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ties perpendicular to the magnetic field. The frequen-
cy of the lower hybrid waves is between the gyro-
frequencies of the electrons (w..) and the ions (w)
which means that these waves can be in simulta-
neous Cherenkov resonance with the relatively slow
but unmagnetized ions perpendicular to the magnet-
ic field and fast magnetized (hence magnetic field
aligned) electrons. Cherenkov resonance occurs
when the phase velocity of the wave and the particle
velocity are equal; under these conditions strong in-
teraction between the waves and particles is possi-
ble and results in energy transfer from the wave to
the particle or vice versa. The lower hybrid waves
provide the intermediary step in transferring energy
between the ions and electrons.
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An Economics Approach to
Hard Computational Problems

Bernardo A. Huberman, Rajan M. Lukose, Tad Hogg

A general method for combining existing algorithms into new programs that are un-
equivocally preferable to any of the component algorithms is presented. This method,
based on notions of risk in economics, offers a computational portfolio design procedure
that can be used for a wide range of problems. Tested by solving a canonical NP-
complete problem, the method can be used for problems ranging from the combinatorics
of DNA sequencing to the completion of tasks in environments with resource contention,

such as the World Wide Web.

Extremely hard computational problems
are pervasive in fields ranging from molec-
ular biology to physics and operations re-
search. Examples include determining the
most probable arrangement of cloned frag-
ments of a DNA sequence (1), the global
minima of complicated energy functions in
physical and chemical systems (2), and the
shortest path visiting a given set of cities
(3), to name a few. Because of the combi-
natorics involved, their solution times grow
exponentially with the size of the problem
(a basic trait of the so-called NP-complete
problems), making it impossible to solve
very large instances in reasonable times (4).

In response to this difficulty, a number
of efficient heuristic algorithms have been
developed. These algorithms, although not
always guaranteed to produce a good solu-
tion or to finish in a reasonable time, often
provide satisfactory answers fairly quickly.
In practice, their performance varies greatly
from one problem instance to another. In
many cases, the heuristics involve random-
ized algorithms (5), giving rise to perfor-
mance variability even across repeated trials

Dynamics of Computation Group, Xerox Palo Alto Re-
search Center, Palo Alto, CA 94304, USA.

on a single problem instance.

In addition to combinatorial search
problems, there are many other computa-
tional situations where performance varies
from one trial to another. For example,
programs operating in large distributed sys-
tems or interacting with the physical world
can have unpredictable performance be-
cause of changes in their environment. A
familiar example is the action of retrieving
a particular page on the World Wide Web.
In this case, the usual network congestion
leads to a variability in the time required to
retrieve the page, raising the dilemma of
whether to restart the process or wait.

In all of these cases, the unpredictable
variation in performance can be character-
ized by a distribution describing the proba-
bility of obtaining each possible perfor-
mance value. The mean or expected values
of these distributions are usually used as an
overall measure of quality (6-9). We point
out, however, that expected performance is
not the only relevant measure of the quality
of an algorithm. The variance of a perfor-
mance distribution also affects the quality
of an algorithm because it determines how
likely it is that a particular run’s perfor-
mance will deviate from the expected one.
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This variance implies that there is an in-
herent risk associated with the use of such
an algorithm, a risk that, in analogy with
the economic literature, we will identify
with the standard deviation of its perfor-
mance distribution (10).

Risk is an important additional charac-
teristic of algorithms because one may be
willing to settle for a lower average perfor-
mance in exchange for increased certainty
in obtaining a reasonable answer. This situ-
ation is often encountered in economics
when trying to maximize a utility that has an
associated risk. It is usually dealt with by
constructing mixed strategies that have de-
sired risk and performance (11). In analogy
with this approach, we here present a widely
applicable method for constructing “portfo-
lios” that combine different programs in
such a way that a whole range of perfor-
mance and risk characteristics become avail-
able. Significantly, some of these portfolios
are unequivocally preferable to any of the
individual component algorithms running
alone. We verify these results experimental-
ly on graph-coloring, a canonical NP-com-
plete problem, and by constructing a restart
strategy for access to pages on the Web.

To illustrate this method, consider a sim-
ple portfolio of two Las Vegas algorithms,
which, by definition, always produce a cor-
rect solution to a problem but with a distri-
bution of solution times (5). Let ¢; and ¢,
denote the random variables, which have
distributions of solution times p,(¢) and
b,(¢). For simplicity, we focus on the case of
discrete distributions, although our method
applies to continuous distributions as well.
The portfolio is constructed simply by let-
ting both algorithms run concurrently but
independently on a serial computer. Let f;
denote the fraction of clock cycles allocat-
ed to algorithm 1 and f, = 1 — f; be the
fraction allocated to the other. As soon as
one of the algorithms finds a solution, the
run terminates. Thus, the solution time ¢ is
a random variable related to those of the
individual algorithms by

t=min |+, +
fi' fa

The resulting portfolio algorithm is charac-
terized by the probability distribution p(t)
that it finishes in a particular time t. This
probability is given by the probability that
both constituent algorithms finish in
time = t minus the probability that both
algorithms finish in time > ¢

(1)

p(o) = | 2 pue) || 2 palt)
t'=fit t'=fr
2o | 2 pale) @)
t'>fit t'>fot
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Each value of f; therefore corresponds to
a distribution whose mean and variance
can be calculated. By varying f; from O to
1 and defining the risk o as Vvar(t), a
curve in the plane of expected solution time
(t) versus risk can be determined.

The simplest algorithm that exhibits in-
teresting behavior is one with two possible
solution times; that is, the algorithm can
solve a problem in time t = 1 with proba-
bility p or in time t = T with probability
1 — p. By letting two independent instances
of such an algorithm run, we obtain, using
the above results, the risk versus expected
time curve shown in Fig. 1 for particular
values of p and T.

There are several features of this curve
that are worth noting. First, endpoint A
corresponds to the algorithm running alone
(fy = 1 or 0), and point B corresponds to
both algorithms sharing computer time
equally (f, = f, = ¥2). Second, there exists
a regime, the efficient frontier (indicated by
the solid segment of the curve), defined by
the fact that for every point on the curve,
there is at least one point on the efficient
frontier that is always preferable, that is, has
a lower risk or higher performance, or both.
Once this efficient frontier is determined,
one can choose the desired performance-
risk combination on it and calculate the
corresponding fraction of computer cycles
to be allocated to algorithm 1. This calcu-
lation can be done by plotting both the
expected solution time and the risk as a
function of f; (Fig. 2).

We point out that the efficient frontier
for this distribution will persist as T is re-
duced from 10 to 3.5. The lower bound
corresponds to a value of the ratio o/(t) =
0.65, known as the Sharpe ratio in the
finance literature, which indicates the
kinds of distributions that can be used in
this approach.

Because Eq. 2 applies to any discrete
distribution and can readily be generalized
to continuous ones, this procedure also ap-
plies to more complicated situations. For
example, by extending Eq. 2 to include the
minimum of more than two random vari-
ables, the portfolio approach can be used in
the case of many algorithms, each with
their own fractional share of computer cy-
cles. In that case, varying the fractions al-
located to each algorithm produces a two-
dimensional region in the risk-expected
time plane, rather than a single curve. The
efficient frontier is then a subset of the
boundary of that region.

To test this portfolio approach with
more realistic distribution functions, we ex-
perimented with the often studied NP-com-
plete problem of graph-coloring (12-14).
This problem consists of a graph (a collec-
tion of points or nodes, some of which are
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connected by straight edges), a specified
number of colors, and the requirement to
assign a color to each node in the graph
such that no two nodes linked by an edge
have the same color. The average degree of
the graph v (the average number of edges
coming from a node in the graph) is a
convenient parameter describing the
amount of constraint in the problem and
determines the typical behavior of a variety
of search methods (15). Here, we focus on
the case of three-coloring with v = 3.5,
which has been shown to exhibit a large
variance of finishing times over the class of
such graphs (16).

We used a complete, depth-first back-
tracking search based on the Brelaz heuristic
(13), which assigns the most constrained
nodes first (that is, those with the most
distinctly colored neighbors), breaking ties
by choosing nodes with the most uncolored
neighbors (with any remaining ties broken
randomly). For each node, the smallest
numbered color consistent with the previous
assignments was chosen first, with successive
choices made when the search was forced to
backtrack. This search method is guaranteed
to terminate eventually having correctly
found a possible coloring or having conclud-
ed that no such coloring exists for the graph.
Thus, it is a Las Vegas algorithm.

We first produced a probability distribu-
tion of solution times (Fig. 3) by running

42
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Fig. 1. Expected solution time versus risk for the
case of two independent algorithms with identi-
cal discrete bimodal distributions. Here p = 0.7
and T = 10. Each point on the curve represents
the risk and performance of the “portfolio” algo-
rithm when the fraction 7, ranges from 0O to 1:
endpoint A marks f, = 1 — f, = O or 1, and
endpoint B marks f, = f, = V2. The solid seg-
ment corresponds to the efficient frontier. Note
that the shorter the expected solution time, the
higher the performance, and vice versa.
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Fig. 2. Risk (solid) and expected solution time
(dashed) versus fraction f, for the situation depict-
edin Fig. 1.
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the Brelaz heuristic algorithm repeatedly on
a graph-coloring instance (16). Because the
distribution shows a large variability in so-
lution time, we expect that our method will
make accessible points in the risk-expected
solution time plane that are preferable to
the one point accessible by running the
heuristic by itself.

Application of Eq. 2 to two independent
instances of this algorithm produces the
expected solution time versus risk curve
shown in Fig. 4. The functional similarity
between this curve and that in Fig. 1 is
apparent, confirming the predictions of our
simplified example. In this case, the effi-
cient frontier is in the range 0.013 < f; <
0.060. The low end of this range locates the
point of minimum risk, and the high end
locates the point of maximum performance.
The smallness of f; in this case shows that
only a slight “mixing” of strategies is re-
quired to provide benefits because of the
relatively high probability that the algo-
rithm will find the solution fairly quickly.
These results confirm the benefits to be
accrued, for as the graph shows, performance
can be increased by about 30% at reduced
risk when a combined algorithm is used.

We also tested whether an efficient port-
folio constructed for this particular graph
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Fig. 3. A measured probability distribution for the
Brelaz heuristic used on a particular 100-node
graph-coloring problem with connectivity y = 3.5.
The distribution is the result of searching the graph
10,000 times with different random seeds.
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Fig. 4. Experimental performance versus -risk
curve for graph-coloring by a search method
based on the Brelaz heuristic. This curve was pro-
duced by varying f, from O to 1. For each fraction,
the risk and expected solution time was calculat-
ed from the distribution in Fig. 3 by using Eq. 2.
Both axes are shown in units of 103 time steps.
The expected performance and risk for the heu-
ristic running alone is indicated by point A; point B
indicates f, = .
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would be effective on other graphs whose
distributions of solution times were un-
known. Using a portfolio with f; = 0.013
on 20 randomly chosen graphs yielded av-
erage speed and risk improvements of 22
and 10%, respectively.

Having established the utility of a port-
folio approach when the component algo-
rithms have highly variable performance,
we point out that independent studies of a
variety of NP-complete problems, using
very different search algorithms, have dis-
covered similar distributions in the context
of phase transitions in search (15, 17). It
has also been pointed out that any algo-
rithm that performs a depth-first backtrack-
ing search through a hierarchical tree will
have a highly extended distribution of per-
formance because early, high-level choices
can decide immediately whether a particu-
lar run will take a short time or a much
longer time (7, 9). This variability in per-
formance suggests that it is possible to pre-
dict when a particular instance of a heuris-
tic is likely to have the right properties for
this approach to be useful, thus making it
very general in terms of applications.

So far we have assumed that the com-
ponent algorithms are completely inde-
pendent of each other and do not com-
municate. They can be thought of as
“competing” with one another for ma-
chine resources. However, allowing for co-
operation or dependencies among the in-
dividual algorithms while they are running
simultaneously can improve performance
(18, 19). This possibility raises the inter-
esting question of the extent to which our
economics approach to portfolio algo-
rithms can also benefit from cooperation.
Basically, cooperation will introduce sta-
tistical correlations between the perfor-
mance of the individual algorithms, and
we will accordingly define the correlation
between them as
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Fig. 5. Effect of cooperation among algorithms.
For the case of two algorithms with the discrete
bimodal distribution of solution times studied
above, the correlation between the two distribu-
tions was varied to model the effect of coopera-
tion between them. For values of p ranging from
—0.42 at the lower left to 0.42 at the upper right,
the efficient frontiers are plotted. The entire risk-
expected solution time curve corresponding to p
= 0 from Fig. 1 is superimposed.

cov(ty, ty)
p=—"T— = = (3)
Jvar(ty) var(t,)

where cov(ty, t,) denotes the covariance of
the performance of the two algorithms. The
effect of cooperation, when manifested in
negative correlations, is to increase the per-
formance as well as reduce the risk (Fig. 5).
This change is easily understood in that
negative correlations mean that one algo-
rithm is particularly good precisely on those
cases that are more difficult for the other
one, and vice versa. This allows the portfo-
lio, which terminates as soon as the first
algorithm completes, to work even better
than when the individual algorithms are
independent. In the case of the graph-col-
oring problem, cooperation can be imple-
mented by allowing an algorithm to use
incomplete assignments of colors to nodes,
posted to a common memory by another
algorithm, as a “hint” in its own further
explorations (19).

This economics approach, emphasizing
risk as well as expected performance, has
applicability far beyond the solution of NP-
complete problems with heuristics, for it
addresses any problems that involve vari-
ability in performance. In the example of
the World Wide Web, one can use a restart
strategy where one collects access time sta-
tistics, which play the same role as time
series in financial markets. The data can
then be used to generate performance ver-
sus risk curves that specify how to resolve
the dilemma of either restarting a request
that is taking a long time or waiting in case
the Web page will appear in the next few
seconds. We tested this scheme by collect-
ing access times for a periodically requested
page on the Web. The results show that
there are particular periods during the day
when the distribution of the access times
undergoes qualitative changes. During low
congestion periods, the distribution has a
relatively small variance in access time, and
during high congestion periods, the distribu-
tion of access times has a larger variance
with an extended tail. Using data from the
high congestion period, we varied the time
before a restart and found that although
expected access time under such a strategy
could only be reduced slightly, the standard
deviation or risk was reduced by nearly 20%.

Another interesting extension of this
methodology is the possibility of dynamical-
ly changing the strategy online, so that it
can either adapt to changing conditions or
optimally exploit information gained in
time about an unknown environment. For
example, suppose one wishes to use a port-
folio strategy with two identical algorithms
whose distributions are, however, unknown.
This situation is described by Eq. 2 when
p1(t) = p,(¢) is unknown. With a maximum
SCIENCE »
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likelihood estimate of p,(t) (20), it is pos-
sible to exploit optimally observations of
p(t) while dynamically adjusting f, in order
to get progressively better estimates of p,(t)
and thereby converge on an efficient value
of f, as more information is received.

An important generalization is provided
by the way Monte Carlo algorithms for
optimization are usually implemented. If
one considers the time it takes to find an
acceptable move in an optimization prob-
lem, it will have the characteristics of a Las
Vegas—type algorithm. We tested this idea
by using a simulated annealing algorithm
on a vector-quantization problem associat-
ed with clustering and found a speed im-
provement of 5 to 10 times (20).

A more exotic example of the applica-
bility of this approach is the construction of
a portfolio for a general database search that
exploits the properties of quantum compu-
tation (21). Because the probability distri-
bution of search times in such cases is
known beforehand (22), the methods pre-
sented here can be used to optimize the
tradeoff between risk and expected search
time.

Given the present trend toward elec-
tronic commerce and the explosive use of
the Internet, this economics framework can
play an important role in allocating compu-
tational resources, and thus money, to com-
plete tasks efficiently.
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Femtosecond Dynamics of Excited-State
Evolution in [Ru(bpy),1**

Niels H. Damrauer, Giulio Cerullo,* Alvin Yeh,
Thomas R. Boussie, Charles V. Shank, James K. McCuskerf

Time-resolved absorption spectroscopy on the femtosecond time scale has been used
to monitor the earliest events associated with excited-state relaxation in tris-(2,2"-bi-
pyridine)ruthenium(ll). The data reveal dynamics associated with the temporal evolution
of the Franck-Condon state to the lowest energy excited state of this molecule. The
process is essentially complete in ~300 femtoseconds after the initial excitation. This
result is discussed with regard to reformulating long-held notions about excited-state
relaxation, as well as its implication for the importance of non-equilibrium excited-state
processes in understanding and designing molecular-based electron transfer, artificial
photosynthetic, and photovoltaic assemblies in which compounds of this class are

currently playing a key role.

Many of the photochemical and photo-
physical properties of molecules depend
upon the kinetics of excited-state processes
that occur after the absorption of a photon.
Therefore, it is important to understand
how excited states behave as a function of
time. The conventional view of this tem-
poral evolution holds that photoreactivity
is largely dictated by the characteristics of
the lowest energy excited state of a mole-
cule. Thus, higher energy excited states are
presumed to convert to this lowest energy
state and in so doing are removed from any
functional role in photochemical and pho-
tophysical transformations. Femtosecond
time-resolved spectroscopy (1) has resulted
in experimental observations that call into
question the validity of this model; striking
examples include the 200-fs cis-to-trans
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isomerization of rhodopsin (2), rapid pho-
todissociation of CO from myoglobin-CO
(3), and ultrafast electron injection into
dye-sensitized semiconductor electrodes
(4). These cases among others reveal a pat-
tern of photoreactivity arising from non-
thermalized excited states in which struc-
tural rearrangement and electron transfer
can kinetically compete with processes such
as intramolecular vibrational relaxation
(IVR), internal conversion (IC), and inter-
system crossing (ISC).

The inference that nonequilibrated ex-
cited states can play a chemically signifi-
cant role in photoinduced transformations
could have important consequences in a
variety of areas ranging from design princi-
ples for electron-transfer assemblies and
photochemical energy storage devices to
the formulation of new theoretical models
for molecular-based energy conversion and
excited-state relaxation dynamics. Al-
though much of the work in the ultrafast
dynamics community has concentrated on
either small molecules or biological systems,
our research focuses on transition metal
compounds (5, 6). Considerable effort is
being expended in many laboratories to in-
corporate such complexes into schemes for
artificial photosynthesis (7), photocatalysis
SCIENCE »
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(8), and the development of molecular-
based photovoltaic and opto-electronic de-
vices (9). In addition, the importance of
ISC and IC processes in the photoinduced
properties of metal-containing complexes
makes such systems of interest for ultrafast
dynamical studies of their excited-state be-
havior (10). We have obtained results that
are not consistent with conventional mod-
els for describing photoinduced dynamics in
transition metal complexes, suggesting the
need to reevaluate currently accepted views
of their excited-state behavior.

Tris-(2,2'-bipyridine)ruthenium(II), or
[Ru(bpy),]**,

2+

is representative of a class of molecules that
has played a central role in the develop-
ment of inorganic photophysics in addition
to providing the underpinning for the last
two decades of research on transition met-
al-based photosensitization, charge separa-
tion, and photoinduced electron transfer
chemistry (11). We have therefore chosen
it as a prototype for our study of the ultrafast
dynamics of metal complexes. The strong
visible absorption characteristic of this mol-
ecule (Fig. 1) can be described as a metal-
to-ligand charge transfer (‘MLCT « 'A)),
in which an electron located in a metal-
based d-orbital is transferred to a w* orbital
of one of the bpy ligands (hv, photon ener-
gy) (12). The excited-state species that is
eventually

[Ru!(bpy) ]2 - [Rul(bpy ™) (bpy), ]+

formed (a MLCT state) is well known to
engage in both oxidative and reductive
chemistry (11). This capability, coupled
with its relatively long lifetime in fluid so-
lution (7 ~ 1 ps), near unity quantum yield
of formation (13), the high visible absorp-
tive cross section of the ground state, and
the overall photochemical stability of this
molecule and its derivatives makes them
amenable to a wide variety of applications
(14, 15). We have used femtosecond ab-
sorption spectroscopy to time resolve the
formation of the S>MLCT state in
[Ru(bpy),]** (16) and have observed the
initial evolution of the Franck-Condon
state.

The laser system used has been described
in detail elsewhere (17, 18). Excited-state
difference spectra at various time delays At
(Fig. 2) show that spectral changes in the
450- to 490-nm range are quite dramatic: A
bleach begins to evolve at A = 470 nm near

T e






