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Copper-Catalyzed Oxidation of Alcohols 
to Aldehydes and Ketones: 

An Efficient, Aerobic Alternative 
lstvan E. Marko," Paul R. Giles, Masao Psukazaki, 

Stephen M. Brown, Chistopher J. Urch 

An efficient, copper-based catalyst has been discovered that oxidizes a wide range of 
alcohols into aldehydes and ketones under mild conditions. This catalytic system utilizes 
oxygen or air as the ultimate, stoichiometric oxidant, producing water as the only 
by-product. 

T h e  oxidation of alcohols into aldehydes and 
ketones is a ubiquitous transformation in or- 
ganic chemistry, and numerous oxidizing 
agents are available to effect this kev reaction 
0 

(1). In most instances, these reagents are re- 
auired in stoichiornetric amounts and are LISLI- 

ally toxic, or hazardous, or both. Moreover, 
purification of the reaction products is often 
demanding and laborious Desp~te the ~ndus- 
trlal importance of thls process and the ever- 
growing environmental concerns, surprisingly 
few efficient catalvtic oxidations of alcohols 
have been describeh (2).  The  scarcity of alco- 
hol oxidation processes that simply use oxy- 
gen or alr as the ultimate stoichiometric oxi- 
dant is particularly notable (3, 4). 

Lie describe an  efficient, aerobic catalyt- 
ic system for the  transformation of alcohols 
into carbonyl compounds under mild condi- 
tlons Our  v.rork \J. as Inspired by the seinlnal 
report of Jallabert and R I T . I P ~ ~  and co-~vork- 
ers (5) o n  the aerobic oxldat~on of benzyl~c 
alcohols medlated by coppei-arn~ne com- 
plexes (6 ,  7). This method, however expe- 
d ~ e n t ,  unfortunately iequlies 2 equir alents 
(equiv) of copper complex per equivalent of 
alcohol. bloreover, it is severelv limited in 
scope to some benzylic alcohol substrates. 
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Initial investigations of the  effect of var- 
ious additives o n  promoting catalyst turn- 
over led to a remarkable result. Substituted 
azo compounds, such as diethylaiodicar- 
boxylate (DEAD) or its terr-butyl (But) an- 
alog (DBAD) striltingly improve not  only 
the turnover and the  lifetime of the  catalyst 
but also the rate of the  reaction (8). T h e  
corresponding hydraiines, DE,4DHz and 
DBADH,, are even more competent co- 
additives. 

Further studies showed that the nature of 
the copper counterion IS critical to the suc- 
cess of the reaction, with chloride, acetate, 
and triilate proving to be the most effective. 
Among a variety of ligands tested, dialnines 
such as phenanthroline (phen)  and its de- 
rivatives are particularly efficient. \S;hereas 
polar solvents (such as acetonitrile) inhibit 
the reaction, smooth aerobic oxldat~on takes 
place In apolar solvents such as h e n ~ e n e  
X?ore significant from a practical viewpoint, 
toluene and trifluorornethylbenzene are su- 
perior solvents to benzene and lead to an  
important increase in reaction rates (9) .  

Under the following conditions (5% 
CuCl, 570 phen, 570 DBADH,, 2 equiv 
K,CO,, O2 or air, toluene, ?Po to 9P°C), a 
\vide range of primary, secondary, allylic, and 

5% CuCI; 5% Phen: 
R1 2 equiv. K,CO,; R' 
~~f OH &- * O  

5% DBADH,; 0, R2 
Toluene: 70' 10 90' C 2 

benzvl~c alcohols can be smoothly oxidl~ed to 
the corresponding aldehydes or' ketones In 
good to excellent yields (Table 1). 

,41r can be conveniently used instead of 
oxygen without affecting the efficiency of 
the process. Ho\vever, the use of air requires 
slightlv longer reaction times. With  activat- 
ed"al1ilic a;d benzylic alcohols, laxer cata- 
lyst loading can be used with only a marginal 
drop in reaction rate (1G). In these cases, 
lower temperatures can also be applied but 
result in a longer reaction period. Remark- 
ablv, catalyst deactivation is not obser~.ed , , 
during these extended reaction times (1 1 ). 

T h e  catalvst shows excellent tolerance 
for a broad ra&e of alcohol substrates and 1s 
notablv not deactivated by nitrooen- and 
sulfur-containing compounds. Sensitive al- 
dehvdes, such as neral and oeranial, are not 
isomerized under the  reaction conditions. 

T h e  active catalvst a p ~ e a r s  to be hetero- , L L  

geneous and adsorbed o n  the insoluble 
K,CO, (12).  Besides its role as a solid sup- 
port, the carbonate also acts as a base (13),  
initiating the addition of the alcohol, or 
DBADH,, or both to the copper complex, 
and as a water scavenger (14).  In sever%l 
instances, K,C03 could be replaced by 4 A 
molecular sieves and a catalytic amount of a 
nonoxidizable base such as K O H  or KOBuL. 

h~lechanistic studies suggest that an  initial 
hydrogen-transfer reaction ~vi thin  the cop- 
per-alkoxide/a;o complex 3 generates the 
carbonyl-bound hydrazino-copper species 4 
(Scheme 1)  (15).  Upon reaction with ox\-- 
gen, this copper(1) complex then produces 
the I?inuclear copper(11) peroxide 5 (16). 
Homolytic cleavage followed by hydrogen- 
atoin abstraction from the complexed hydra- 
iine affords the hydroxy Cu(1) species 6. 
Rapid exchange between the OH ligand and 
alcohol 1. with concomitant loss of a water 
molecule, regenerates the loadeii catalyst 3 
and Initiates a second catalytic cycle. 

Scheme 1. R1;R2 = alky, arjl, hetercary, H, E = COOEt. COOBu' 

W e  have disco\-ered an  efficient catalytic 
svsteln that oxidizes a \vide range of alcohols " 
into the  corresponding carbony1 compounds 
under inild conilitions and that uses 0, or 
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Table 1. All yields are for pure. isolated products and are based on the start~ng alcohol. No corrections have been made for recovered stariing material In case 
of incompiete conversion. The conversion was measured by gas chromatography and ' H nuclear magnetic resonance by usng the internal standard method 
(tetradecane) (1 7). 

Substrate Product Yield Time Substrate 
(Conv.) (min) 

Product Yield Time 
(Conv.) (min) 

*>95% (E)-geranal. 1>95% (Z)-neral. :5 mol % DBAD used Instead of DBADH,. $1 0 molS6 CuCI. Phen and 10 mol % DBAD were used In th~s exper~ment. Under the 
standard cond~t~ons a 60% yleld of 'Buty cyclohexanone was obtaned. 1 0  mol % CuCI. Phen and 10 mol % DBADH, used ~n ths experment. Under the standard condtons, 
an 80% conversion was observed and a 65% y ~ e d  of decana was obtained. 

air as the ultimate stoichiometric oxidant. 
This process is not only economically viable 
and applicable to large-scale reactions, but it 
is also environmentally friendly. 

Further studies are needed to delineate 
the intimate mechanistic steps and expand 
the scope of this oxidation process. 
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Formation of Chiral lnterdigi tated Mul tilayers 5 ' )  m a ~ O r  app112d fol structLlr2 

at the Air-Liquid Interface Through 
elucldatlon was grazlng-lncldence x-ray dlt- 
iractlon (GIXD), vrrhlch allowed us to plobe 

Acid-Base Interactions the molecular packing arrangements of the 
crystalline film to near-atomic resolution. 

Ivan Kuzmenko, Ronith Buller, Wim G. Bouwman, Kristian K j ~ r ,  In "proprlate bltnO1ec- 
ular  stem that satlsfled the above crlterla, Jens Als-Nielsen, Meir Lahav, Leslie Leiserowitz* we came across the crystal structures of 
diastereomeric phenylethylamine mande- 

Thin interdigitated films composed of a long-chain, water-insoluble chiral acid (p-pen- lates ( 2 .  3). The structure colnposed of 
tadecylmandelic acid of absolute configuration R) and a water-soluble chiral base (phe- phenylethylamine (PEA) and mandelic 
nylethylamine, R') were constructed at the air-solution interface. The (R, R') structure was acid (MA) molecules of the same handed- 
characterized to near-atomic resolution by grazing-incidence x-ray diffraction (GIXD). ness, either (R, R') or (5, S t ) ,  is character- 
The two diastereomeric systems, (R, R') and (R, St), demonstrate similar surface pres- ized by rigid hydrogen-bonded bilayers (Fig. 
sure-molecular area isotherms, but their structures are completely different on the 1A). The phenyl rings within each layer are 
molecular level, as monitored by GIXD. Complementary data on these two architectures oriented and positioned in a way that is 
were provided by atomic force microscopy. colnpatlble w t h  the fortnation of an inter- 

dlgitated arrangement as in Scheme 1, 
where only the phenyl ring of the mandelic 
acid is modified by attaching a long hydro- 

A n  important goal of supramolecular chem- plane (Scheme 1). Both the acidic (A)  and carbon chain in the para position. 
istry 1s to find methods to control and stabl- The surface pressure-molecular area (T-  

liie the assembly of molecules into larger '4) isotherms of (R)-pentadecylmandelic 
structures. One approach is to use the air- acid [p-Cl,H,1-C,H4-CH(OH)COOH (Cl,- 
solution interface to regulate the assembly h4A) (4)] were measured on Millipore-fil- 
process by incorporating strong directional tered LTater and on aqueous 0.008 Iv1 solu- 
interactions for the generation of ultrathln tlons of (R)-  and of (5)-PEA (C6Hj- 
films. The formation of multilayer films from 

Scheme 1. 
CHCH3NH2) (Fig. 2A). The isotherm on 

long-chain molecules with polar head groups LTater demonstrated regular behavior with 
by the Langmuir-Blodgett (LB) method is basic (B)  head groups are attached to a an extrapolated A of 24 to 25 A'. The 
straightforward, but the films must be trans- chlral carbon center, and the layering and isotherms for the solutiol~s of two PEA en- 
ferred to a substrate and are not especially ordering in these films differ greatly be- antiomers have peculiar but sitnilar shapes. 
stable even after transfer. Such a fortnation tween acids and bases of the same handed- Both isotherms are expanded and reach a 
process is governed by relatively weak hydro- ness (R, R') versus opposite handedness (R, plateau at A - 40 A' and .rr = 42 to 43 
phobic and hydrophillc interactlons. 

We have considered the effect of using 
stronger acid-base interactlons to control A&13%? 

e 
assembly and have constructed an interdig- 
ltated film at the air-solution interface akin 

/ $$pJ$2, 
to that of a natural membrane (1) .  We did 
thls by spreading a water-insoluble, long- 

23%?? 
%%%% ci?".,'o,j%j % " ipm 1- U px%RL 1 

cham acid on an aqueous solution contain- 
ing the complementary amine. Compres- 

En $hp:2peib 
slon of the film causes alternating acid-base 
groups to emerge at either side of the mem- 
brane, whereas the central part contalns the 

/ j 3 2 A  
interdigitated hydrophobic groups of the C b  b+3h --------- 
acid in space-filling contact across a central .i $ '"S '@ , - 

a 
1 .  Kuzmenko. R.  Bullep. M, Lahav. L. Lesefo?vtz. 3eoari- 
ment of Materals and Interfaces, \W?,ezmann lnsttute of 
Sc~ence, Rehovot 76100, Israel. 4- b 
\Y. G. Bouwman and K. K=r, Deoartment of S o d  State 
Physics. RISB Nat~onal Labopatow, DK-4000 Roskde 
Denmark. 

I Fig. 1. (A and B) Molecular packng ar- 
rangements of the three-d~mens~onal 

- crystals of (R-MA R-PEA) (A) and (R-C,,- 
MA, R-PEA) (B) vewed aonq the a axls 

J. Als-Nelsen, N e s  Bohr nstltute, H. C. Bfsted Labofa- (6) Packing arrangement of the nterdgitated (R-C,,-MA, R-PEA) triayer \~ewed along th;b axis. The 
tory. 3K-2100 Cocenhagen, Denmapk amorphous and crystalline parts are ndcated by the upper and lower arrows at the right: the dashed Ine 
-To whom correspondence should be addpessed represents the ar-water nterface. 
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