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An Economies Approach to 
Hard Computational Problems 

Bernardo A. Huberman, Rajan M. Lukose, Tad Hogg 

A general method for combining existing algorithms into new programs that are un- 
equivocally preferable to any of the component algorithms is presented. This method, 
based on notions of risk in economics, offers a computational portfolio design procedure 
that can be used for a wide range of problems. Tested by solving a canonical NP- 
complete problem, the method can be used for problems ranging from the combinatorics 
of DNA sequencing to the completion of tasks in environments with resource contention, 
such as the World Wide Web. 

Extremely hard computa t io~~a l  problems 
are pervasive in fields ranging from molec- 
ular biology to physics and operations re- 
search. Examples include determining the  
  no st probable arrangement of cloned frag- 
ments of a D X A  sequence ( I ) ,  the  global 
minima of complicated energy filnctions in  
physical and chemical systems (Z) ,  and the  
shortest path visiting a given set of cities 
(3), to name a few. Because of the  combl- 
natorics involved, their solution times grom7 
exponentially with the  size of the  problem 
( a  basic trait of the so-called XP-complete 
problems), making it impossible to  solve 
very large Instances in reasonable titnes (4). 

In  response to  this difficulty, a n u ~ n b e r  
of efficient heuristic algorithms have been 
developed. These algorithms, although not  
always guaranteed to produce a good solu- 
t ion or to f ~ n i s h  in  a reasonable titne, often 
provlde satisfactory answers fairly quickly. 
In  practice, their performance varies greatly 
frotn one problem instance to  another. In  
manv cases, the  heuristics involve random- 
ized algorlthlns (5 ) ,  givlng rise to perfor- 
mance variability even across repeated trlals 

- ~ 
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o n  a slngle probleln instance. 
In  addition to  combinatorial search 

problems, there are Inany other computa- 
tional situations where performance vanes 
from one trial t o  another. For example, 
progralns operating in large distributed sys- 
tems or interacting with the physical \vorld 
can have unpredictable perfortnance be- 
cause of chanoes in  their environment. A - 
familiar example is the  action of retrieving 
a particular page o n  the World Wide Web. 
In  this case, the  usual network congestion 
leads to  a variablllty in  the  titne required to  
retriel-e the  page, raising the  dilemma of 
\vhether to  restart the  process or wait. 

In  all of these cases, the  unpredictable 
variation in  oerfor~nance can be character- 
lzed by a distribution describing the  proba- 
b i l~ ty  of obtaining each possible perfor- 
mance value. T h e  mean or expected values 
of these dlstributlons are usually used as a n  
overall lneasure of quality (6-9). W e  polnt 
out, however, that expected performance is 
not the  onlv relevant measure of the  i lual~tv 

L ,  

of a n  a1gor;thm. T h e  va r~ance  of a perfor- 
mance d i s t r ib~~t ion  also affects the  sualltv . , 

of an  algorithm because it determines how 
likely it is that a particular run's perfor- 
mance will deviate frotn the  expected one. 

inance in exchange for increased certainty 
in  obtaining a reasonable answer. This situ- 
ation is often encountered in economics 
\vhen trylng to maximi:e a utility that has an  
associated risk. It is usuallv dealt with bv 
constructing mixed strategies that have de- 
sired risk and perfor~nance (1 1) .  In analogy 
with this approach, we here present a widely 
applicable method for constructing "portfo- 
lios" that combine different nroorams in 

L L 

such a way that a whole range of perfor- 
mance and risk characteristics become avail- 
able. Significantly, some of these portfolios 
are u n e q u i ~ o c a l l ~  preferable to any of the 
individual component algorithms running 
alone. W e  verify these results experimental- 
ly o n  graph-coloring, a canonical NP-com- 
plete problem, and by constructing a restart 
strategy for access to pages o n  the Web. 

T o  illustrate this method, consider a sim- 
ple portfolio of tm70 Las Vegas algorithms, 
which, bv definition, always nroduce a cor- 
rect soluiion to a problem bu; with a distri- 
bution of solutlon times (5).  Let t, and t? 
denote the  random variables. which have 
distributions of solution times p,(t)  and 
p , ( t )  For simplicity, we focus o n  the case of 
discrete distributions, although our method 
applies to  c o n t i n u o ~ ~ s  distributions as \\,ell. 
T h e  portfolio is constr~rcted simply by let- 
ting both algorithms run concurrently but 
independently o n  a serial computer. Let f, 
denote the fraction of clock cycles allocat- 
ed to  algorithm 1 and f2 = 1 - f ,  be the  
f r a c t ~ o n  allocated to  the  other.  As  soon as 
one  of the  algorithms finds a solution, the  

u 

run terminates. Thus,  the  solution time t is 
a random variable related to  those of the  
individual algorithms by 

T h e  resulting portfolio algorith~n is charac- 
terized by the  probability distribution p(t)  
that it finishes in  a particular time t. T h ~ s  
probability is given by the  probability that 
hot11 constituent algorithms finish In 
time 2 t minus the  probability that both 
algorith~ns finish in time > t 
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Each value of f, therefore corresponds to  
a distribution \vhose mean and varlance 
can be calculated. By varying fi fr& to 
1 and defining the  risk cr as L'I-ar(t), a 
curve in the  wlane of exnected solution time 

connected by straight edges), a specifled 
number of colors, and the  requirement to  
assign a color to  each node in  the  graph 
such that n o  two nodes linked by a n  edge 
have the  same color. T h e  average degree of 

the  Brelaz heuristic algorithm repeatedly o n  
a graph-coloring instance (1 6) .  Because the  
distribution shows a laroe varlabilitv in so- 
lutlon time, we expect t i a t  our metliod \m11 
make accessible v o ~ n t s  in the  risk-exnected 

(t) versus risk can be determined. 
T h e  simplest algorithm that exhiblts 111- 

teresting behavior is one with t\vo possible 
solution tltnes; that IS, the algorithm can 
sol\-e a problem in  time t = 1 with proba- 
bility p or in time t = T with 
1 - p. By letting two independent instances 

of s ~ l c h  an  algorithm run, we obtain, using 
the above results, the  risk versus expected 
time curve sho\vn in Fig. 1 for particular 
values of p and T. 

There are several features of this curl-e 
that are worth n o t ~ n g .  First, endpoint 4 
corresponds to the  algorithm r~lnning alone 
(f, = 1 or O), and point B corresponds to  
both algorithms sharlng computer time 
equally (f, = f2 = %). Second, there exlsts 
a regime, the  efficient frontier (indicated by 
the solid segment of the  curve), deflned by 
the fact that for everv ooint o n  the  curve. 

- " 

the  graph y ( the  average number of edges 
c o m ~ n g  from a node ln  the  graph) 1s a 
convenient parameter describing the 

solutlon titne  lane that  are  referable to 
the  one point accessible by running the  
heuristic by itself. 

amount of constraint 111 the  problem and 
deterlnlnes the  tvwical behavior of a varietv 

Application of Eq. 2 to  t ~ ~ o  independent 
instances of t h ~ s  algor~thln produces the  , 

of search  neth hods (15) .  Here, we f o c ~ ~ s  o n  
the  case of three-coloring x i t h  y = 3.5, 
which has been shown to exhibit a laroe 

expected solution time versus risk curve 
sho~711 in  Fig. 4. T h e  functional similarity 
between this curve and that in Fig. 1 1s 

0 

variance of finishing times over the  class of 
such oravhs 11 6 ) .  

- 
apparent, confirming the  predictions of our 
simplified example. In  this case, the  effi- 
clent frontier is in the  range 0.013 < f, < 
0.060. T h e  low end of this range locates the  
point of minimum risk, and the high end 

, 

W e  used a complete, depth-first back- 
tracking search based o n  the Brelaz heuristic 
(13),  a h i c h  assigns the most constrained 
nodes first ( that  is, those alth the  most 
distinctly colored neighbors), breaking ties 
by choosing nodes with the most uncolored 
neighbors (with any remaining ties broken 
randomly). For each node, the s~nallest 
nulnbered color consistent with the  previous 
assionments was chosen flrst. \mth s~lccessive 

locates the  point of maximum performance. 
T h e  s~nallness of f ,  in thls case shows that 

d 1 

only a slight "mixing" of strategies is re- 
quired to  provide benefits because of the 
relatively high probability that the  algo- 
rithm wlll find the  solution fairly quickly. 
These results confirin the  beneflts to be 

1 k 

there is a t  least one point o n  the  efficient 
frontler that is alwars nreferable, that  IS, has 

0 

choices made when the  search was forced to 
backtrack. This search method is guaranteed 

accrued, for as the  graph shows, perforlnance 
can be increased b r  about 30'41 at  reduced , 

a lower risk or hlgher performance, or both. 
Once this efficlent frontier is determined, 
one can choose the  desired verformance- 

- 
to terminate eventually having correctly 
fo~lnd a possible coloring or havlng conclud- 
ed that n o  such coloring exists for the graph. 
Thus, it is a Las Vegas algor~thm. 

W e  first produced a probability dlstribu- 
tion of solution times (Fig. 3 )  by running 

risk \~ ,hen  a combined algorithtn is used. 
W e  also tested whether a n  efficlent port- 

folio cons t r~~c ted  for this particular graph 
risk combination o n  it and calculate the  
corresponding fraction of computer cycles 
to be allocated to  algorithln 1. This calcu- 
lation can be done by plotting both the  
expected solution time and the  risk as a 
function of f1 (Fig. 2 ) .  

W e  polnt out that the  efficient frontier 
for this distribution will persist as T 1s re- 
duced from 10 to  3.5. T h e  lower bound 
corresponds to a value of the  ratio u / ( t )  = 
0.65, known as the  Sharpe ratio 111 t he  
finance literature. which indicates the  

Time 

2.8- 
3.5 4.0 4.5 5.0 5.5 

Risk 

Fig. 3. A measured probab~lty dlstr~buton for the 
Brelaz heurist~c used on a pari~cuar 100-node 
graph-coorng problem w~th connectvty y = 3.5. 
The distrbuton IS the result of searchng the graph 
10,000 t~mes with dfferent random seeds. 

kinds of distributions that can be used in 
this awnroach. Fig. 1. Expected solution t~me  versus risk for the 

case of two independent algorithms with Identi- 
cal discrete biniodal distributons. Here p = 0.7 
and T = 10 Each pont on the cuwe represents 
the rsk and performance of the "portfo~o" ago-  
rithm when the fract~on f ,  ranges from 0 to 1: 
endpo~nt A marks f ,  = 1 - f, = 0 or 1 ,  and 
endpo~nt B marks f. = f, = "2. The s o d  seg- 
ment corresponds to the effcient fronter. Note 
that the shorter the expected solut~on t~me ,  the 
h~gher the performance, and vce  versa. 

L L 

Because Ey. 2 applies to any discrete 
distribution and can readily be oenerallzed , " 

to c o n t i n ~ ~ o u s  ones, this procedure also ap- 
plies to more complicated situations. For 
example, by extending Eq. 2 to include the  
inlnirn~lm of Inore than two random vari- 
ables, the  portfolio approach can be used 111 

the case of many algorithms, each with 
their own fract~onal  share of computer cy- 
cles. In  that case. varvino the  fractions al- 

lo' 15 16 17 18 19 20 ' 
Risk 

, 1 -  

located to  each algorithm produces a two- 
dunensional region 111 the  risk-expected 

4 0 

3 5 
I 

3 or ,--_____--- 
0 0 1  0 2  0 3  0 4  0 5  

Fraction 

" 

time plane, rather than a single curve. T h e  
efficient frontier is then a subset of the  
boundary of that region. 

T o  test this portfolio approach with 
more realistic distribution f ~ ~ n c t l o n s ,  we ex- 

Fig. 4. Exper~menta performance versus r~sk 
curve for graph-color~ng by a search method 
based on the Brelaz heurstc. Th~s curve was pro- 
duced by varyng f ,  from 0 to 1 .  For each fracton, 
the r~sk and expected soluton t~me was calculat- 
ed from the d~stribution in Fig. 3 by using Eq. 2.  
Both axes are shown n units of lo3 time steps. 
The expected periormance and risk for the heu- 
ristic running alone IS ndcated by pont A: pont B 
indicates f ,  = l;2. 

perimented with the often studied NP-com- 
plete prohlem of graph-coloring (12-14). 
This problem consists of a graph (a  collec- 
tion of points or nodes, some of which are 

Fig. 2. R~sk (solid) and expected solut~on tme  
(dashed) versus fraction f ,  for the situation depict- 
ed n Fig. 1 
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~ ~ o u l d  be effective o n  other graphs whose 
distributions of solution times were un- 
known. Using a portfolio with j, = 0.013 
o n  20 randomly chosell graphs yielded av- 
erage speed and rlsk ilnprovernents of 22 
and 109.6. resnectivelv. 

Having established the utility o t  a port- 
folio approach when the  colnponellt algo- 
rithms have highly varlable performance, 
n-e point out that independent studies of a 
variety o t  NP-complete problems, uslng 
very different search algorithms, have dis- 
covered silllilar distributions in the  context 
of phase transitions in  search (1 5, 17).  It 
has also been pointed out that ally algo- 
rithm that perforn~s a depth-first backtrack- 
ing search through a h~erarchical tree xi11 
have a highly extended distribution of per- 
fornlance because early, high-level choices 
can decide immediately whether a particu- 
lar run w ~ l l  take a short time or a much 
longer tiine (7 ,  9).  This variability in per- 
formance suggests that it is possible to pre- 
dict when a part~cular Instance of a heuris- 
tic is likely to have the right properties for 
this approach to be useful, thus making it 
very general in terms of applications. 

S o  far \Ye have assumed that  the  com- 
ponent  algorithms are completely in&- 
pendent of each other and d o  no t  com- 
municate. They can be thought of as 
"compet~ng" x i t h  one another for ma- 
chine resources. Hon-ever, alloxing t'or co- 
operation or dependencies alllollg the  in- 
dividual algorlthlns while they are running 
simultaneously can improve performance 
(1  8 ,  19) .  This possibil~ty raises the  inter- 
esting question o t t h e  extent to  which our 
econoillics approach to  portfolio algo- 
rithms can also benetit from cooneration. 
Basically, cooperation will introduce sta- 
tistical correlatio~ls be txeen  the  perfor- 
mance of the  individual algorithms, and  
n.e will accord~ngly define the  correlation 
between them as 

2.01. 
1 2 3 4 5  

Risk 

Fig. 5. Effect of cooperaton among algorithms. 
For the case of two algorithms with the discrete 
bimodal d~str~bution of solution t ines studled 
above, the correlation between the two dstribu- 
tions was vared to model the effect of coopera- 
tion between them. For values of p ranging from 
-0.42 at the lower eft to 0.42 at the upper r~ght. 
the effclent frontiers are plotted. The entire risk- 
expected solution time curve correspondng to p 
= 0 froln Fig. 1 IS supermposed. 

where cov(tl ,  t:) denotes the  covariance of 
the  pert'ormance of the two algorithms. T h e  
effect o t  cooperation, n-hen manifested in 
negative correlations, is to increase the  per- 
formance as well as reduce the risk (Fig. 5) .  
This change is easily understood in that 
negative correlations lllean that one algo- 
rithm is particularly good precisely o n  those 
cases that are Inore difficult for the  other 
one, and vice versa. This allows the  portfo- 
lio, which terlninates as soon as the  first 
algorithm completes, to xork  even better 
than when the  individual aleorith~lls are " 
independent. In  the  case o t  the  graph-col- 
oring problem, cooperation call be imple- 
mented by allowing an  algorithm to use 
incomplete assignments o t  colors to nodes, 
posted to a collllnon melllory by another 
algorithm, as a "hint" in its 0x11 t'urther 
explorations (1 9) .  

This econolnics approach, elllphasizing 
risk as well as expected performance, has 
applicability far beyond the  solution o t  NP- 
colllplete prc~blemswith  heuristics, for it 
addresses ally nroblems that involve vari- , L 

ability in performance. In the  exanlple of 
the World Wide Web,  one can use a restart 
strategy n-here one collects access time sta- 
t~stics,  x h i c h  play the  same role as time 
series in financial markets. T h e  data can 
then be used to generate performance ver- 
sus risk curves that specifv how to  resolve 

A ,  

the  dileinilla of either restarting a request 
that is taking a long time or waiting in case 
the  Web  page will appear in the next f e a  
seconds. VITe tested this schenle by collect- 
ing access tilnes for a periodically requested 
page o n  the VITeb. T h e  results show that 
there are particular periods during the day 
when the  distribution of the access tilnes 
undergoes qual~tative changes. During low 
congestion periods, the distribution has a 
relatively small variance in access time, and 
during high congestion periods, the distribu- 
tion of access times has a larger variance 
with a n  extended tail. Using data trom the 
high congestion period, we varied the  time 
before a restart and found that although 
expected access tiine under such a strategy 
could only be reduced slightly, the standard 
deviation or risk was reduced by nearly 20%. 

Another  interesting extension of this - 
methodology is the  possibility of dvnainical- 
1y changing the  strategy online, so that ~t 
can either adapt to changing collditions or 
optimally exploit inforlllation gained 111 

time about an  unknown environment. For 
example, suppose one nrishes to use a port- 
folio strategy x i t h  tn.o identical algorithins 
whose distributions are, hon-ever, unknown. 
This situation is described by ELF 2 when 
p, (t)  = ~ ~ ( 1 )  is unknoxn.  Wl th  a maxim~un 

likelihood estimate of p , ( t )  (ZC), it is pos- 
sible to exploit optimally observations of 
p(t) while dynamically adjusting j, 111 order 
to get progressively better estimates of p l ( t )  
and thereby collverge o n  a n  efficient value 
of i ^  as more information is received. 

J I 

A11 ilnportant generalization is provided 
by the  a.av Monte Carlo algorithms for 
o;?timi:atioA are usually impYemented. If 
one considers the  time ~t takes to find a n  
acceptable move in an  optilnisation prob- 
lem, it will have the characteristics of a Las 
Vegas-type algorithm. W e  tested this idea 
by using a simulateil annealing algorithlll 
o n  a vector-quantization problem associat- 
ed with clustering and foulld a speed im- 
provement of 5 to 1Q tilnes (2C). 

A illore exotic exainple of the  applica- 
billty of thls approach is the  construction of 
a portfolio t'or a general database search that 
exploits the properties of quantum compu- 
tation (21 ). Because the  probability distri- 
bution of search times in such cases 1s 
known beforehalld (22) ,  the  methods pre- 
sented here call be used to optimize the  
tradeoff between risk and expected search 
time. 

Given the present trend toward elec- 
tronic coillmerce and the  explosive use of 
the  Internet, this econolnics frame\vork can 
play a n  illlportant role in allocatillg compu- 
tational resources, and thus money, to c o n -  
plete tasks efficiently. 
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Femtosecond Dynamics of Excited-State 
Evolution in [Ru(bpy),I2+ 

Niels H. Damrauer, Giulio Cerullo,* Alvin Yeh, 
Thomas R. Boussie, Charles V. Shank, James K. McCuskeri 

Time-resolved absorption spectroscopy on the femtosecond time scale has been used 
to monitor the earliest events associated with excited-state relaxation in tris-(2,2'-bi- 
pyridine)ruthenium(lI). The data reveal dynamics associated with the temporal evolution 
of the Franck-Condon state to the lowest energy excited state of this molecule. The 
process is essentially complete in -300 femtoseconds after the initial excitation. This 
result is discussed with regard to reformulating long-held notions about excited-state 
relaxation, as well as its implication for the importance of non-equilibrium excited-state 
processes in understanding and designing molecular-based electron transfer, artificial 
photosynthetic, and photovoltaic assemblies in which compounds of this class are 
currently playing a key role. 

M a n r -  of the photochemical and photo- 
physical properties of molecules depend 
upon the kinetics of excited-state processes 
that occur after the absorption of a photon. 
Therefore, it is important to understand 
how excited states behave as a function of 
time. The conventional view of this tem- 
poral evolution holds that p11otoreactivit~- 
is largely dictated by the characteristics of 
the lowest energy excited state of a mole- 
cule. Thus, higher energy excited states are 
presumed to convert to this lowest energy 
state and in so doing are removed from any 
functional role in photochemical and pho- 
tophysical transformations. Femtosecond 
time-resolved spectroscopy (1 ) has resulted 
in experimental observations that call into 
cluestion the validity of this model; striking 
examples include the 20Q-is cis-to-t~ans 

N H. Darnrauer T. R. Bousse, J. K. McCusker, Depa1-i- 
men1 of Chemsrry. Unversity of Calforna Berkeley CA 
91720, USA. 

isomerisation of rhodopsin ( b ) ,  rapid pho- 
todissociation of CO from myoglobin-CO 
( 3 ) ,  and ultrafast electron injection into 
dye-sensitized semiconductor electrodes 
(4 ) .  These cases among others reveal a pat- 
tern of photoreactivity arising from non- 
thermalized excited states in which struc- 
tural rearrangement and electron transfer 

u 

can kinetically compete with processes such 
as intramolecular v~brational relaxation 
(IVR), internal conversion (IC),  and inter- 
system crossing (ISC). 

The inference that noneauilibrated ex- 
cited states can play a chemically signifi- 
cant role in photoinduced transformations 
could have important consequences in a 
variety of areas rarging from design princi- 
ples for electron-transfer asse~nblies and 
photochemical energy storage devices to 
the formulation of nelv theoretical models 
for molecular-based energy conversion and 
excited-state relaxation dynamics. Al- 

G. Cerullo and A. Yeh, Materal Scences Dvison Law/- tlloLlgll lnucll of the in the ultrafast 
rence Berkeley National Laborarory Berkeley, CA 947282, 
I I ~ A  dvnamics colnmunitv has concentrated on "", , 
C. V. Shank, Depahment of Chemsr~], Unversry of Cal- either small molecules or biological systems, 
forna, Berkeley, CA 9472'2, and Materals Scence Dl\/- our research focuses on trallsition metal 
sion. Lawrence Berkeley Naronal Laborarory, Berkeley. 
CA 94720, USA. compounds (5, 6).  Considerable effort is 

being expended in many laboratories to in- 
'Presenr address. D!oa~imento d! Fsrca del Pol!tecn!co 
P.za L. Da V n c  32, 2C133 Mlano, Italy corporate such colnplexes into schemes for 
.To vhom corresoondence s'7ould be addressed. artificial photosptkesis ( i ) ,  photocatalysis 

(8), and the development of molecular- 
based nhotovoltaic and onto-electronic de- 
vices (9) .  In addition, the importance of 
ISC and IC processes in the photoinduced 
properties of metal-containing complexes 
makes such systems of interest for ultrafast 
dynam~cal studies of their excited-state be- 
havior (10). We have obtained results that 
are not consistent wit11 conventional mod- 
els for describing photoinduced dynamics in 
transition metal complexes, suggesting the 
need to reevaluate currently accepted views 
of their excited-state behavior. 

Tris-(2,2'-hipyr1dine)r~1t11e11i~11n(II), or 
[Ru(bp~)~I ' - ,  

is representative of a class of molecules that 
has played a central role in the develop- 
ment of inorganic photophysics in addition 
to providing the underpinning for the last 
tn.o decades of research on transition met- 
al-based photosensit~zation, charge separa- 
tion, and photoillduced electron transfer 
chemistry (1 1 ) .  We have therefore chosen 
it as a prototype for our study of the ultrafast 
dynamics of metal complexes. The strong 
visible absorption characteristic of this mol- 
ecule (Fig. i) can be described as a metal- 
to-ligand charge transfer ( 'MLCT +- 'A,), 
in xhich an electron located in a metal- 
based d-orbital is transferred to a T;': orbital 
of one of the bpy ligands (hv, photon ener- 
gy) (1 2) .  The excited-state species that is 
eventually 

[~~~~(bpy)~]~'".[~u~~~(bpy- ) ( b p y ) 2 ] ' ~  

formed (a 3MLCT state) is well known to 
engage in both oxidative and reductive 
chemistry (1 1).  This capability, coupled 
with its relatively long lifetime in fluid so- 
lution ( T  - l ps),  near unity quantum yield 
of forinatioll (13), the high visible absorp- 
tive cross section of the ground state, and 
the overall photochemical stability of this 
molecule and its derivatives makes them 
amenable to a xide variety of applications 
(14, 15). W e  have used femtosecond ab- 
sorption spectroscopy to time resolve the 
formation of the 'MLCT state in 
[ R L I ( ~ ~ ~ ) ~ ] ' ~  (16) and have observed tlle 
initial evolution of the Franck-Condon 
state. 

The laser system used has been described 
in detail e l s e ~ h e r e  (1 7, 18). Excited-state 
difference spectra at various time delays Ar 
(Fig. 2) show that spectral changes in the 
430- to 490-nm range are quite dramatic: A 
bleach begins to evolve at h = 470 nm near 
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