deprotonation of the C2 atom by several orders
of magnitude, beyond the rate of the overall enzyme reaction. Therefore, the earlier
proposed concerted mechanism or stabilization of a C2 carbanion can be excluded.

Coenzymes exert their catalytic activity
after binding to a specific protein compo-
nent. Therefore, it is crucial to understand
how the reactivity of distinct groups of co-
enzymes is increased by interaction with the
protein.

- The coenzyme thiamine diphosphate
(ThDP; Fig. 1), the biologically active deriv-
ative of vitamin By, is used by different en-
zymes that perform a wide range of catalytic
functions. These include decarboxylation of
2-oxo acids and transketolation. Although
the free coenzyme can assist some of these
reactions, the protein environment potently
accelerates the overall enzyme reaction by up
to a factor of 10'%, as determined for pyru-
SCIENCE -«
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vate decarboxylase (PDC; E.C. 4.1.1.1) (I).
The reactive C2 atom, located between the
nitrogen and sulfur in the thiazolium ring, is
the nucleophile that attacks the carbonyl
cartbon of the different substrates (2). For
this reaction, the C2-ThDP atom must be
activated by the enzyme environment. The
deprotonation of C2 (Fig. 1) is the key reac-
tion, because (i) this initial reaction is the
only common step for all ThDP enzymes and
(ii) the rate constant for this C-H dissocia-
tion is far too small in the free coenzyme
compared with that of the entire enzyme
reaction (3). The C2-ThDP activation in
enzymes has been discussed for decades. In
an early model, stabilization of ThDP C2-
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