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Reduction of Voltage-Dependent Mg2+ 
Blockade of NMDA Current in Mechanically 

Injured Neurons 
Lei Zhang," Beverly A. Rzigalinski, Earl F. Ellis, Leslie S. Satin? 

Activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors is im- 
plicated in the pathophysiology of traumatic brain injury. Here, the effects of mechanical 
injury on the voltage-dependent magnesium (Mg2+) block of NMDA currents in cultured 
rat cortical neurons were examined. Stretch-induced injury was found to reduce the 
Mg2+ blockade, resulting in significantly larger ionic currents and increases in intracel- 
lular free calcium (Ca2+) concentration after NMDA stimulation of injured neurons. The 
Mg2+ blockade was partially restored by increased extracellular Mg2+ concentration or 
by pretreatment with the protein kinase C inhibitor calphostin C. These findings could 
account for the secondary pathological changes associated with traumatic brain injury. 

Evidence from animals and humans has 
shown that the extracellular level of the 
excitatory neurotransmitter glutamate is el- 
evated after traumatic brain iniurv ( 1 ,  2). , , 
Elevated glutamate contributes to dklayed 
tissue damage, presumably through activa- 
tion of Ca2+-permeable NMDA receptor 
channels. Treatment with NMDA recep- 
tor-channel antagonists has been reported 
to limit neurological dysfunction and par- 
tially preserve the bioenergetic state of 
posttraumatic brain tissue ( 1 ,  3). In vitro, 
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delayed neurodegeneration produced by us- 
ing a plastic stylet to mechanically injure 
neocortical neurons in culture is attenuated 
by the NMDA antagonists dextrorphan or 
D-2-amino-5-phosphonovalerate (4). De- 
spite the suggested involvement of NMDA 
receptors in these secondary pathological 
changes, it is not known whether mechan- 
ical injury directly affects NMDA channel 
properties in neurons of the central nervous 
system. Furthermore, because Mg2+ defi- 
ciency exacerbates, and increased extracel- 
lular Mg2+ attenuates, the pathological out- 
come of posttraumatic brain tissue (5), we 
hypothesized that voltage-dependent Mg2+ 
block of NMDA receptor channels (6) 
might be altered in injured neurons. 

To examine the effects of mechanical 
stretch injury on NMDA currents, we used 
the whole-cell patch clamp technique (7) 
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to record agonist-activated current in cul- 
tured neonatal cortical neurons (8). A cell 
injury model was used to simulate the in 
vivo brain tissue deformation associated 
with mild to moderate traumatic brain in- 
jury (8). This in vitro tnodel produces strain 
comparable to that produced by in vivo 
brain injury (8), but reduces the confound- 
ing variables such as ischemia, hypoxia, hy- 
perkalemia, and widespread membrane de- 
polarization encountered in animal-model 
studies of head injury (1,  3 ,  5). 

NMDA (200 LM)-activated currents re- 
corded frotn uninjked control neurons under 
voltage clamp,+n the presence of 2 mM extra- 
cellular Mg2+ showed a typical "J"-shape 
when plotted against membrane command 
potentials (Fig. 1A). The negative conduc- 
tance observed below -40 mV is known to be 
due to Mg2+ block of NMDA receptors (6). 
In contrast, the current-voltage (I-V) rela- 
tionship of stretched neurons was more linear, 
indicating reduced Mg2+ block of NMDA 
channels (Fig. 1A). The amplitude of NMDA 
current in stretched neurons increased by a 
factor of 1.7 + 0.1 at -60 tnV (n = 18) and 
a factor of 3.1 + 0.3 at -80 mnV (n  = 22) 
cotnpared with c o n h l  cells (Fig. 1B). No 
significant difference was found in the I-V 
relation at metnbrane potentials tnore positive 
than -40 mV. The more linear I-V relation- 
ship seen in stretched neurons occurred as 
early as 15 ~ n i n  after stretching and lasted at 
least 6 hours. 

Stretch-iniured and control neurons did 
not differ in their median effective dosage 
(ED,,) for NMDA to activate inward cur- 
rents at -40 mV or -80 mV. The EDjo for 
control cells was 58 t- 4 pM (n  = 8), 
whereas for injured neurons, the EDjo was 
55 t- 3 p M  [n = 7; not significantly differ- 
ent  (NS)]. Moreover, NMDA-activated 
currents were sitnilar in atnplitude between 
-40 mV and +40 mV in the two groups of 

Fig. 1. Stretch-induced Inju- 
ry reduces voltage-depen- 
dent Mg2+ blockade of 
NMDA currents, (A) Whole- 
cell (12) NMDA currents re- 
corded from representative 
control and stretched neu- 
rons plotted agalnst linear 
voltage ramps from -100 
mV to +40 mV of 6 s in du- 
ration in the presence of 2 
mM extracellular Mg2+ 
([Mg2+],). Currents record- 

neurons (n = 34). The  input resistances 
measured at -40 tnV before NMDA stim- 
ulation were 340 t- 56 tnegohms for control 
neurons (n  = 15) and 358 + 36 tnegohms 
for stretched neurons (n  = 18; NS),  sug- 
gesting cell lnetnbrane integrity was intact 
in stretched neurons. In support of this, 
5.7-~ntn mechanical deformation has little 
or no effect on cell uptake of the vital dye 
propidium iodide or on  the resting tnetn- 
brane potential under the present experi- 
mental conditions (8, 9) .  Furthermore, we 
observed no shift in the reversal potential of 
NMDA currents in the stretched neurons, 
suggesting that tnechanical perturbation did 
not markedly alter the ionic selectivity of 
NMDA channels (n  = 22). 

T o  further quantify the sensitivity of 
NMDA currents to Mg2+ block, we ob- 
tained Mg2+ concentration-response rela- 
tions for control and stretched neurons. The 
apparent median inhibitory constants 
(ICjols) for Mg2+ block at -80 mV were 78 
pM for control neurons (n = 8)  and 1575 pM 
for stretched cells (n = 7; P < 0.05) (10). 
With 50 inM extracellular Mg2+, the maxi- 
tnum inhibition of NMDA currents in 
stretched cells was 56% of that in control 
cells (Fig. 1C).  Thus, control and stretched 
neurons had different sensitivities to Mg2+ 
blockade, with the sensitivity of NMDA 
currents to Mg2+ significantly reduced in 
injured neurons. 

Reduction of the voltage-dependent 
Mg2+ block of NMDA channels in 
stretched neurons suggested that activated 
NMDA channels might induce larger ionic 
fluxes, especially Ca2+ flux, than that of 
control cells at voltages close to their rest- 
ing tnembrane potentials (--62 tnV) (9). 
T o  test this hypothesis, we measured the 
change in intracellular free calcium 
([Ca2+],) in control and stretched neurons 
after NMDA application, using the fluores- 

Current (PA) 

-1 

Stretched 

Ill, 
B 

+Control (n = 18) 
a Stretched ( n  = 25) 

cent Ca2+ indicator FURA-2 (Fig. 2) (1 1).  
In physiological solution containing 2 mM 
Mg2+ and 3 mM Ca2+,  the basal [Ca2+], 
was 88 + 7 nM in control neurons (n = 14) 
and 84 + 7 nM in neurons stretched 15 tnin 
prior to the basal reading (n = 15; NS),  
further suggesting that mechanical stretch 
of this magnitude did not disrupt tnembrane 
integrity. Application of 200 p M  NMDA 
increased [Ca2+], to 104 -C 12 nM (n = 9)  
in control neurons, a 17% increase over the 
basal level. However, in stretched neurons, 
200 p M  NMDA increased [Ca2+], to 226 t- 
23 nM, a 170% increase over basal levels 
(n  = 15). The enhanced [Ca2+], increase 
observed in stretched neurons could, be 
mimicked by applying 200 p M  NMDA to 
control cells bathed in notninally Mg2+- 
free solution (a 183% increase over a basal 
level of 81 + 5 nM; n = 8). Pretreating 
stretched or control neurons with the non- 
competitive NMDA antagonist MK 801 (1 
pM)  (12) for 3 to 5 minutes completely 
blocked the responses to NMDA. The 
changes in [Ca2+], observed after NMDA 
application did not depend on the activity of 
voltage-dependent Ca2+ channels, because 
inclusion of the Ca2+ channel blocker Cd2+ 
(0.1 mM) yielded sitnilar results in both 
control (n = 3)  and stretched neurons (n = 

3). In addition, it is unlikely that [Ca2+], 
increased in the injured neurons because of 
impaired [Ca2+], buffering, as application of 
the Ca2+ ionophore ionotnycin elevated 
[Ca2+], to equal amounts in both stretched 
and control neurons (13). Thus, the en- 
hanced increase in [Ca2+], observed in 
stretched neurons was caused primarily by 
reduced Mg2+ blockade of NMDA channels. 

A number of tnechanistns could underlie 
the reduced voltage-dependent Mg2+ block- 
ade of NMDA channels observed after me- 
chanical stretch. Activation of protein kinase 
C (PKC) has been shown to potentiate 

-100 -80 -60 -40 -20 
Voltage 

ed in thk presence and absence of NMDA (200 pM) were subtracted to 
generate NMDA currents. (B) Averaged current-voltage relationship of 
normalized NMDA currents from 18 control and 25 stretched neurons 
(mean t SEM). For each neuron, current amplltudes at each command 
potentlal tested were normalized with respect to currents measured at 
-40 mV (Ill,). The recording solution contained 2 mM Mg2+. (C) The 
NMDA currents of control and stretched neurons differed in their sensitivity 
to extracellular [Mg2+], Means i SEM of current inhibitlon by Mg2+ were 

0 .- 
'5 40 
8 
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- 2 0  

n 

O 0.:1 0.10 1.00 10.00 100.00 

plotted as a function of extracellular [Mg2+]. Zero inhibition was deflned as 
current amplitude at -80 mV recorded in nominally Mg2+-free solution. All 
data points represent relative current amplltudes at -80 mV, and were 
fitted using AIIFit, which simultaneously determined an optimal set of sig- 
moidal curves that best fit the experimental data (10). Maxlmal inhibitlon 
was 0.81 for control neurons and 0.45 for stretched neurons, whereas IC,, 
values for Mg2+ block were 78 pM for control cells (n = 7) and 1575 pM for 
stretched cells (n = 8). 
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Fig. 2. Changes In 
[Ca2+], In control and 0,5 

stretched neurons after 
NMDA appllcatlon Trac- 
es are representat~ve of 
the average response In 
9 control cells and 15 
stretched cells. m 

2 
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NMDA cl?annel activity by reducing Mg2+ 
hlock of the channels in trigelninal neurons, 
and PKC inhibitors prevented the reduced 
Mg2+ block (14). In bladder smooth muscle, 
mechanical stretch activates several PKC iso- 
forms (15). Thus, we tested whether the PKC 
inhibitor calphostin C could restore the Mg2+ 
block of NMDA channels in stretched neu- 
rons. Neurons were pretreated with calphostin 
C (100 nM) for 15 to 30 ~ n i n  before stretch- 
ing. Treatment of control neurons with cal- 
phostin C shifted peak NMDA currents from 
-43.6 f 1.3 mV (n  = 18) to -38.4 f 1.7 
mV (n  = 5), suggksting that NMDA receptor 
channels might he modulated by endogenous 
PKC activity under control conditions. There 
was no significant change in the reversal po- 
tential or the amplitude of the currents. 
Stretched neurons treated with calphostin C 
exhibited a 26.5% restoration of the voltage- 
dependent Mg2+ block at -80 mV and a 
5.4% restoration at -60 mV (n = 7, Fig. 3).  
Thus, activation of PKC may contribute to 
the reduction of Mg2+ block of the NMDA 

In animal models of traumatic hrain injury, 
infusion of MgCl, partially protects against 
neurological deficits (5). Our data suggest that 
one of the protective effects of increased ex- 
tracellular Mg2+ may be through the partial 
restoration of Mg2+ blockade of NMDA re- 
centor channels. In addition. increases in ex- 
tracellular [Mg2+] may decrease glutamate re- 
lease from central nerve terminals by hlock- 
ade of voltage-gated Ca2+ channels. Con- 
versely, decreased extracellular [Mg2+] in 
posttrau~natic tissue exacerbates neurological 
dvsfunction and increases lnortalitv after brain 
iAlury (5). Thls may he attribu'ted to en- 
hanced Ca2+ influx through NMDA receptor 
channels due to their reduced Mg2+ blockade. 
Thus, there is a marked reduction of voltage- 
dependent Mg2+ block of NMDA currents 
after mechanical injury in central nervous 
system neurons, which in turn enhances 
NMDA-dependent Ca2+ influx and could ex- 
 lain the delaved neuronal excitotoxicitv and 
pathological dhanges observed in traukatic 
brain inj~~ry.  

current in stretched neurons. 
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