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Tomography of the Source Area of the 
1995 Kobe Earthquake: Evidence for 

Fluids at the Hypocenter? 
Dapeng Zhao*, Hiroo Kanamori, Hiroaki Negishi, Douglas Wiens 

Seismic tomography revealed a low seismic velocity (-5%) and high Poisson's ratio 
(+6%) anomaly covering about 300 square kilometers at the hypocenter of the 17 
January 1995, magnitude 7.2, Kobe earthquake in Japan. This anomaly may be due to 
an overpressurized, fluid-filled, fractured rock matrix that contributed to the initiation of 
the Kobe earthquake. 

T h e  17 January 1995, magnitude (M)  7.2, 
Kobe (Hyogo-Ken Nanbu) earthquake was 
the most damaging earthquake to strike 
Japan since the Kanto earthquake in 1923 
(1 ). The Kobe earthauake occurred in an 
area with complex structure including nu- 
merous active Quaternary faults that have 
produced many large historical earth- 
quakes (2).  The permanent seismic net- 
works in southwestern Japan (3) and many 
portable stations deployed following the 
Kobe mainshock 14) recorded thousands ~, 

of aftershocks, which provide arrival time 
and waveform data for the determination 
of detailed crustal structure in the source 
area of the Kobe earthquake. Some previ- 
ous tomographic studies found that some 
earthquake nucleation zones showed high- 
er velocities than the surrounding country 
rock. These high velocity zones may rep- 
resent competent parts of the fault zones 
or may indicate regions of transition from 
stable to unstable sliding (5). Other stud- 
ies found that nucleation zones had low 
velocities and a high Poisson's ratio ( u )  
that suggested the existence of overpres- 
surized fluids (6 ,  7). We conducted an 
investigation of the seismic structure in 
the Kobe earthauake source area to under- 
stand what may have triggered this earth- 

D. Zhao and D. Wiens, Department of Earth and Plane- 
tary Sc~ences, Wash~ngton University, St. Louis, MO 
631 30, USA. 
H. Kanamori, Se~smological Laboratory 252-21 , Calfor- 
nia Institute of Technology, Pasadena, CA 91 125, USA. 
H. Negsh~, Disaster Preventon Research nsttute, Kyoto 
Un~vers~ty, U j  61 1, Japan. 

*To whom correspondence should be addressed. 
E-mail: dapeng@izu.wustl.edu 

quake and how the rupture proceeded after 
initiation. 

We used the tomographic method of 
Zhao et al. (8) to determine the three- 
dimensional (3D) P- and S-wave velocity 
(V,, V,) and o distribution maps in the 
source area of the Kobe earthquake. We 
used 3203 Kobe aftershocks and 431 local 
micro-earthquakes that generated 64,337 P- 
and 49,200 S-wave arrival times (Fig. 1). 
Most of the events were located in and 
around the rupture zone of the Kobe earth- 
quake [the zone extends about 130 km 
northeast from the southern part of Awaji 
Island to Lake Biwa (Fig. I)] .  All the events 
were recorded by more than 15 stations, and 
the hypocenter locations are accurate to 2 1 
to 2 km (4, 9). The data were recorded by 
37 permanent stations (3) and 30 portable 
stations that were set up following the Kobe 
mainshock (Fig. 1B) (4). The picking accu- 
racy of P- and S-wave arrival times is 0.05 to 
0.15 s (3, 4). 

Large V, and V, variations of up to 6% and 
u variations of up to 10% were revealed in the 
Kobe rupture zone (Figs. 2 to 4). The tomo- 
graphic inversions imaged the Kobe rupture 
zone as a low velocity zone from the surface to 
a depth of 20 km with a width of 5 to 10 km 
(Figs. 3 and 4) (1 0). On average, V, and V, in 
the fault zone were 3 to 4% lower than the 
surrounding country rock velocities. V, was 
slower in the northeastern segment of the 
aftershock zone (the Suma and Suwayama 
faults) than that in the southwestern segment 
(the Nojima fault on Awaji Island) (Fig. 2A), 
while V, was slower along the Nojima fault 
(Fig. 2B). Therefore the Suma and Suwayama 
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faults exhibited smaller values of u than the 
Nojima fault (Fig. 2C). The Nojima fault 
showed slow V, and high u to a depth of 5 km, 
which may be associated with the soft and 
thick alluvial sediments that have a high wa- 
ter content ( I ,  1 1 ). The V, image is different 
from the Vp image, probably because S waves 
are more sensitive to the fluid content of the 
rock than are P waves (1 2). 

There is a low Vp, low V,, and high u 
anomaly at the Kobe hypocenter at a depth 
of 16 to 21 km (Figs. 2 to 4) that extends 
laterally 15 to 20 km and covers about 300 
km2. To confirm that this anomaly was ad- 
equately resolved by the inversion, we con- 
ducted checkerboard resolution tests (8, 13) 
(Fig. 5). The resolution tests, with a grid 
spacing of 5 km, indicate good resolution for 
Vp and V, anomalies along the Kobe fault 
zone (Fig. 5, B and D). For the tests with a 
grid spacing of 9 km, the resolution is good 
for areas within 20 km of the fault zone (Fig. 
5, A and C). The shallower areas, to a depth 
of 18 km, showed the highest resolution (Fig. 
5). We also examined the ray path coverage, 
particularly in and around the low velocities, 
high u anomaly at the Kobe hypocenter. 

Fig. 1 (left). (A) Epicentral distribu- 
tion of the 3634 earthquakes used 
in this study. Crosses denote 
earthquakes that occurred after 
17 January 1995; most of these 
were aftershocks (M between 1.5 
and 3.0) of the M 7.2 Kobe earth- 
quake (star symbol) along the fault 
zone (parallel to cross section line 
A-B). Circles denote earthquakes 
that occurred from January 1990 
to December 1994, with M be- 

There were numerous rays crisscrossing that 
region from events outside the anomaly and 
events outside the cross section (Fig. 1, line 
A-B) to the stations in the epicentral area. 
We also conducted tomographic inversions 
and resolution tests with different grid spac- 
ing, initial velocity models, and different 
data sets. The results showed that the low 
velocities, high u anomaly at the Kobe hy- 
pocenter could be resolved. 

Seismic waves passing through the 
Nojima fault near the Kobe hypocenter ex- 
hibited strong attenuation (14). Shear wave 
splitting was observed along the Nojima fault 
(15). These observations suggest the pres- 
ence of cracks, fluids, or both in the fault 
zone that could cause the attenuation and 
shear wave splitting. Ito et al. (1 6) suggested 
that the thickness of the seismogenic layer 
changes from about 13 km thick in the 
northeast (beneath the Suma and Suwayama 
fault traces) to about 17 km thick in the 
southwest (beneath the Nojima fault trace). 
There is a gap in the aftershock seismicity, 
just to the northeast of the mainshock hy- 
pocenter (Figs. 2 and 3), that was interpreted 
as dense, unfractured rock on the fault plane 

tween 1.8 and 4.0. ~ i n e s  A-B and C-D show the locations of the cross 
sections in Figs. 2 and 3. (B) Distribution of seismic stations that recorded 
the earthquakes in (A). Solid triangles denote portable stations that were 
set up following the Kobe mainshock. Solid squares denote permanent 
stations. Solid lines represent the surface traces of the Nojima, Suma, and 
Suwayama faults. (C) The general tectonic setting of the Japan Islands. 
Curved thick lines show the maior plate boundaries. Solid triangles denote 

(17). The overall stress field in the Kobe 
region has the maximum compressional 
stress oriented east-west, but it was oriented 
north-south in the mainshock epicentral 
area (18). Reflected seismic waves were de- 
tected from seismograms of aftershocks be- 
neath northern Awaji Island, with a dura- 
tion of 2 to 3 s, implying that seismic reflec- 
tors were densely distributed beneath the 
hypocenter at depths of 20 to 30 km (19). 
These observations suggest structural heter- 
ogeneity in the Kobe hypocenter area. 

Seismic velocitv and Poisson's ratio in 
crustal rocks depend on factors such as tem- 
perature, pressure, composition, crack density, 
and fluid content. A few general properties 
have emerged from laboratorv and in situ - 
velocity experiments, though the relation- 
ships are not completely understood for all 
rock types. Low Vp, low V,, and high u may be 
associated with fluid-filled, fractured rock 
(12) or magma reservoirs (8, 20). Near Kobe 
there is no active volcano (21) (Fig. lC), and 
heat flow studies revealed no significant lat- 
eral changes in temperature before the earth- 
quake (22). Therefore we suggest that the 
anomaly at the Kobe hypocenter is not related 

active volcanoes. The shaded areashows the present study area in (A) and velocity model. The o ratio ranges from 0.225 to 0.27 (-10% to 8% from 
(B). Fig. 2 (right). Vertical cross sections of Vp (top), V, (middle), and the average value). Small crosses denote the Kobe aftershocks within a 
u (bottom) along the line A-B shown in Fig. 1A. Slow velocity and high u 6-km width along the line A-B. The star symbol denotes the hypocenter of 
ratio are shown in red; fast velocity and low u ratio are shown in blue. Vp the Kobe mainshock; its focal depth is 17.7 km. The vertical exaggeration 
and V, perturbations range from -6% to 6% from the one-dimensional is 2 : 1. 
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oceanic crust on the top of the slab may also 
contribute to the fluids in the crust. The 
existence of overpressurized fluids beneath 
the seismogenic layer may affect the long- 
term structural and compositional evolu- 
tion of the fault zone, change the strength 

of the fault zone, and alter the local stress 
regime (25), as observed in the hypocentral 
area (18). These influences may have en- 
hanced stress concentration in the seismo- 
genic layer leading to mechanical failure, 
and thus may have contributed to the nu- 
cleation of the Kobe earthquake. 
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Fig. 4. Distribution of Vp (A), V, (B), and u (C) at a 
depth of 18 km. The Kobe aftershocks at a depth 
of 13 to 23 km are plotted as crosses. Scale bar 
and labeling are as in Fig. 2. 

Fig. 5. Results of check- 
erboard resolution tests 
for Vp (left) and V, (right) 
structures at a depth of 
18 km. The grid spacing 
is 9 km in (A) and (C) and 
5 km in (B) and (D). Open 
and solid circles denote 
low and high velocities, 
respectively. The pertur- 
bation scales are shown 
on the right. 

Fig. 3. Vertical cross sections of Vp (top), 
V, (middle), and u (bottom) along the line C-D 
shown in Fig. 1A. The Kobe aftershocks within 
a width of 6 km along the line C-D are plotted 
as crosses. Scale bar and labeling are as in 
Fig. 2. 
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Paleontology and Chronology of Two 
Evolutionary Transitions by Hybridization in 

the Bahamian Land Snail Cerion 
Glenn A. Goodfriend and Stephen Jay Gould 

The late Quaternary fossil record of the Bahamian land snail Cerion on Great lnagua 
documents two transitions apparently resulting from hybridization. In the first, a localized 
modern population represents the hybrid descendants of a 13,000-year-old fossil form 
from the same area, introgressed with the modern form now characteristic of the adjacent 
regions. In the second case, a chronocline spanning 15,000 to 20,000 years and ex- 
pressing the transition of an extinct fossil form to the modern form found on the south 
coast was documented by morphometry of fossils dated by amino acid racemization and 
radiocarbon. Hybrid intermediates persisted for many thousands of years. 

M o s t  evolutionary transitions between spe- 
cies are trapped in a no  man's land of invisi- 
bility. Such events generally require too much 
titne for direct observation but occupy too 
short an interval for preservation in the fossil 
record. However, favorable circumstances can 
provide visibility in fortunate instances. W e  
report two cases of radiometrically dated evo- 
lution during the past 20,000 years in the land 
snail Cerion, an exceptionally labile genus 
that produced several stable and novel popu- 
lations by the rapid mechanism of hybridiza- 

changes and their probable role in bringing 
different populations into contact [for exam- 
ple, probable postglacial origins of hybrid 
zones in fire-bellied toads (3) or grasshoppers 
(4)]. In the present study, by contrast, we 
provide direct fossil evidence for the history of 
older and more persistent hybrid zones. 

Great Inagua (Fig. I ) ,  the  largest island 
of the southeastern Bahamas. is now inhab- 

tion ( I ) .  10 km 

Our perspecti~e on the evolution of hybrid 1 t - A /' 

zones has generally been based on either (i) 
very short periods of human observation, typ- 
ically related to species introductions or hab- (Flat-topped hybrids) 

itat disturbance by humans (2)  or (ii) scenar- GREAT INAGUA 
ios inferred from knowledge of climatic - 

excelsior hybr~ds) 
G A. Goodfrend, Geophyslca Laboratory, Carneqe In- , 
stitution of Washington, 5251 Broad Branch ~ o a d  NW, 1 
Washington, DC 20015, USA. 
S. J. Gould, Museum of Comparative zooogy, Haward Fig. 1. Map of Great Inagua, showing location of 
University, Cambridge, MA 02138, USA. sampling sites. 
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