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Compressibility, Phase Transitions, and Oxygen
Migration in Zirconium Tungstate, ZrW,Og4

J. S. O. Evans, Z. Hu, J. D. Jorgensen, D. N. Argyriou,
S. Short, A. W. Sleight”

In situ neutron diffraction experiments show that at pressures above 2 kilobars, cubic
zirconium tungstate (ZrW,0,) undergoes a quenchable phase transition to an ortho-
rhombic phase, the structure of which has been solved from powder diffraction data. This
phase transition can be reversed by heating at 393 kelvin and 1 atmosphere and involves
the migration of oxygen atoms in the lattice. The high-pressure phase shows negative
thermal expansion from 20 to 300 kelvin. The relative thermal expansion and compress-
ibilities of the cubic and orthorhombic forms can be explained in terms of the “cross-
bracing” between polyhedra that occurs as a result of the phase transition.

Macerials with a negative coefficient of
thermal expansion (either as pure phases or
as constituents of composite materials de-
signed to achieve a desired overall coeffi-
cient) may become useful in a variety of
electronics applications and as substrates for
high-precision optical mirrors, components
of high-precision thermometers, and cata-
lyst supports. Cubic ZrW,O4 was recently
shown to exhibit isotropic negative thermal
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expansion from 0.3 to 1050 K (I, 2). The
coefficient of this thermal contraction (o =
—8.8 X 1079K™1) (2) is of the same order
of magnitude as that of a so-called high-
expansion normal ceramic such as AL,O; («
= 49 X 1079 K=1) (3). The material re-
mains cubic over the entire temperature
range, and the contraction is therefore iso-
tropic. In contrast, the low thermal expan-
sion materials currently in use generally
expand anisotropically, which can lead to
severe problems such as microcracking in
ceramics. Further insights into the mecha-
nisms leading to the negative thermal ex-
pansion in ZrW,0Oq4 may therefore be im-
portant both to gain fundamental insight
and to design materials.

The structure of ZrW,Oy4 consists of a
framework of corner-sharing ZrOg4 octahe-
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dra and WO, tetrahedra in which one ox-
ygen of each WO, is “terminal” in nature
and is bound to only one W atom. The
instability of this structure is revealed by a
phase transition at 428 K from acentric to
centric cubic that is associated with the
onset of considerable mobility of at least
one of these terminal O atoms (I). The
topology of this relatively open framework
also gives the structure a high degree of
flexibility. Modeling procedures have
shown that the connectivity of the lattice
can be retained as the cell edge is varied
from 8.8 t0 9.3 A (the cubic phase has a cell
edge of 9.1575 A at 293 K and atmospheric
pressure), with no distortion of the metal-
oxygen bond distances or oxygen-metal-ox-
ygen bond angles of the constituent poly-
hedra. Instead, the structure can accommo-
date this artificial change in pressure by a
coupled rotation of its constituent polyhe-
dra that requires only changes in the rela-
tively flexible Zr-O-W bond angles (I).
These studies suggest a model for the neg-
ative thermal expansion of ZrW,O4 involv-
ing thermal libration of these rigid polyhe-
dra and also suggest that Zr'W,0Oq4 may show
unusual properties under applied pressure.
Here we report neutron diffraction data
recorded as a function of pressure with the
intention of investigating the potential
structural flexibility. These experiments
have shown, however, that the cubic struc-
ture of ZrW,0Og4 becomes unstable at a rel-
atively low pressure (<2 kbar) and under-
goes a transition to a related, although
structurally distinct, orthorhombic phase.
This phase transition gives rise to a ~5%
reduction in cell volume and causes an
increase in the average W and O coordina-
tion numbers. The new phase remains sta-
ble when pressure is released, enabling us to
determine its structure and measure both its
thermal expansion properties and compress-
ibility. The orthorhombic phase can be

converted back to the cubic form by heat-
ing at 393 K and ambient pressure. Com-
parison of the thermal expansivities and
compressibilities of both the cubic and or-
thorhombic forms of ZrW,Oy, in light of
their structural differences, gives support to
our model of negative thermal expansion in
these materials.

Neutron diffraction data were collected
as a function of increasing pressure at
room temperature with the use of the Spe-
cial Environment Powder Diffractometer
(SEPD) (4) at the Intense Pulsed Neutron
Source at Argonne National Laboratory
(5). As the pressure was increased from O to
2 kbar, another crystalline phase appeared
(Fig. 1). At 4 kbar, the phase conversion
was essentially complete. This phase re-
mained stable after the pressure was re-
leased and could be indexed by an ortho-
rhombic unit cell of a = 9.067 A, b =
27.035 A, and c = 8.921 A (6, 7). This unit
cell is closely related to that of the cubic
material, but with a tripled b axis [a(cubic)
= 9.1575 A at 300 K and room pressure;
a(ortho) = c(ortho) =~ a(cubic), b{ortho)
=~ 3a(cubic)]. The volume change associat-
ed with the phase transition is AV
—4.98% (8).

The structure of the high-pressure phase
was solved and refined by powder methods
with a combination of laboratory x-ray and
high-resolution time-of-flight neutron dif-
fraction data collected after quenching to
ambient pressure (Table 1 and Fig. 2) (9—
11). Observed, calculated, and difference
profiles from Rietveld refinements using
this structural model at various pressures are
included in Fig. 1.

The high-pressure orthorhombic form of
ZrW,0;4 (hereafter v-ZrW,0O;) is closely
related to the low-pressure cubic form at
room temperature (a-ZrW,0Oyg), although
with shifts in metal-atom positions of up to

1 A and larger oxygen shifts (Fig. 2). The

Fig. 1. Time-of-flight
neutron diffraction pat-
terns of (pottom) cubic

a-ZIW,0, at 300 K and 6 kbar

A AARA

100% Orthorhombic

atmospheric  pressure,

(middle) a 64% a-ZrW,04,
36% v-Z'W, 0,4 mixture
at 2 kbar, and (top) fully
converted y-ZrW,0, at 6

2 kbar
64% Cubic
36% Orthorhombic

Sonardorioisin

;;x.ﬁ;x..:.}h‘x;& ﬁ

kbar. Observed (+), cal-
culated (solid ling), and
difference (ower solid
trace for each pattern)
profiles from Rietveld re-

Intensity (arbitrary units)

0 kbar
100% Cubic

§.£‘§M L %&

finement are  shown. ‘

PR S T S T T T Tt S S R O

Weight percentages of
the forms in the mixture
were obtained by two-
phase Rietveld refine-
ment (8).
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structure of a-ZrW,Oy can be described as a
cornet-sharing framework of ZrO, and
WO, groups, which leads to a framework
formula of ZrW,O**. In this formalism,
the remaining two oxygen ions are intro-
duced into the structure in either an or-
dered (<428 K, P2,3 in a-ZrtW,0f) or
disordered (>428 K, Pa3 in B-ZrW,Oy)
fashion. Each of the two crystallographi-
cally distinct W atoms is thus tetrahedrally
coordinated by four close (distance d ~ 1.8
A) O atoms. For each pair of WO, tetrahe-
dra (Fig. 2B), there is also a relatively long-

Table 1. Fractional atomic coordinates from com-
bined x-ray and neutron Rietveld refinement of
v-Zr'W,0O4 at 300 K and atmospheric pressure.
Numbers in parentheses are the errors in the last
digits. Space group P2,2,2,;a = 9.067 A, b =
27.035 A, and ¢ = 8.921 A. Qverall x2 = 1.68,
wRp(neutron) = 3.84%, wRp(x-ray) 6.37%,
Rp(neutron) = 2.58%, Rp(x-ray) 4.53%,
RF2(neutron) = 3.29%, and RF3(x-ray) = 3.04%;
number of reflections = 2508 (neutron) and 2655
(x-ray, Ke; and Key). In addition to fractional
atomic coordinates, the cell parameters, histo-
gram scale factors, profile parameters, back-
ground terms, and three equated temperature
factors were refined (136 parameters total) (70).
wRp = {SMw[y,obs) — y,(calc)2/SNw,y F(obs)} 2,
Rp = {EMy,(obs) — y,(calc)]?/ZNy2(obs)} 2, RF?
= SN|FlobsP? — Flcalc)?|/=M|Fobs)?]. x2 =
WRD/R,,. )2 = ZMw]y,obs) — y(calo)/(N — P);
y,{obs) and y,(calc) are the observed and calculat-
ed intensities at step /, NV is the number of obser-
vations, and P is the number of parameters.

Atom x/a y/b z/c

Zr 0.2161(6) 0.4206(2)  0.8080(7)
Zr2 0.7225(7) 0.4239(2)  0.2344(6)
Zr3 0.7438(6) 0.2538(2)  0.7394(7)
WA 0.9021(7) 0.3738(2)  0.5809(6)
w2 0.6276(7)  0.4462(2) 0.8250(6)
W3 0.1395(7) 0.2153(2)  0.8564(6)
w4 0.3786(7)  0.3150(2)  0.6096(6)
W5 0.4053(7) 0.4508(2)  0.4585(6)
W6 0.1279(7) 0.3786(2)  0.2094(6)
011 0.7104(11)  0.5940(3)  0.9561(10)
012 0.6541(10)  0.6890(4) 0.1477(10)
013 0.4974(10) 0.5916(3)  0.2286(10)
0101 0.4599(10) 0.6396(3) 0.9564(10)
021 0.6929(11)  0.4381(4)  0.0130(10)
022 0.4395(11)  0.4371(4)  0.8510(10)
023 0.7050(11)  0.5055(3)  0.7775(10)
0102 0.7883(10) 0.6046(3) 0.2382(10)
031 0.6705(9) 0.3475(4)  0.1934(11)
032 0.6910(10)  0.2793(3)  0.9442(10)
033 0.4544(11)  0.2657(4)  0.1755(10)
01083 0.4455(8) 0.3672(3)  0.5074(11)
oM 0.2302(11)  0.6514(3) 0.2426(10)
042 0.9593(10) 0.7183(4)  0.1656(10)
043 0.2230(10)  0.7179(8)  0.9639(10)
0104  0.7693(10)  0.2488(4) 0.2521(10)
051 0.3531(11)  0.5136(4)  0.3995(11)
052 0.9833(10)  0.5669(3)  0.7928(9)
053 0.2417(11)  0.5563(3) 0.1024(10)
0105  0.9480(11) 0.5327(3)  0.0945(11)
061 0.1865(11)  0.3909(4)  1.0169(10)
062 0.1602(10)  0.3130(3)  0.2038(10)
063 0.9360(12)  0.4023(4) 0.1825(12)
0106  0.2625(11) 0.5824(3) 0.8151(8)




range (d ~ 2.4 A) additional interaction
between the terminal O atom of one WO,
group and the adjacent W atom. This
leaves, however, one truly one-coordinate
O atom for every two WO, groups.

In y-ZrW,0Oq, the basic ZrW,O**
framework remains intact, and there is es-
sentially no change in the ZrO, coordina-

tion sphere. There are, however, consider-
able changes in the W coordination envi-
ronment. The six crystallographically dis-
tinct W atoms can be considered as three
pairs of WO, tetrahedra (W1-W2, W3-W4,
and W5-W6) related to those of
a-ZtW,0q. The 5% reduction in volume
can primarily be related to the marked de-

Threel

axs

Fig. 2. (A) Polyhedral representation of the structure of y-ZrW,O4. The ZrOg octahedra are shaded, and
the WO, polyhedra are white. All W-O bond distances less than 2.5 A have been included in the WO,
polyhedra. (B) Schematic representation of the 2(WO,) groups of a-ZrW,0,, viewed perpendicular to
the threefold axis. (C, D, and E) Representations of the W coordination environments in y-ZrW,0g. Bond
distances are shown in angstroms. Oxygen atoms are white; W atoms are shaded. In each case, bond
distances less than 2.3 A are drawn as solid lines; longer interactions, as dashed lines. Bridging oxygens
in the coordination sphere of Wn (that is, W1 and W2, for example) in the ideal high-symmetry structure
are labeled n1, n2, n3; the terminal oxygens are labeled 10n. Note the increase in average W coordi-
nation number, the “inversion” of the W3-W4 group, and the migration of 0103 to W4 and 0104 to W3.

Table 2. Cell dimensions as a function of temperature and pressure. Values derived by means of Le Ball
fitting of neutron diffraction data (7). Estimated standard deviations of 0.0003 A for a and ¢ and 0.001 A
for b are probably underestimates of the true precision of the measurements.

T K a (A b (A c(A) P (kbar) ad b A cA
20 9.0748 27.035 8.9191 0.00 9.0680 27018 89120
90 9.0727 27.034 8.9175 1.04 9.0640  27.002 8.9035
160 9.0715 27.031 8.9170 3.11 9.0548 26.977 8.8946
230 9.0710 27.030 8.9166 4.18 9.0487 26.956  8.8911
300 9.0700 27.030 8.9167 517 9.0440  26.954 8.8887
6.23 9.0374 26.937  8.8849
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crease in the W-W distance for groups W1-
W2 and W5-W6 [for y-ZrW,Oq, d(W1-
W2) = 3.84 A and d(W5-W6) = 3.87 A;
for a-ZtW,O4, d(W-W) = 4.16 A] (Fig. 2).
There are two reasons for this decrease.
First, there is a significant decrease in the
nonbonding W+O distance, leading to an
increase in the bonding nature of this inter-
action. Second, in a-ZrW,0O,, the WO,
groups are constrained by symmetry to lie on
a threefold axis, and thus their W-O__, .,
vectors are collinear. At the phase transi-
tion, all threefold axes are destroyed, and the
W-O-W bond angles can deviate from
180°. This lowering of symmetry, and the
resultant tilting of the WO, groups, also
leads to an increase in W-O bonding inter-
actions because it leads to a significant de-
crease in distance between the terminal O
atom of one pair of WO, groups and a W of
an adjacent WO, pair. For example, this
tilting (Fig. 2, C and E) leads to a significant
interaction between O105 (the terminal ox-
ygen of the W5-W6 group) and W2 and
between O101 (the terminal oxygen of the
W1-W2 group) and W6. In the cubic struc-
ture, these distances are 3.61 A; after the
phase transition, they are reduced to 2.25
and 2.39 A, respectively.

Perhaps the most significant structural
change concerns the W3-W4 group. After
the phase transition, there is little change
in the W3-W4 distance (d ~ 4.10 A), and
both W atoms remain approximately tetra-
hedrally coordinated. There is, however, a
change in the orientation of the two tetra-
hedra. In a-ZrW,04 (and for W1-W2 and
W5-W6 of y-ZrtW,0Oq), the WO, groups
can be considered as having W-O,, ...
vectors oriented in a definite direction ap-
proximately parallel to the original three-
fold axis of the structure (Fig. 2, B, C, and
E). In y-ZtW,O,, the orientation of the
W3-W4 tetrahedral pair is reversed (Fig.
2D). This reversal involves the migration of
the original terminal O atom of W3 (O103)
to W4, and the coupled migration of the
terminal O atom of W4 (O104) to W3,
bringing the nonbridging O atom of the
W3-W4 tungstate groups relatively close to
W5 [d(W5-0103) = 2.32 Al]. Thus, the
overall coordination number of W5 is in-
creased to 6 (in a pseudo-octahedral ar-
rangement), and perhaps more significant-
ly, that of O103 is increased from 1 to 2.

This oxygen migration is reminiscent of
the mechanism proposed to account for the
acentric to centric (order-disorder) transi-
tion at 428 K in a-ZtW,04 (I). In
a-ZrW,QO,, this oxygen-mobility model is
supported by significant changes in dielec-
tric properties at the phase transition (1).
The observation of a similar structural in-
version here implies the occurrence of sig-
nificant oxygen mobility in ZrW,04 at
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room temperature and <2 kbar of applied
pressure.

The driving forces for this highly unusu-
al phase transition and the implied high
oxygen mobility at low temperatures are
twofold. First, the transition gives rise to an
overall increase in the average W coordina-
tion number. In a-ZrW,04, the coordina-
tion numbers of the two unique W atoms
are best described as 4 and 4+1 (12). Of the
six crystallographically unique W atoms in
v-ZrtW,05, W1, W2, W4, and W6 have
441 coordination, W5 has 5+1 coordina-
tion, and only W3 remains strictly 4-coor-
dinate (12). Perhaps more importantly, for
each 2(WO,) group in a-ZrW,Og, there is
one O atom that is strictly bonded to only
one W atom (the next nearest W being
3.61 A distant). The bending of W1-W2
and W5-W6 groups and the inversion of
the W3-W4 group increases the effective
coordination number of all of these termi-
nal O atoms to 1+1. It thus seems likely
that the same inherent structural instability
that leads to oxygen migration at relatively
low temperatures at ambient pressure also
drives the pressure-induced transformation
to y-ZrW,Oq. It is also interesting to spec-
ulate on the temperature at which the or-
thorhombic structure might be induced to
form at atmospheric pressure. From the ob-
served temperature dependence of the cell
volume of a-ZrW,0g (V = 77398 —
0.0214T A%), a-ZrW,O4 would achieve a
cell volume per formula unit similar to that
of y-ZrW,0q4 at around 2100 K. Such a

temperature is, however, beyond the stabil-

ity range of a-ZrW,Oy.

Neutron diffraction data for y-ZrW,Oq
were collected as a function of both tem-
perature and pressure. We found that
vy-ZrW,QOyq retains a negative coefficient of
thermal expansion (Fig. 3A and Table 2),
with all three axes showing an approxi-
mately linear decrease with temperature
from 20 to 300 K. The magnitude of this
effect (o = —1.0 X 1076 K1) is an order
of magnitude smaller than that for a- or
B-ZtW,Oq (o = —8.8 X 1076 K~1) (13).
The negative thermal expansion of a- and
B-ZrW,Oq4 has previously been described as
the result of transverse thermal vibrations
of 2-coordinate O atoms bridging Zr and W
atoms (1). Given the inherent flexibility
conferred by the lattice topology, these in-
dividual vibrations can lead to coupled li-
bration of rigid metal-oxygen polyhedra
within the structure and overall negative
thermal expansion. Such modes have been
termed rigid unit modes by Dove and co-
workers and have been implicated by them
and others in the negative thermal expan-
sion behavior of a number of framework
structures (14). In y-ZrW,QOq, all oxygen
atoms remain 2-coordinate, a feature that
seems to be a requirement for negative ther-
mal expansion in most oxide materials.
However, the increase in the average W
and O coordination numbers resulting from
increased interactions between adjacent
WO, groups decreases the flexibility of the
structure. These additional bonds can be
thought of as “cross-bracing” neighboring
polyhedra, and the number of low-energy
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vibrational maodes, which require minimal
distortion of the constituent polyhedra or
changes in metal-oxygen bond distances, is
markedly decreased. This reduction leads to
a corresponding decrease in the magnitude
of the negative thermal expansion.

The compressibilities of «a- and
v-ZrW,04 are 1.44 X 1072 and 147 X
107> kbar™!, respectively, at 300 K (Fig.
3B), with all three axes showing compara-
ble compressibilities (15). One might have
expected y-ZrW,Og to have a compressibil-
ity significantly larger than that of the o
phase as a result of the additional degrees of
freedom provided by the lower structural
symmetry. This is the case in materials such
as ReQ;, where the so-called “compressibil-
ity collapse” phase transition involving the
cooperative tilting of neighboring polyhe-
dra leads to an order of magnitude increase
in compressibility (16). In y-ZrW,0Oy, the
cross-bracing of neighboring polyhedra ap-
parently prevents such an increase in com-
pressibility. Rietveld refinements on data
collected at five pressures between 0 and 6
kbar suggest that the predominant com-
pressibility mechanism of y-ZrW,Og occurs
by means of changes in relatively flexible

Zr-O-W bridging units (17).
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Disease Extinction and Community Size:
Modeling the Persistence of Measles

M. J. Keeling and B. T. Grenfell

A basic issue in ecology is the relation between extinction and population size. One of
the clearest manifestations of a population threshold for extinction is the critical com-
munity size below which infections like measles do not persist. The current generation
of stochastic models overestimates the observed critical community size for measles,
generating much less persistence of infection than is observed. The inclusion of a more
biologically realistic model for the duration of infection produced a much closer fit to the
actual critical community size and explains previously undescribed high-frequency os-

cillations in measles incidence.

The relation between disease persistence
and community size can be explored
through the pattern of fadeouts of infection
[three or more weeks without reported cases
(I1-5)]. The observed critical community
size (CCS) for measles is about 250,000 to
400,000 (Fig. 1A). These figures are based
on a large prevaccination data set for 60
towns in England and Wales for the years
1944 to 1968, but they are also typical of
the pattern observed for U.S. cities (2) and
islands (3). Below the CCS, the infection
often becomes extinct in the troughs be-
tween epidemics and must be reintroduced
from an external source.

Fadeout pattern predictions from the
best cutrent nonspatial stochastic model
(6-13) significantly overestimate the CCS
(Fig. 1A), generating many more fadeouts
than observed for towns with populations
over 250,000. This discrepancy is even
more marked in a comparison of the ob-
served and expected total weeks of fadeout
per year (Fig. 1B). Although this standard
model [the realistic age-structured (RAS)
model (10-14)] captures the deterministic
dynamics of measles epidemics very well (5
10, 13), its stochastic dynamics are unstable
in populations below about 1 million, gen-
erating many more fadeouts than observed
(4-6). A number of authors have sought an
explanation for this failure of current mod-
els in terms of spatial heterogeneities in
transmission, on both large spatial scales (4,
15-17) and at the individual (family and
school) level (16). Although inclusion of
spatial heterogeneities reduces the predict-
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ed degree of fadeout, even quite complicat-
ed spatial models cannot currently capture
the low observed level of the CCS (4,
15-25).

The fact that the CCS applies to a wide
range of communities, from cities to islands,
indicates that we should seek a more generic
explanation, one rooted in the biology of
transmission. We propose that the problem
arises because current models are too sensi-
tive to stochastic fluctuations, which arise
from the use of long-tailed exponential dis-
tributions for the incubation and infectious
periods. This exponential formulation arises
from the standard assumption that move-
ment from the exposed to the infectious class
and then into the recovered class occurs at
constant rates a and g, respectively (6).

We can modify the standard model to
allow for these effects by assuming normal
distributions for the incubation and infec-
tious periods (19). More complex distribu-
tions could be used (6), but evidence from
the detailed study of transmission in fami-
lies (20) indicates that the periods show
limited variation, and the data are well
described by infectious periods normally
distributed about their means. The use of
more discrete periods has been considered
previously (21) but seldom in this context
of seasonally forced stochastic models. The
revised stochastic model tends to produce
more concentrated pulses of infection, so
we will call it the pulsed realistic age-struc-
tured (PRAS) model.

Support for the new model is provided
by a comparison of Fourier spectra for sim-
ulated epidemic time series from the stan-
dard (RAS) and modified (PRAS) models
with the observed pattern for England and
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