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targets of CDC42 that may largely play a
role in these responses include a group of
protein kinases with homology to the yeast
Ste20 protein (PAK kinases), the Wiskett-
Aldrich syndrome protein (WASP), and
phosphatidylinositol-3-kinase (PI3-kinase)
(20). PI3- kinase is unlikely to play a role in
S. typhimurium—induced signaling, however,
as wortmannin, a potent inhibitor of PI3-
kinase, has no effect on the S. typhimurium—
induced cell responses (11).
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Consequences of Retinal Color Coding for
Cortical Color Decoding

Dennis M. Dacey et dl. in their report (1)
and Richard H. Masland in his Perspective
(2) draw attention to important details in
the encoding of color in the retina of ma-
caque monkeys and humans. The centers of
red-green opponent retinal ganglion cells
can be driven by a single cone, but the cone
specificity of the surrounds is in question.
Dacey et al. state that horizontal cells that
subserve red-green opponent cells are con-
tacted by both L- and M-cones, a finding
with implications for receptive field forma-
tion (1), retinal coding (1, 2), and cortical
decoding (2). While Dacey et al. may well
be correct that surrounds are shaped by
post-horizontal cell processes, I question
whether mixed cone surrounds pose insur-
mountable problems for retinal color coding
or cortical color decoding. The color signals
of units with mixed cone surrounds are less
complicated if the spatial properties of the
units are taken into account using the In-
gling-Martinez identity (3)—a rigorous
statement of the co-coding hypothesis dis-
cussed by Masland. Let x be the weight of a
P cell-L-cone center and y and z be the
weights of M- and L-cones driving the sur-
round. The Ingling-Martinez identity that
describes this P cell is

xLC — (yM + 2L)S =
0.5[(x + yL + yM][C — S]

+ 0.5[(x — )L = yMJIC +S] (1)

where C and S are center and surround
spatial weighting or modulation transfer
functions. In this equation, the first term
SCIENCE
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represents the bandpass spatial response to
achromatic stimuli and the second term,
the lowpass spatial response to chromatic
stimuli. If ¥ = 0, then the surround is pure,
and the cone weighting of the achromatic
and chromatic responses differ only in po-
larity. The effect of mixed cone surrounds is
to give the achromatic and chromatic re-
sponses different cone weightings (4). This
is the case psychophysically—for the CIE
standard observer, the achromatic response
is approximately 5L:3M, while the red-
green color response is 2L:3M. Reconciling
these different weights using pure surrounds
has motivated several models (5). Mixed
surrounds can yield this result directly [that
is, if (x, v, 2) = (3.5, 3.0, and 1.5)] and is
roughly what would be expected (6) for
random surrounds constructed on an
L-cone rich-retina (such as that posited to
underlie the standard observer’s luminosity
function).

Do mixed cone surrounds pose difficul-
ties for cortical color/luminance decoding?
Recent models of achromatic/chromatic de-
multiplexing rely on spatial filtering opera-
tions that are based on the spatial properties
of the center/surround combinations in Eq.
1, but are robust with respect to surround
cone ratios (4, 7-9). Filtering models have
no problem accounting for the major red-
green cell classes m cytochrome oxidase
blobs; type 11 cells, double-opponent cells,
and double- opponent cells can be created
from filtering operations on parvo cells (8).
Similar models account for extraction of
achromatic information (4, 7, 9). These
filtering operations do not always create a



perfect separation of color and luminance [a
problem exacerbated by mixed surrounds (4,
7)), in agreement with the behavior of a major
class of cortical cells (10), as well as with
psychophysical evidence for colot/luminance
interactions (11). All of this bears on Mas-
land’s dichotomy between the multiplexing
(co-coding) and parallel channel approaches.
Models that do not filter parvo cells do not
account for the properties of cortical cells.
Moreover, the use of parvo cells for achromat-
ic form perception without filtering to sepa-
rate color is inappropriate. As Marr pointed
out, the zero crossings of the P cell signal are
ambiguous if the color signal is not removed
(12). If the color signal is extractable, it makes
little sense not to use it.
Vincent A. Billock*
Center for Complex Systems,
Florida Atlantic University,
Boca Raton, FL 33431-0991, USA
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Response: As Masland [in his Perspective
(1)] pointed out, our finding in the report
(2) that both H1 and H2 horizontal cells in
macaques receive additive input from L-
and M-cones has implications for under-
standing the retinal circuitry that underlies
spectral opponency. If it is assumed that H1
cells contribute strongly to the formation of

the receptive field surrounds of red-green
spectral opponent cells, such opponency
cannot arise from cone type—specific con-
nections as originally proposed by Wiesel
and Hubel (3), and recently supported by
the results of Reid and Shapley (4). An
alternative is that H1 cells do not contrib-
ute, or contribute only weakly, to the sur-
rounds of red-green cells and that cone
type—specific opponency comes about by
selective connections between bipolar cells,
amacrine cells, and midget ganglion cells.
However, as Masland also noted (1), there
is growing evidence against such an alter-
native circuitry (5). Billock points out that
in theory, mixed cone surrounds do not
pose a serious problem for quantitative
models of color opponency and coritical
color and luminance coding. We agree with
this conclusion, and the formalism offered
by Billock is a reasonable one. However, it
remains to be shown experimentally that
red-green spectral opponent cells do actu-
ally have mixed receptive field surrounds.
Although, a successful computational model
is necessary and important, we would em-
phasize that the key retinal interneurons
subserving red-green opponency, their phys-
iological properties, and precise circuitry are
yet to be discovered and described.
Dennis M. Dacey
Department of Biological Structure,
University of Washington,
Seattle, WA 35742, USA
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TECHNICAL COMMENTS

Response: Neither Dacey [in his report (1)]
nor I [in my Perspective (2)] suggested that
mixed cone surrounds pose insurmountable
problems for cortical color coding. A num-
ber of plausible decoding schemes may be
proposed, among them the one suggested by
Billock.

If the red-green system is multiplexed,
though, how about the blue-yellow system,
where there is evidence for a dedicated
channel (3, 4)? Would the red-green and
blue-yellow axes be handled centrally in
different ways? From the point of view of
the retina, such a dichotomy seems quite
possible—the blue-yellow system appears to
have evolved independently (5). But it
would require somewhat different cortical
mechanisms for the two color systems, be-
cause the spatial organization of the periph-
eral receptive fields and the anatomical
path to the cortex are different.

Given the power of current techniques
(1, 3, 6), the remaining issues about the
cellular basis of retinal color coding may be
resolved fairly soon. Perhaps the results will
raise new questions for experimentation on
the striate cortex.

Richard H. Masland

Howard Hughes Medical Institute,
Massachusetts General Hospital,
Boston, MA 02114, USA
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Evaluating the Evidence for Past Life on Mars

David s. McKay et al. (1) deserve praise
for discovering possible evidence of past
Martian life. The identification of indige-
nous organic compounds in a martian me-
teorite alone is a breakthrough, reopening
the possibility of life after the chill cast by
Viking. The characterization of the car-
bonate globules sets a new standard for
study of extraterrestrial materials. Howev-
er, McKay et al. overstate their case by
contending that although “[n]one of these
[five] observations is in itself conclusive for
the existence of past life ... when ... con-
sidered collectively . . . they are evidence for
primitive life on early Mars.” An inorganic
explanation is at least equally plausible for
SCIENCE °
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four of their five observations.

With regard to polycyclic aromatic hy-
drocarbons (PAHs), McKay et al. (1) note
that “in situ chemical aromatization of
naturally occurring biological cyclic com-
pounds in early diagenesis can produce a
restricted number of PAHs” and suggest
that “diagenesis of microorganisms on
ALH84001 could produce what we ob-
served—a few specific PAHs—rather than
a complex mixture involving alkylated ho-
mologs.” But aromatization works equally
well for abiotic organic matter, which does
not even need to be cyclic. Berthelot dis-
covered such aromatization in 1862, pro-
ducing naphthalene from methane in one
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