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Effects of Monomer Structure on 
Their Organization and Polymerization 

in a Smectic Liquid Crystal 
C. Allan Guymon, Erik N. Hoggan, Noel A. Clark, 

Thomas P. Rieker, David M. Walba, Christopher N. Bowman* 

Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic 
C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that 
depend strongly on monomer structure. Small, flexible monomers such as 1,6-hex-
anediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, where­
as rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)ben-
zoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected 
within them. Such spatial segregation caused by the smectic layering dramatically 
enhanced photopolymerization rates; for HDDA, termination rates were reduced, where­
as for C6M, both the termination and propagation rates were increased. These poly­
merization precursor structures suggest novel materials-design paradigms for gel LCs 
and nanophase-separated polymer systems. 

I n pursuit of novel LC phase behavior and 
properties, a number of polymer-LC compos­
ites have been developed. Some composites 
make use of LC polymers (I), whereas others 
are formed by phase separation of the poly­
mer and LC to produce LC droplets [poly­
mer-dispersed LCs (PDLCs) (2, 3)]. Anoth­
er group of these composites that show great 
promise is formed by the polymerization of 
monomer solutes in an LC solvent (4). 
These polymer-LC gel systems can yield 
electro-optically bistable chiral nematic de­
vices [polymer-stabilized LCs (PSLCs) (5)] 
and ferroelectric LC gels [(PSFLCs) (6, 7)1 
which combine fast electro-optic response 
(8) with polymer-induced mechanical stabili­
zation (9). Research to date on the formation 
and structure of polymer-LC gels has focused 
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on the macroscopic phase behavior and opti­
cal properties of the resulting composites 
{10). Little is known, however, about the 
roles that the monomer segregation and sub­
sequent polymerization behavior play on the 
ultimate performance of the polymer-LC gel. 

We report results on the effect of diacry­
late monomer structure on the spatial orga­
nization of monomer-LC mixtures prior to 
polymerization and thus the effect of mono­
mer segregation and structure on polymer­
ization kinetics. This work was initially mo­
tivated by observations of a dramatically 
enhanced rate of photopolymerization of LC 
acrylate monomers (11) and decreased ter­
mination rate (12) in LC phases, which 
suggests that the inherent order in LCs can 
significantly alter chemical reaction behav­
ior and kinetics (13). The fluidlike environ­
ment in LCs not only permits molecular 
motion, diffusion, and chemical reaction, 
but also is both spatially anisotropic (orien-
tational ordered) and spatially inhomoge-
neous (for example, layered). We find dis­
tinctive structure-dependent positional and 
orientational ordering of the monomers in 
which small flexible monomers intercalate 
between smectic layers and mesogenic 

SCIENCE • VOL. 275 • 3 JANUARY 1997 57 



monomers segregate \vithin them. W e  also 
observe structure-dependent effects o n  the 
polymerization processes. 

T h e  smectic LC was a 1 : l  mixture of 
W i ( 1 )  and W82(2)  that has isotropic ( I ) ,  
smectic '4" (S,4:*), srnectic C" (SC") ,  and 
crystal (X)  phases [I H 58OC H SA" H 

48OC tt SC" ct 13°C tt XI (6 ) .  T h e  t ~ v o  
lnonolners we studied were l,6-hexanediol 
diacrylate (HDDA,  3 )  and 1,4-di-(4-(6- 
acryloy1oxyhexyloxy)henzoyloxy)-2-meth- 
y1ben:ene (C6M, 4) (Scheme 1) (14).  C 6 M  
is rod-shaped and has neat I, nernatlc ( N ) ,  
and X phases [I @ 1 l6OC H N H 86°C H 

XI, whereas H D D A  is a highly flexible 
molecule having a single I fluid phase. 

T o  investigate the  effects of L C  phase 
and temperature o n  polymerization, the  
~lor~nalizecl polylnerization rate was deter- 
mined as a function of double-bond conver- 
sion for initiation in various LC phases 117ith 
a differential scanning calorimeter equipped 
\vith a photocalorimetric accessory. Systems 
containing up to 2 117eight O/; of H D D A  or 6 
~veight % C6M dissolved in  the  LC solvent 
were polymerized at temperatures ~ v i t h ~ n  
the I, SA", and SC" solvent LC phases 

Double-bond conversion 

Fig. 1. Photopolymer~zat~on rate as a functon of 
double-bond conversion for (A) 2% HDDA In 
W7 W82 In SC' at 35" (2) and 45°C (0) ,  In SA' at 
54°C (A), and In I at 70°C (V), and (B) 6% C6M n 
SC' at 25" (0) and 40°C (0), In SA* at 56°C (A), 
and In I at 70°C (V) 

4 
Scheme 1 

(Fig. 1) .  T h e  addition of these monomers 
changed the  phase transitions of the  system 
to a limited extent. For example, adding 2 
weight % H D D A  decreased the  I tt SAs' 
transition < 1°C and the  SL4* tt SC" tran- 
sition -3°C. T h e  polymerization tempera- 
tures, ho\vever, were chosen so that the  
polymerizations take place almost exclusive- 
ly in the  indicated phase. Interestingly, and 
In contrast to behavior generally found in  

1 0 ' , - ,  , , , r-- ' 
0 0  0 1  0 2  0 3  0 4  0 5  0 6  0 7  0 8  0 9  

Double-bond conversion 

Fig. 2. (A and B) The photopolymerizat~on k~netic 
constants k, at 23"C, SC* (C), and 65°C. 1 (n), 
and k at 23". SC* (a), and 65"C, I (B) for polymer- 
izat~on of (A) 5% HDDA and (B) 6.2% C6M In 
W7.W82. 

isotropic solvents, as temperature decreased, 
the  polymerization rate increased signifi- 
cantly for both H D D A  and C6h)i. T h e  max- 
imum rate observed for H D D A  in the  SC" 
phase was about three times that observed in 
the I phase of the  LC and almost six times 
greater than that seen in a n  isotrouic solvent - 
( I S )  showing react~vity quite sim~lar to  that 
seen in  polymerization of neat LC diacry- 
lates ( 1  1 ). Thus. for t11.o monomers 117ith ~, 

vastly different structure and mesogenic 
properties, a dramatic increase in  the  poly- 
mer~aation rate 11.a~ observed as the LC order 
of the  solvent increases. 

T h e  propagation and termination kinetic 
constants for polymerization, It, and k,, re- 
spectively, Lvere determined from aftereffect 
experiments (16) (Fig. 2) .  T h e  rate of pho- 
toinitiation was assumed to be independent 
of LC phase and temperature (15). For 
HDDA polymerization, k,, s11on.n in Fig. 2A, 
depended little o n  the phase or temperature; 
however, It, was almost an  order of magnitude 
lower in the SC9: uhase at lo~ver conversions 
and remained depressed throughout the reac- 
tion, strongly resembling the behavior seen 
in  polymerizations of pure LC diacrylates 
(12).  In  these systems, a reduced It, leads to 
higher radical concentrations and thus high- 
er polymerization rates. In  contrast, for C6M 
(F&. 2 ~ ) ,  It, and k ,  are almost an  order of 
magnitude greater in the SC" than in  the I 
phase, leading to an  overall increase in the 
polymerization rate ( 1  7). The  increase in k ,  
and kt likely arises from an  anisotropic distri- 
bution of both radicals and double bonds. If 
the reactive double bonds are concentrated 
in a reduced volume, then the effective con- 
centration of the double bonds (and the rad- 
icals as well) is much higher than the bulk 
concentration, which would result in an  in- 
crease in  the apparent It, and k,. 

Infrared (IR) dichroism and x-ray dif- 
fraction (XRD) studies were used as more 
direct probes of the  organization of the  
monomers in the  L C  environment. Molec- 
ular orientation in  single-domain salnples 
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Fig. 3. Polar plot of the absorbanceA(T) of the 
IR band for the acrylate C=C stretch at 1635 
cm-' for 5% HDDA (B) and 15% C6M (0) in 
W7.W82. The scaled (1 : 15) absorbanceA(T) 1s 
also given for the C=O stretch in W7,W82 at 
1732 cm-' (A). All of the samples were ntro- 
duced between two rubbed nylon-coated CaF, 
cells for examinat~on. The monomer-LC sample 
cells were separated with 10-pm spacers, where- 
as the LC sample cells used I -bm spacers. 

3 0 1 - - - - - ~ ~ - -  -- 
0 00 0 05 0 10 0 15 

Mole fraction monomer 

Fig. 4. Smectic layer spacing d for samples of 
HDDA (B) and C6M (0) In W7,W82 as a function of 
concentratlon. The dotted (C6M) and dashed 
(HDDA) Ines correspond to d if all of the molecules 
Intercalated between the smectic layers, whereas 
the solid lhne corresponds to d f all of the mole- 
cules segregated into the smectic layers. 

can be determined by IR dichroism, which 
probes the orientation of bond-vibration 
absorption dipoles (18 ,  19). In the HDDA 
or C6M/V(i7,W82 mixtures, only the 
HDDA and C6M have acrylic C=C groups 
and thus uniquely contribute the C=C 
stretching peak at 1635 cm-' to the IR 
spectrum. Figure 3 shows polar plots of 
L41,,j(W), the absorbance of the 1635-cm-' 
peak, versus W, or polarization angle, for 5 
weight % HDDA and 15 weight Oh C6M in 
V(U,W82, along with L4173j(T)/15, the 
scaled absorbance of the W7,W82 carbonyl 

vibration for comparison of the C=C orien- 
tation with a moiety in the LC. The 
A,,,,(W) data indicate that the HDDA 
acrylic double bonds are oriented primarily 
parallel to the layers, whereas the C6M 
moieties are oriented primarily normal to 
the layers. The dichroic ratios (-2: 1) show 
that in both cases the orientational order- 
ing is substantial. 

Further insight into monomer organiza- 
tion can be obtained from powder XRD 
measurements of the dependence of smectic 
layer spacing, d(c) (20), on monomer con- 
centration (Fig. 4).  For each monomer, the 
dashed (HDDA) and dotted (C6M) lines 
are d(c) calculated under the assumption 
that all of the solute monomer molecules 
are intercalating between the smectic layers 
and contributing their volulne to a layer- 
spacing increase. The solid line is d(c) cal- 
culated under the assumption that all of the 
solute monomer inolecules are segregating 
into the smectic layers, contributing to an 
increase in the laver area but addine nothine 
to the layer spac&. The results a&in sho~y 
dramatic differences between HDDA and 
C6M, with HDDA apparently swelling the 
layers by the amount corresponding to com- 
plete interlayer intercalation and the C6M 
only in increasing layer area, corresponding 
to complete intralayer segregation. 

The IR and XRD results allow us to 
propose models for the organization of 
HDDA and C6M in the W7,W82 solvent 
(Fig. 5). The HDDA monomers are parallel 
to the lavers and in sheets that space the 
smectic layers and form an organic lyotropic 
structure (20). The C6M monomers mimic 
the LC molecules and mix within the smec- 
tic layers. These organizational features pro- 

Fig. 5. Proposed models for 
the segregation of (A) HDDA 
and (6) C6M In W7,W82. 
The HDDA molecules segre- 
gate in between the smectlc 
layers confining the mole- 
cules and increasng the lay- 
er spacing, whereas the 
C6M molecules transverse 
the smectc lavers concen- 
trating the double bonds 

tures. For example, mixtures of mono- and 
diacrylate homologs of HDDA should enable 
the synthesis of two-dimensional elastomeric 
sheets, which could then be pinned together 
by mesogenic diacrylates to form a three- 
dimensional elastomeric lamellar polymer 
structure, akin to a cross-linked side-chain 
polymer-monomer LC mixture. Such a 
scheme offers a basic advantage over side- 
group polymers in that it effectively de- 
couples the chemistry of polymerization and 
the properties of the polymer from those of 
the LC, the latter of which can be indepen- 
dently optimized (21 ). 
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