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Enhancement of Class i|-Restricted T cell
Responses by Costimulatory NK Receptors for
Class | MHC Proteins

Ofer Mandelboim,* Daniel M. Davis,* Hugh T. Reyburn,”
Mar Valés-Gomez, Eric G. Sheu, Laszlo Pazmany,
Jack L. Stromingert

An important feature of the human immune system is the ability of T cells to respond to
small quantities of antigen. Class || major histocompatibility complex (MHC)-restricted
T cells that expressed a costimulatory natural killer (NK) cell receptor for class | MHC
proteins were cloned. In the presence of low doses of superantigen, the proliferative
response of these T cell clones was three- to ninefold greater when the T cells were
costimulated by way of the NK receptor. Thus, the action of costimulatory NK receptors
on T cells may play a significant role in initiating and sustaining immune responses.

T cells recognize antigens through con-
tacts made between the T cell receptor
(TCR) and peptides presented in associa-
tion with specific MHC proteins on an
antigen-presenting cell (APC). However,
the T lymphocyte response is also shaped by
many other interactions between cell-sur-
face molecules on T cells and APCs, as well
as by the action of cytokines (1). Although
no distinct “antigen receptor” analogous to
the TCR has been found on NK cells, NK
cell-mediated lysis can be inhibited by NK
receptors that also bind to class I MHC
proteins (2, 3). In particular, lysis by NK1
and NK2 cells is inhibited by target cells
expressing human leukocyte antigen
(HLA)-Cw2, -Cw4, -Cw5, or -Cw6 and
HLA-Cwl, -Cw3, -Cw7, or -Cw8, respec-
tively (4, 5). Also, lysis by NKB1* NK3
cells is inhibited by target cells expressing
an HLA-B allele containing the Bw4
epitope at residues 77 to 83 (6). Such inhi-
bition is initiated by the recruitment of
protein tyrosine phosphatases on the cyto-
plasmic tail of the NK receptor (7). T cells
share with NK cells a common lineage and
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many phenotypic markers (8) including NK
inhibitory receptors. Indeed, ~28% of cy-
totoxic T cells express p58 NK inhibitory
receptors (9), and the p70 NK inhibitory
receptor, NKB1, is expressed on 0.2 to 15%
of T cells (10). The action of these NK
inhibitory receptors can affect T cell func-
tion because NKB1™ T cell clones that can
kill superantigen-coated target cells cannot
kill the same target cells transfected with
class I MHC alleles expressing the Bw4
epitope (10).

Recently, an isoform of NK inhibitory
receptors was described. These p50 NK re-
ceptors share similar extracellular sequences
with the p58 receptors but have altered
transmembrane regions, including the addi-
tion of a charged lysine residue, and trun-
cated cytoplasmic tails (3, 1), so that they
lack the YXXL sequences (L, Leu; Y, Tyr; X,

any amino acid) to which protein tyrosine

phosphatases can bind. Such short-tailed
NK receptors do not mediate inhibition of
NK cell-mediated lysis but instead activate
or coactivate NK clones (11). To investi-
gate the possible effect of NK activating
receptors on T cell function, we studied T
cell clones isolated as by-products in NK
cell cloning (12).

Two of these clones, TANK-1 and
TANK-9, were prepared from a donor
whose HLA type is HLA-A1, -A2, -B7,
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Fig. 1. Proliferation of TANK cell clones in the presence of superantigen is
dependent on the class | MHC allotype of the APC. Proliferation assays were
done as described (78). (A) TANK-9 and (B) TANK-1 were incubated with various
concentrations of TSST1 and SEB, respectively, in the presence of human B cells
deficient in cell-surface expression of class | MHC proteins (721.221) or 721.221
cells transfected with HLA-Cw3, HLA-Cw4, HLA-Cw8, or HLA-Cw7. (C) The
proliferation of TANK-1 in response to SEB-coated 721.221 cells (0.5 ng/ml) and

-B8, -Cw7, -DR1, -DR17, -DQw2, and
-DQw5. Clone TANK-1 was positive for
TCRBV17 (V 17) and expressed neither
NKI1, NK2, nor NK3 receptors by flow cy-
tometry (13). Cloning by polymerase chain
reaction (PCR) and sequencing of cDNA
derived from TANK-1 (14) revealed the
expression of the short-tailed activating NK
receptor, clone 39 (3). Clone TANK-9 was
positive for TCRBV2 (V 2) and expressed
both NK1 and NK2 receptors by flow cy-
tometry (13). PCR typing of cDNA derived
from TANK-9 (15) revealed that TANK-9
expresses the activating, short-tailed form
of the NKI receptor (NKAR1) and the
inhibitory, long-tailed form of the NK2 re-
ceptor (NKIR2), as well as TCRVA24
(V,24). These T cells with activating NK
receptors (TANK cells) were positive for
TCRap, CD4, and CD3 and negative for
TCR~v8, CD8, CD16, CD56, and CD94 by
flow cytometry (13, 16).

To determine the effect of NK activat-
ing receptors on T cell responses, we exam-
ined the proliferative response of TANK-1
and TANK-9 in the presence of superanti-
gen-coated 721.221 cells, human HLA-
DRI1* B cells deficient in cell-surface ex-
pression of class | MHC proteins (17), and
721.221 transfectants (18). As expected
from the TCRVB gene segment expressed
by each clone, TANK-9 responded to toxic
shock syndrome toxin 1 (TSST1) (Fig. 1A)
and not to staphylococcal enterotoxin A
(SEA) or SEB. (19), whereas TANK-1 re-
sponded to SEB (Fig. 1B) and not to SEA
(19). At all the tested concentrations of
TSST1, the proliferation of TANK-9 was

greater when the target cell was transfected
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block the alteration in TANK cell proliferation. (A) Proliferation of TANK-9 stimulated by TSST1 (0.05
ng/ml) was measured in the presence of 721.221 cells and various 721.221 transfectants, with anti-
bodies to the NK1 or NK2 receptors (HO3E4 and GL 183, respectively), a control immunoglobulin M
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Proliferation of TANK-1 stimulated by SEB (0.5 ng/ml) was measured in the presence of 721.221 cells
or 721.221 transfectants plus the antibody to class | MHC proteins (PA2.6) or an isotype control
(MOPC21, Sigma). To show the largest possible effect of blocking NK receptor ligation with PA2.6, we
harvested the cells 3 days after incubation. Otherwise, proliferation assays were done as described (78).
Each data point was measured in duplicate. The range in each measurement was less than 10% of the
mean of the duplicates. The experiments shown here are representative of three data sets that were

obtained.

with either HLA-Cw4 or -Cw6 and reduced
when the target cell was transfected with
either HLA-Cw3 or -Cw7 (Fig. 1A).
Target cells that enhanced the prolifer-
ative response expressed class I MHC pro-
teins that were recognized by NKI recep-
tors, whereas target cells that inhibited the
response expressed alleles that were recog-
nized by NK2 receptors (9, 11). This result
implies that the short-tailed NK1 receptor
present on the cell surface of TANK-9 fa-
SCIENCE e«
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cilitates the enhancement of the T cell
proliferative response, whereas the long-
tailed NK2 receptor mediates inhibition of
such a response. The decrease in prolifera-
tion of TANK-9 in response to TSST1 at
50 ng/ml compared to the proliferative re-
sponse at 0.5 ng/ml is likely to be due to the
induction of anergy (20).

Proliferation of TANK-1 in response to
SEB presentation was enhanced by target

cells transfected with either HLA-Cw4 or
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721.221 cells transfected
with HLA-G [1], another

721.221 clone transfected with HLA-G [2], or the choriocarcinoma cell line JEG-3. (Bottom) Analysis of the
two 721.221 lines transfected with HLA-G by flow cytometry, with fluorescein isothiocyanate (FITC)-labeled
goat antibody to mouse IgG alone (plain line); W6/32, an antibody to class | MHC proteins, followed by
FITC-labeled antibody to mouse IgG (bold line); or LB3.1, an antibody to class I MHC proteins, also
revealed by FITC-labeled antibody to mouse IgG (dotted line). One 721.221 line transfected with HLA-G
expressed large amounts of the class | protein on its cell surface [1], whereas the other HLA-G transfectant
did not [2]. (B) Proliferation of TANK-9 stimulated by various concentrations of TSST1 was measured in the
presence of 721.221 cells, 721.221 cells transfected with HLA-G [1], or the choriocarcinoma cell line
JEG-8. Proliferation assays were done as described (78). Each data point was measured in duplicate. The
range in each measurement was less than 10% of the mean of the duplicates. The experiments shown here
are representative of three data sets that were obtained.

HLA-Cw7 (Fig. 1B). Two other TANK cell
clones behaved similarly (19). Because the
only NK receptor expressed on TANK-1
was the activating receptor, clone 39, it can
be inferred that clone 39 facilitates an en-
hanced T cell response in the presence of
the class I MHC alleles HLA-Cw4 and
HLA-Cw7. These two class | MHC proteins
belong to the two distinct groups of HLA-C
proteins that are recognized by either NK1
or NK2 receptors. The molecular basis for
the recognition of both HLA-Cw4 and
-Cw7 by clone 39 is unknown, but the
sequence of clone 39 is chimeric between
NKAR1 and NKAR2.

The costimulatory effect of HLA-Cw4
or -Cw7 on the proliferative response of
TANK-1 is greatest at lower concentrations
of superantigen, causing a 300 to 900%
increase in stimulation compared with un-
transfected target cells (Figs. 1, B and C,
and 2A). Thus, the function of costimula-
tory NK receptors on T cells in vivo might
be to allow a subset of T cells to be partic-
ularly responsive to small quantities of an-
tigen. In addition, the enhanced T cell
response of TANK-1 costimulated by HLA-
Cw4 or -Cw7 peaks on the fourth day after

initial stimulation and is maintained for a
further 5 days (Fig. 1C). This suggests that
the function of the costimulatory NK recep-
tor on T cells might also be to sustain the
immune response for an extended period.
Possible reasons for the sharp decrease in
the proliferation of TANK-1 at about 5
days after initial stimulation (Fig. 1C) in-
clude the up- or down-regulation of a par-
ticular protein on either the T cells or
target cells, depletion of cytokines, or an
exhaustion of nutrients within the media.
To determine directly whether the acti-
vating NK receptor on T cells facilitates the
enhancement in proliferation, we used the
monoclonal antibodies (mAbs) HP3E4 and
GL183 to NK1 and NK2, respectively, in
assays of TANK-9 proliferation in the pres-
ence of TSST1 at 0.05 ng/ml. Monoclonal
antibody HP3E4 blocked the enhancement
of TANK-9 proliferation mediated by
721.221 cells transfected with HLA-Cw4 or
-Cw6, and GL183 blocked the inhibition of
TANK-9 mediated by HLA-Cw3- or HLA-
CwT7-expressing target cells (Fig. 2A).
Analogous data were obtained with super-
antigen at 0.5 ng/ml. These data confirm
that the NKI and NK2 receptors on
SCIENCE -«
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TANK-9 do indeed mediate the alterations
in the proliferative response to TSST1.

Because none of the available mAbs
binds specifically to clone 39, the role of
this molecule in enhancing the proliferative
response of TANK-1 could not be directly
assessed by antibody blocking. However,
the increase in proliferation of TANK-1 in
the presence of SEB at 0.5 ng/ml, mediated
by 721.221 cells transfected with HLA-Cw4
or -Cw7, was blocked by mAb PA2.6 to
class [ MHC proteins (Fig. 2B). Analogous
data were obtained with SEB at 0.05 ng/ml.
These data confirm that the increased pro-
liferation of TANK-1 is mediated by class I
MHC receptors.

The nonclassical class I MHC protein,
HLA-G, has recently been shown to inhibit
both NK1 and NK2 clones (21). Transfection
of HLA-G into 721.221 cells enhanced the
proliferation of TANK-1 in the presence of
SEB, compared to untransfected cells (Fig.
3A). In contrast, the carcinoma cell line JEG-
3, which expresses HLA-G but is deficient in
class I MHC expression, could not stimulate
TANK-1 in the presence of SEB (Fig. 3A).
This result implies that superantigen cannot
be presented by the class [ MHC protein to
cause significant proliferation of TANK-1,
and that stimulation must be mediated pri-
marily by superantigen associated with class II
MHC molecules. In support of this conclu-
sion, the proliferative response of TANK-1 to
SEB was diminished in the presence of mAb
LB3.1 to class II MHC (19).

SEB-coated 721.221 cells that had been
transfected with HLA-G but that had lost
most cell-surface expression of the protein
after an extended period in culture (HLA-
GI2]) caused the same extent of TANK cell
proliferation as untransfected cells (Fig.
3A). Thus, it is the expression of HLA-G
that facilitates the enhanced proliferation
of TANK-1, rather than any artefactual
alteration in the phenotype of transfected
721.221 cells. Although HLA-G can facil-
itate action through both NKI1 and NK2
receptors, HLA-G-transfected 721.221
cells inhibited the proliferative response of
TANK-9 to TSST1 (Fig. 3B) (22).

Thus, both NK activating receptors and
NK inhibitory receptors are present on T
cell clones, where they can alter the prolif-
erative response of T cells stimulated by
superantigen. NK inhibitory receptors can
also inhibit the proliferative response of T
cells stimulated by peptide antigen (19) as
well as by superantigen (10), and it is rea-
sonable to infer that NK activating recep-
tors costimulate T cells activated by peptide
antigens. Therefore, distinct combinations
of activating and inhibitory receptors on
each T cell could adjust the response of the
human immune system to specific antigens.

Because the presence of an activating
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NK receptor on a T cell potentially facili-
tates a response to small amounts of anti-
gen, it is possible that TANK cells are
important in initiating immune responses.
In particular, because, by flow cytometry,
NK receptors occur primarily on T cells of a
memory phenotype (19, 23), costimulatory
NK receptors may especially facilitate the
rapid induction of secondary T cell-medi-
ated immune responses. In addition, the
expression and function of activating class I
MHC receptors may allow activation of a T
cell whose TCR may interact weakly with
self peptide. Thus, expression of such recep-
tors could also be significant in triggering
the onset of autoimmune disease.
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ry to polymorphic regions of the extracellular portions

ofthe known NK receptors and with oligonucleotides

complementary to the long and short cytoplasmic tail
sequences of NK receptors (H. T. Reyburn et al., in
preparation).

TANK cells are not exclusively CD4+ TCRap* be-

cause TCRyd* and CD8* TCRap™ TANK cells

have also been obtained (O. Mandelboim et al., in
preparation).
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Inhibition of Adipogenesis Through MAP
Kinase-Mediated Phosphorylation of PPARy

Erding Hu, Jae Bum Kim, Pasha Sarraf, Bruce M. Spiegelman*

Adipocyte differentiation is an important component of obesity and other metabolic
diseases. This process is strongly inhibited by many mitogens and oncogenes. Several
growth factors that inhibit fat cell differentiation caused mitogen-activated protein (MAP)
kinase-mediated phosphorylation of the dominant adipogenic transcription factor per-
oxisome proliferator-activated receptor v (PPARY) and reduction of its transcriptional
activity. Expression of PPARy with a nonphosphorylatable mutation at this site (serine-
112) yielded cells with increased sensitivity to ligand-induced adipogenesis and resis-
tance to inhibition of differentiation by mitogens. These results indicate that covalent
modification of PPARy by serum and growth factors is a major regulator of the balance
between cell growth and differentiation in the adipose cell lineage.

Adipose differentiation is influenced by a
large number of mitogens and growth fac-
tors (I). In general, polypeptides that stim-
ulate cell growth block fat cell differentia-
tion. Platelet-derived growth factor, epider-
mal growth factor (EGF), fibroblast growth
factor, and tumor promoters all inhibit fat
cell differentiation in culture or in vivo (2).
Various cytokines, including tumor necrosis
factor—a (TNF-a), interleukin-1 (IL-1), IL-
6, transforming growth factor—@, and inter-
feron-y also inhibit adipogenesis (3). Insu-
lin has a prominent and complex role in the
development of adipose cells, serving as a
growth or differentiation factor depending
on the specific cell type. Adipose cell pre-
cursors (preadipocytes), which express small
amounts of insulin receptors, generally re-
quire insulin or insulinlike growth factor-1
for optimal differentiation (4). Adipose
cells, which contain large numbers of insu-
lin receptors but are postmitotic, respond to
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insulin with a lipogenic response as a result
of the activation of lipogenic enzymes and
the stimulation of Glut4-mediated glucose
transport (5). In contrast, fibroblasts that
express ectopically large amounts of insulin
receptors usually respond to insulin with
cell growth rather than differentiation (6).

Two families of factors are especially
prominent in the transcriptional control of
adipogenesis: the PPARs and C/EBPs.
PPARY is a member of the nuclear hor-
mone receptor family that is expressed pref-
erentially in adipose tissue (7). It is ex-
pressed in small amounts in preadipocytes,
and its synthesis is increased during the
process of adipogenesis (8). PPARvy binds
specific ligands, including synthetic antidi-
abetic thiazolidinediones and 15-deoxy-
A'?4prostaglandin ], (9), resulting in a full
and powerful adipogenic response. Thus,
PPARYy appears to be a key component in
the determination and differentiation pro-
cess in vivo (9, 10).

Ectopic expression of C/EBP-B and
C/EBP-3 stimulates adipogenesis in fibro-
blasts as well (11, 12). This occurs through
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