
model of the wound signal transduction path- 
way, in which JA and ethylene are both re- 
quired for pin gene expression (Fig. 5). On 
wounding, ethylene regulates endogenous JA 
levels, and application of exogenous JA in- 
duces ethylene biosynthesis, which is required 
to induce a positive effect. As yet we cannot 
discriminate between parallel events in which 
wounding induces a small rise in JA, together 
with a rise in ethylene which triggers an ad- 
ditional rise in JA, and sequential events in 
which the wound-induced small increase in 
JA causes ethylene synthesis and its action in 
turn further amplifies the JA signal. 

Jasmonaty are much discussed currently 
for their importance as wound, abiotic 
stress, and developmental signals (26). At 
least during the wound response, ethylene 
and J A  influence each other's levels in the 
plant and together act to regulate pin gene 
expression. It will be interesting to deter- 
mine how many other effects of J A  and 
related fatty acids require,ethylene action. 
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immunologic NO Synthase: Elevation in Severe 
AIDS Dementia and Induction by HIV-1 gp41 
D. Cory Adamson,* Brigitte Wildemann,*t Masayuki Sasaki, 

Jonathan D. Glass,$ Justin C. McArthur, Vesselin I. Christov, 
Ted M. Dawson, Valina L. Dawsons 

Indirect mechanisms are implicated in the pathogenesis of the dementia associated with 
human immunodeficiency virus-type 1 (HIV-1) infection. Proinflammatory molecules 
such as tumor necrosis factor a and eicosanoids are elevated in the central nervous 
system of patients with HIV-1-related dementia. Nitric oxide (NO) is a potential mediator 
of neuronal injury, because cytokines may activate the immunologic (type II) isoform of 
NO synthase (iNOS). The levels of iNOS in severe HIV-1-associated dementia coincided 
with increased expression of the HIV-1 coat protein gp41. Furthermore, gp41 induced 
iNOS in primary cultures of mixed rat neuronal and glial cells and killed neurons through 
a NO-dependent mechanism. Thus, gp41 -induced NO formation may contribute to the 
severe cognitive dysfunction associated with HIV-1 infection. 

Neurocognitive deficits are common in 
HIV-1 infection. Twenty to 30% of patients 
with acquired immunodeficiency syndrome 
(AIDS) develop dementia during the 
course of their illness (1). HIV-1 frequently 
enters the central nervous system (CNS) 
early in the course of infection and repli- 
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cates particularly in cells of macrophage 
origin, including microglia and perivascular 
macrophages (2, 3). In human brain tissue, 
HIV-1 has occasionally been detected in 
astrocytes but rarely if ever in neurons (2- 
4). Despite the lack of productive HIV-1 
infection in neurons, there is modest neu- 
ronal loss in the cortex as well as synaptic 
loss and dendritic simplification (5). The 
pathological changes of myelin pallor and 
breakdown of the blood-brain barrier are 
associated with HIV-1 dementia (5. 6). ~, , 

However, the degree of neuropathologic 
change may not parallel the severity of 
neurological symptoms (6-8), and thus in- 
direct mechanisms are most likelv to be 
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partate (NMDA) glutamate receptor or 
through voltage-dependent Ca2+ channels 
(11). Neuronally derived nitric oxide (NO) 
may contribute to gp120 toxicity because in- 
hibitors of NO synthase (NOS) prevent neu- 
rotoxicity (12). NO can kill cells through 
both necrotic and apoptotic pathways-acute 
high levels of NO produce killing through 
necrosis and chronic low levels of NO pro- 
duce predominantly apoptotic features (13). 
The recent demonstration of potential apo- 
ptotic mechanisms mediating neuronal injury 
in simian immunodeficiency virus (SIV) en- 
cephalitis (14) as well as HIV-1 encephalitis 
(15) is consistent with chronic NO exposure. 
In glial cultures, HIV-1 and its associated coat 
proteins gp160 and gp41 induce the expres- 
sion of proinflammatory cytokines, including 
tumor necrosis factor a (TNF-a), interleukin- 
I p, platelet-activating factor, and eicosanoids, 
as well as immunologic (type 11) NOS (iNOS) 
(1 6-1 8). Some of these proinflammatory mol- 
ecules damage neurons and oligodendrocytes 
in culture systems and thus may play a role in 
AIDS dementia (19, 20). 

To study changes in iNOS expression as- 

sociated with AIDS dementia, cortical brain 
tissue samples were obtained from the AIDS 
Brain Bank at the Johns Hopkins Hospital in 
Baltimore, Maryland. Tissue from a total of 29 
patients was studied (21). Twenty-five pa- 
tients were HIV-l seropositive and were diag- 
nosed with AIDS before death, whereas four 
patients were HIV-1 seronegative. Of the 25 
patients with AIDS, 8 had no cognitive im- 
pairment and 17 had dementia, as determined 
by neurological and neuropsychological as- 
sessment, the severity of which was catego- 
rized with the Memorial Sloan Kettering 
(MSK) criteria (22). Cognitive dysfunction 
was mild (MSK 1 or 2) in 10 cases and severe 
(MSK 3 or 4) in 8 cases. 

Reverse transcriptase-polymerase chain 
reaction (RT-PCR) was carried out as a semi- 
quantitative analysis for human iNOS detec- 
tion, with expression of the the human p-ac- 
tin gene used as an endogenous internal stan- 
dard (23). Uncompromised amplification of 
iNOS cDNA and comparable amplification 
kinetics for both iNOS and p-actin sequences 
were achieved by addition of P-actin-specific 
primers after 10 cycles of iNOS cDNA ampli- 

fication. Kinetic analysis showed that under 
these conditions, iNOS and p-actin cDNA 
amplification occurred in the linear range at 
35 cycles and 25 cycles, respectively, ensuring 
an accurate comparison of iNOS mRNA to 
p-actin mRNA ratios (24). 

In the brain tissue of AIDS patients with- 
out dementia or with mild dementia (MSK 1 
or 2), there was a modest increase in the 
expression of human iNOS as compared with 
that in seronegative controls, which was not 
statistically significant (Fig. 1). The brain tis- 
sue of AIDS patients with severe dementia 
(MSK 3 or 4) showed a sixfold increase in 
human iNOS mRNA expression as compared 
with that in seronegative controls (P 5 
0.0002). Nucleotide sequence analysis of the 
iNOS PCR products confirmed the amplifi- 
cation of authentic human iNOS (25). The 
RT-PCR assay used in the current study for 
detection of human iNOS mRNA was more 
sensitive than that used in our previous study 
(23). As determined by serial dilutions of 
cloned human iNOS plasmid DNA (26), we 
were able to detect as few as 10 copies of 
human iNOS mRNA (24). This increased 
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Fig. 1. Detection and kinetic analysis of iNOS and 
P-actin mRNA expression. (A) Human iNOS 
mRNA levels (35 PCR cycles) as compared with 
P-actin mRNA levels (25 PCR cycles) in cortical 
tissue obtained at autopsy from HIV-1 seronega- 
tive controls (SNC, lanes 1 through 4) and from 
HIV-1-infected patients with no dementia (ND, 
lanes 5 through 9), mild dementia (MSK 1 or 2) 
(MD, lanes 10 through 14), or severe dementia 
(MSK 3 or 4) (SD, lanes 15 through 18). These 
results were replicated three times with similar 
results (23). (B) Mean levels of human iNOS mRNA 
relative to levels of P-actin mRNA from HIV-1 
SNCs and from HIV-1-infected patients with ND, 
MD, or SD. The levels of iNOS mRNA relative to 
those of p-actin were analyzed for significance by 
means of the Kruskal-Wallis test for multiple 
groups (P 5 0.0099). For Fisher's protected least 
significance difference post hoc test, the compar- 
isons of SNC to SD, ND to SD, and MD to SD were 
significant at P 5 0.0002, P 5 0.0002, and P 5 
0.0003, respectively. Data are means ? SEM. 
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Fig. 2. Expression of iNOS protein in SD coincides with increased gp41 expression. (A) iNOS, gp41, 
p24, and P-tubulin protein immunoblots of postmortem cortical tissue from HIV-1 SNCs and from 
HIV-l-infected patients with ND, MD (MSK 1 or 2), or SD (MSK 3 or 4). Lack of availability of tissue for 
case numbers 1, 7, 13, and 17 prevented their inclusion in the protein immunoblot analysis. These 
results were replicated three times with similar results (27). (B) Mean levels of iNOS protein, gp41, and 
p24 relative to that of P-tubulin from HIV-1 SNCs and from HIV-l-infected patients with ND, MD (MSK 
1 or 2), or SD (MSK 3 or 4). Representative blots are shown in (A). Eleven additional cases were included 
in the statistical analysis (29). The levels of iNOS, gp41, and p24 were analyzed for significance by means 
of the Kruskal-Wallis test for multiple groups: P 5 0.00012, P 5 0.0009, and P 5 0.6009, respectively. 
The Spearman rank correlation test was used to compare iNOS/P-tubulin ratios to gp4l/p-tubulin and 
p24/P-tubulin ratios and yielded p 0.721, P 5 0.0007 and p 0.334, P 5 0.1172, respectively (29). 
Fisher's least significance difference posthoc test indicated highly significant differences for iNOS (P 5 
0.0001) for SNCs to SD, ND to SD, and MD to SD. For gp41, Fisher's test indicated highly significant 
differences for ND to SD and MD to SD (P 5 0.0001). Data are means 5 SEM. 
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sensitivity probably accounts for our ability to 
detect human iNOS mRNA ex~ression in 
control patients, which contrasts with our 
inability to detect human iNOS transcripts in 
the previous analysis (23). These findings 
indicate that human iNOS mRNA may be 
constitutively expressed at very low levels in 
"normal" postmortem human brain tissue. 

We assessed the expression of iNOS pro- 
tein by protein immunoblot analysis, using 
0-tubulin levels as an internal standard to 
control for differences in protein degrada- 
tion and postmortem interval (27). Expres- 
sion of iNOS protein in the cortical brain 
tissue of AIDS patients coincided with the 
levels of iNOS mRNA. The iNOS protein 
was increased eightfold in the cortex of 
patients with severe (MSK 3 or 4) HIV-1 
dementia, as compared with the level in 
seronegative controls (P I 0.0001) (Fig. 2). 

Because HIV-1 coat proteins induce 
iNOS in in vitro culture systems (1 7, 18), 
we wondered whether the coat proteins 
gp41 and gp120, which result from the 
cleavage of gp160, would be similarly ele- 
vated in AIDS patients with severe demen- 
tia (MSK 3 or 4). We accordingly assessed 
the expression of gp41 and gp120 by protein 
immunoblot analysis (27), using monoclo- 
nal antibodies directed against gp41 and 
gp120, and compared their levels with that 
of HIV-1 nucleocapsid phosphoprotein 24 
(p24). As in previous reports (28), we were 
unable to detect gp120 (29). There was an 
elevation of gp41 protein (P 5 0.0001), 
which was statistically associated with the 

expression of iNOS in patients with severe 
dementia (P I 0.0007) (Fig. 2), whereas 
p24 levels were not elevated in the HIV-1- 
infected patients (Fig. 2). p-tubulin levels 
were essentially the same in all the cases, 
confirming the specificity of the elevation 
of iNOS and gp41 (Fig. 2). 

To ascertain whether the induction of 
iNOS by gp41 mediates neuronal cell death, 
we used a primary culture system of mixed rat 
neuronal and glia cells and assessed cell via- 
bility (30) (Fig. 3). Mixed neuronal-glial cul- 
tures were used because iNOS-induced neu- 
rotoxicity requires the presence of glia (1 9). 
The gp41 (100 nM) protein induced iNOS in 
mixed neuronal cultures after 7 days of con- 
tinuous exposure (Fig. 3), whereas 10 nM 
gp41 was without effect (31). Thus, there 
appears to be a critical level of gp41 that is 
required for iNOS induction, which is consis- 
tent with our observations in human tissue. 
Neuronal cell death occurred through NO 
formation, as the NOS inhibitor Nw-nitro-L- 
arginine methyl ester (L-NAME) provided 
neuroprotection that was reversed by excess 
substrate, L-arginine (L-Arg) (Fig. 3). gp41 
neurotoxicity appears to require glia because 
toxicity was not observed in pure neuronal 
cultures (31 ). To control for possible nonspe- 
cific induction of iNOS and toxicity, we ex- 
amined the effects of other glycoproteins: 
HIV-1 gp120 and p24 and the human T cell 
lymphocytotropic virus 1 (HTLV-1) glyco- 
protein 46 (gp46), which were prepared in a 
similar recombinant system for iNOS induc- 
tion and neurotoxicity. As was consistent 

with previous reports, gp120 did not elevate 
iNOS in rodent cultures (Fig. 3) (1 7, 18), and 
it was nontoxic in the absence of exogenous 
glutamate (Fig. 3) (1 2). gp46 and p24 did not 
induce iNOS and were not toxic to rodent 
cultures (Fig. 3). Short 10- to 15-amino acid 
peptides in the proposed active region of gp41 
also induced iNOS and caused neurotoxicity 
(31 ), confirming the specificity of d l ' s  toxic 
actions. - - - - -  - ~ -  

In summary, in severe AIDS dementia, 
iNOS amears to be coincidentallv elevated 
with thh'increased expression of &I. Our 
observations that human iNOS mRNA and 
protein levels parallel the expression of gp41 
is consistent with other studies indicating 
that HIV-1-infected monocytes, as well as 
the viral coat proteins gp160 and gp41, in- 
duce expression of human iNOS (1 7, 18). 
Furthermore, monkeys infected with SIV 
who develop neurologic disease also have 
elevations of iNOS protein and catalytic 
activity that correlate with the levels of 
gp41 (32). The ability of NOS inhibitors to 
provide substantial protection against gp41- 
induced neurotoxicity implicates induction 
of iNOS and NO formation in neuronal 
killine. Because iNOS is elevated in other 

0 

neurologic disorders, including multiple 
sclerosis, encephalitis, and sepsis, iNOS ele- 
vation may be a common end-pathway for 
many CNS inflammatory diseases (33). 

The elevation of gp41 in the setting of 
severe (MSK 3 or 4) HIV-1 dementia suggests 
that the association among gp41 expression, 
severe dementia, and iNOS levels may be a 
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Fig. 3. gp41 induces NO-dependent neurotoxicity. (A) gp41 (100 nM) induced 
nitrite formation in a dose-dependent manner. Nitrite formation could be inhib- 
ited by the addition of 500 pM L-NAME, a competitive NOS inhibitor (30), and 
inhibition was reversed by excess 5 mM L-kg. Datawe means 2 SEM for n 2 
8 from at least two experiments. Significance was determined by chi-square 
analysis with Student's t test for independent means for specific comparisons 
(P 5 0.01 when gp41 was compared with control, and P 5 0.01 when gp41 
was compared with gp41 + 500 pM L-NAME). (B) gp41 induced iNOS protein 
in mixed neuronal cultures. Protein immunoblot analysis revealed the induction 
of iNOS protein by exposure to 100 nM gp41 for 7 days. These results were 
re~licated three times with similar results (30). PC. msitive control: CC, control 
cultures. (C) gp41 (100 nM) induced neurotbxicityin a dose-dependent man- 
ner. This neurotoxicitv could be inhibited bv the addition of 500 ILM L-NAME, 
and protection was reversed by excess 5 m~ L-kg. Data are &ans 2 SEM 
for n 2 8 from at least two experiments. Toxicity was determined by exclusion 

of trypan blue, with 4000 to 8000 cells counted per data point (30). Significance 
was determined by chi-square analysis with Student's t test for independent 
means for specific comparisons (P 5 0.01 when gp41 was compared with 
control, and P 5 0.01 when gp41 was compared with gp41 + 500 pM 
L-NAME). (D) gp41 (100 nM) induced iNOS protein in mixed neuronal cultures 
and was neurotoxic, whereas other glycoproteins applied under identical con- 
ditions [HnV-1 gp46 (1 00 nM), HIV-1 p24 (1 00 nM), and HIV-1 gp120 (100 
nM)] failed to induce iNOS and were nontoxic. Protein immunoblot analysis 
revealed induction of iNOS protein by gp41 (1 00 nM) exposed for 7 days and 
accompanying neurotoxicity. Data are means 2 SEM for n 2 8 from at least 
two experiments. Toxicity was determined by exclusion of trypan blue, with 
4000 to 8000 cells counted per data point (30) for n 2 8 from two experiments. 
Significance was determined by chi-square analysis with Student's t test for 
independent means for specific comparisons [P 5 0.01 when gp41 was 
compared with control (C), gp46, p24, and gp1201. 
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reflection of cumulative viral burden in the 
brains of severely demented HIV-1 patients. 
However, an  occasional HIV-1-infected ua- 
tient may have high levels of viral protein in 
the C N S  without dementia; and converselv. , . 
occasional patients with severe neurologic dis- 
ease may have low levels of v~ral  replication 
(2 ,  1 0 )  Thus, other factors such as HIV-1 
sequence heterogeneity may be important in 
the pathogenesis of HIV-1 dementia (34). 
Our previous studies have suggested that the 
severitv of dementia correlates better with the 
degree of macrophage activation than with 
levels of HIV protein in the brain (2)  or of 
HIV D N K ( l 0 ) .  This suggests that productive 
C N S  infection is necessarv but not sufficient 
for the induction o fneuro~b~ica l  disease and is 
consistent with our observations that severe 
HIV dementia is significantly associated with 
elevated iNOS and gp41 levels. Because only 
severe dementia was associated with high lev- 
els of iNOS and gp41, we propose that there is 
a threshold effect in which a critical level of 
gp41 leads to iNOS induction and subsequent 
severe dementia. Why gp41 is elevated in 
severe HIV-1 dementia while p24 levels re- 
main constant is not known. However, it is 
conceivable that gp41 may be more stable 
than other HIV-1 proteins because of its hv- 
drophobic nature and retention in cellular 
membranes. Because gp41 is retained in cel- 
lular membranes, it may elicit a sustained 
im~nunologic reaction that triggers pathogen- 
ic processes ulti~nately leading to neuronal 
damage and dementia. In a manner analogous 
to that of nonsecreted membrane proteins 
that induce signaling processes through cell- 
to-cell interactions, we propose that gp41 ex- 
pressed on infected cells interacts with adja- 
cent cells to  induce iNOS. Our observations 
would suggest that a high viral load, maybe 
even transientlv, would increase the risk of 
development of dementia and the likelihood 
of more severe neurologic dysfunction. gp41 
may be a key factor in mediating this effect; 
however, we cannot rule out the uossibilitv 
that other viral proteins are contrLbuting td 
the development of HIV-1 dementia. The  
potential linkage of iNOS induction to HIV- 
1-associated cognitive dysf~~nction implies 
that inhibitors of iNOS could exert therapeu- 
tic effects. 
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Reduction of Voltage-Dependent Mg2+ 
Blockade of NMDA Current in Mechanically 

Injured Neurons 
Lei Zhang," Beverly A. Rzigalinski, Earl F. Ellis, Leslie S. Satin? 

Activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors is im- 
plicated in the pathophysiology of traumatic brain injury. Here, the effects of mechanical 
injury on the voltage-dependent magnesium (Mg2+) block of NMDA currents in cultured 
rat cortical neurons were examined. Stretch-induced injury was found to reduce the 
Mg2+ blockade, resulting in significantly larger ionic currents and increases in intracel- 
lular free calcium (Ca2+) concentration after NMDA stimulation of injured neurons. The 
Mg2+ blockade was partially restored by increased extracellular Mg2+ concentration or 
by pretreatment with the protein kinase C inhibitor calphostin C. These findings could 
account for the secondary pathological changes associated with traumatic brain injury. 

Evidence from animals and humans has 
shown that the extracellular level of the 
excitatory neurotransmitter glutamate is el- 
evated after traumatic brain injury ( 1 ,  2) .  
Elevated glutamate contributes to delayed 
tissue damage, presumably through activa- 
tion of Ca2+-permeable NMDA receptor 
channels. Treatment with NMDA recep- 
tor-channel antagonists has been reported 
to limit neurological dysfunction and par- 
tially preserve the bioenergetic state of 
posttraumatic brain tissue ( 1 ,  3).  In vitro, 
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delayed neurodegeneration produced by us- 
ing a plastic stylet to ~nechanically injure 
neocortical neurons in culture is attenuated 
by the NMDA antagonists dextrorphan or 
D-2-amino-5-phosphonovalerate (4). De- 
spite the suggested involvement of NMDA 
receptors in these secondary pathological 
changes, it is not known whether mechan- 
ical injury directly affects NMDA channel 
properties in neurons of the central nervous 
system. Furthermore, because Mg2+ defi- 
ciency exacerbates, and increased extracel- 
lular Mg2+ attenuates, the pathological out- 
come of posttraulnatic brain tissue (5), we 
hypothesized that voltage-dependent Mg2+ 
block of NMDA receptor channels (6) 
might be altered in injured neurons. 

T o  examine the effects of mechanical 
stretch injury on  NMDA currents, we used 
the whole-cell patch clamp technique (7) 
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