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Copper-Catalyzed Oxidation of Aicohols
to Aldehydes and Ketones:
An Efficient, Aerobic Alternative

Istvan E. Markd,” Paul R. Giles, Masao Tsukazaki,
Stephen M. Brown, Chistopher J. Urch

An efficient, copper-based catalyst has been discovered that oxidizes a wide range of
alcohols into aldehydes and ketones under mild conditions. This catalytic system utilizes
oxygen or air as the ultimate, stoichiometric oxidant, producing water as the only

by-product.

T'he oxidation of alcohols into aldehydes and
ketones is a ubiquitous transformation in or-
ganic chemistry, and numerous oxidizing
agents are available to effect this key reaction
(1). In most instances, these reagents are re-
quired in stoichiometric amounts and are usu-
ally toxic, or hazardous, or both. Moreover,
purification of the reaction products is often
demanding and laborious. Despite the indus-
trial importance of this process and the ever-
growing environmental concerns, surprisingly
few efficient catalytic oxidations of alcohols
have been described (2). The scarcity of alco-
hol oxidation processes that simply use oxy-
gen or air as the ultimate stoichiometric oxi-
dant is particularly notable (3, 4).

We describe an efficient, aerobic catalyt-
ic system for the transformation of alcohols
into carbonyl compounds under mild condi-
tions. Our work was inspired by the seminal
report of Jallabert and Riviére and co-work-
ers (5) on the aerobic oxidation of benzylic
alcohols mediated by copper-amine com-
plexes (6, 7). This method, however expe-
dient, unfortunately requires 2 equivalents
(equiv) of copper complex per equivalent of
alcohol. Moreover, it is severely limited in
scope to some benzylic alcohol substrates.
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Initial investigations of the effect of var-
ious additives on promoting catalyst turn-
over led to a remarkable result. Substituted
azo compounds, such as diethylazodicar-
boxylate (DEAD) or its tert-butyl (Bu®) an-
alog (DBAD) strikingly improve not only
the turnover and the lifetime of the catalyst
but also the rate of the reaction (8). The
corresponding hydrazines, DEADH, and
DBADH,, are even more competent co-
additives.

Further studies showed that the nature of
the copper counterion is critical to the suc-
cess of the reaction, with chloride, acetate,
and triflate proving to be the most effective.
Among a variety of ligands tested, diamines
such as phenanthroline (phen) and its de-
rivatives are particularly efficient. Whereas
polar solvents (such as acetonitrile) inhibit
the reaction, smooth aerobic oxidation takes
place in apolar solvents such as benzene.
More significant from a practical viewpoint,
toluene and trifluoromethylbenzene are su-
perior solvents to benzene and lead to an
important increase in reaction rates (9).

Under the following conditions (5%
CuCl, 5% phen, 5% DBADH,, 2 equiv
K,CO,, O, or air, toluene, 70° to 90°C), a

wide range of primary, secondary, allylic, and

5% CuCl; 5% Phen;

R! 2 equiv. K,COg; R!
Hzé—OH =0
H ,  5%DBADH, O, Rz
Toluene; 70° to 90° C 2

benzylic alcohols can be smoothly oxidized to
the corresponding aldehydes or ketones in
good to excellent yields (Table 1).
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Air can be conveniently used instead of
oxygen without affecting the efficiency of
the process. However, the use of air requires
slightly longer reaction times. With activat-
ed allylic and benzylic alcohols, lower cata-
lyst loading can be used with only a marginal
drop in reaction rate (10). In these cases,
lower temperatures can also be applied but
result in a longer reaction period. Remark-
ably, catalyst deactivation is not observed
during these extended reaction times (11).

The catalyst shows excellent tolerance
for a broad range of alcohol substrates and is
notably not deactivated by nitrogen- and
sulfur-containing compounds. Sensitive al-
dehydes, such as neral and geranial, are not
isomerized under the reaction conditions.

The active catalyst appears to be hetero-
geneous and adsorbed on the insoluble
K,CO; (12). Besides its role as a solid sup-
port, the carbonate also acts as a base (13),
initiating the addition of the alcohol, or
DBADH,, or both to the copper complex,
and as a water scavenger (14). In severa}l
instances, K,CO5 could be replaced by 4 A
molecular sieves and a catalytic amount of a
nonoxidizable base such as KOH or KOBu".

Mechanistic studies suggest that an initial
hydrogen-transfer reaction within the cop-
per-alkoxide/azo complex 3 generates the
carbonyl-bound hydrazino-copper species 4
(Scheme 1) (15). Upon reaction with oxy-
gen, this copper(l) complex then produces
the binuclear copper(Il) peroxide 5 (I16).
Homolytic cleavage followed by hydrogen-
atom abstraction from the complexed hydra-
zine affords the hydroxy Cu(I) species 6.
Rapid exchange between the OH ligand and
alcohol 1, with concomitant loss of a water
molecule, regenerates the loaded catalyst 3
and initiates a second catalytic cycle.

Z ] R!
N 0—&R?
H,0 N <
R o M
2 =
Hzé—OH |N E/N—N\E
H N

Scheme 1. R';R2 = alkyl, aryl, heteroaryl, H; E = COOEt, COOBU!

We have discovered an efficient catalytic
system that oxidizes a wide range of alcohols
into the corresponding carbonyl compounds
under mild conditions and that uses O, or
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Table 1. All yields are for pure, isolated products and are based on the starting alcohol. No corrections have been made for recovered starting material in case
of incomplete conversion. The conversion was measured by gas chromatography and "H nuclear magnetic resonance by using the internal standard method

(tetradecane) (17).

Substrate Product Yield Time Substrate Product Yield Time
(Conv.) (min) (Conv.) (min)
CHO
o 83(100) 90 QH o
/'\ /U\ 88 (90)  120%
Cl Cl CqHyg CH, CoHiq * CH,
CHO OH o
\ OH X 89 (100) 60
84(87) 120§
Bu Bu
OH o
X _CHO
" “oH CF, CF
3
g\w e QO QT e
HO
7 oH A ©
« | « | 81(92) 60
N N N N '
73(83) 60t
OH CHO CHO
| OH
92 (95) 60
CH,S CH,S
CqH;aCH,OH CqH;4CHO 73(87) 48]

*>96% (E)-geranial. +>95% (Z)-neral.

16 mol % DBAD used instead of DBADH,,.
standard conditions, a 60% yield of Butyl cyclohexanone was obtained.

an 80% conversion was observed and a 65% yield of decanal was obtained.

air as the ultimate stoichiometric oxidant.
This process is not only economically viable
and applicable to large-scale reactions, but it
is also environmentally friendly.

Further studies are needed to delineate
the intimate mechanistic steps and expand
the scope of this oxidation process.
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Formation of Chiral interdigitated Multilayers
at the Air-Liquid Interface Through
Acid-Base Interactions

Ivan Kuzmenko, Ronith Buller, Wim G. Bouwman, Kristian Kjeer,
Jens Als-Nielsen, Meir Lahav, Leslie Leiserowitz*

Thin interdigitated films composed of a long-chain, water-insoluble chiral acid (o-pen-
tadecylmandelic acid of absolute configuration R) and a water-soluble chiral base (phe-
nylethylamine, R') were constructed at the air-solution interface. The (R, R’) structure was
characterized to near-atomic resolution by grazing-incidence x-ray diffraction (GIXD).
The two diastereomeric systems, (R, R') and (R, S'), demonstrate similar surface pres-
sure—molecular area isotherms, but their structures are completely different on the
molecular level, as monitored by GIXD. Complementary data on these two architectures
were provided by atomic force microscopy.

An important goal of supramolecular chem-
istry is to find methods to control and stabi-
lize the assembly of molecules into larger
structures. One approach is to use the air-
solution interface to regulate the assembly
process by incorporating strong directional
interactions for the generation of ultrathin
films. The formation of multilayer films from
long-chain molecules with polar head groups
by the Langmuir-Blodgett (LB) method is
straightforward, but the films must be trans-
ferred to a substrate and are not especially
stable even after transfer. Such a formation
process is governed by relatively weak hydro-
phobic and hydrophilic interactions.

We have considered the effect of using
stronger acid-base interactions to control
assembly and have constructed an interdig-
itated film at the air-solution interface akin
to that of a natural membrane (1). We did
this by spreading a water-insoluble, long-
chain acid on an aqueous solution contain-
ing the complementary amine. Compres-
sion of the film causes alternating acid-base
groups to emerge at either side of the mem-
brane, whereas the central part contains the
interdigitated hydrophobic groups of the
acid in space-filling contact across a central
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plane (Scheme 1). Both the acidic (A) and

Scheme 1.

basic (B) head groups are attached to a
chiral carbon center, and the layering and
ordering in these films differ greatly be-
tween acids and bases of the same handed-
ness (R, R") versus opposite handedness (R,

<

SHS

ST

204
5

55,
2
LFoL
2
Y atre
ol

Y

o

AN
ﬁ@f PRPP P 4]

8.4 Hz). '®3C NMR (CDCl,, 75.5 MHz) 85 191.3,
141.5, 135.4, 131.5, and 130.0.
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S"). The major tool applied for structure
elucidation was grazing-incidence x-ray dif-
fraction (GIXD), which allowed us to probe
the molecular packing arrangements of the
crystalline film to near-atomic resolution.

In a search for an appropriate bimolec-
ular system that satisfied the above criteria,
we came across the crystal structures of
diastereomeric phenylethylamine mande-
lates (2, 3). The structure composed of
phenylethylamine (PEA) and mandelic
acid (MA) molecules of the same handed-
ness, either (R, R") or (S, S’), is character-
ized by rigid hydrogen-bonded bilayers (Fig.
1A). The phenyl rings within each layer are
oriented and positioned in a way that is
compatible with the formation of an inter-
digitated arrangement as in Scheme I,
where only the phenyl ring of the mandelic
acid is modified by attaching a long hydro-
carbon chain in the para position.

The surface pressure—molecular area (-
A) isotherms of (R)-pentadecylmandelic
acid [p-C,sH;,-C,H,~CH(OH)COOH (C, s-
MA) (4)] were measured on Millipore-fil-
tered water and on aqueous 0.008 M solu-
tions of (R)- and of (S)-PEA (CHs -
CHCH,NH,) (Fig. 2A). The isotherm on
water demonstrated regular behavior with
an extrapolated A of 24 to 25 A% The
isotherms for the solutions of two PEA en-
antiomers have peculiar but similar shapes.
Both isotherms are expanded and reach a

plateau at A ~ 40 A% and 7 = 42 to 43

R
afafaiaf

(]
38to 9
40 A ?

a

Fig. 1. (A and B) Molecular packing ar-
rangements of the three-dimensional
crystals of (R-MA, R-PEA) (A) and (R-C, 5-
MA, R-PEA) (B) viewed along the a axis.

(C) Packing arrangement of the interdigitated (R-C,5-MA, R-PEA) trilayer viewed along the b axis. The
amorphous and crystalline parts are indicated by the upper and lower arrows at the right; the dashed line

represents the air-water interface.
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