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Dynamical Signature of the Mott-Hubbard 
Transition in Ni(S,Se), 

A. Husmann, D. S. Jin," Y. V. Zastavker,-i- T. F. Rosenbaum,$ 
X. Yao, J. M. Honig 

The transition metal chalcogenide Ni(S,Se), is one of the few highly correlated, Mott- 
Hubbard systems without a strong first-order structural distortion that normally cuts off 
the critical behavior at the metal-insulator transition. The zero-temperature (T) transition 
was tuned with pressure, and significant deviations were found near the quantum critical 
point from the usual T'I2 behavior of the conductivity characteristic of electron-electron 
interactions in the presence of disorder. The transport data for pressure and temperature 
below 1 kelvin could be collapsed onto a universal scaling curve. 

Disorder can turn a good metal into an 
insulator. Alternatively, strong interactions 
between electrons can split the half-filled 
band of a crystalline metal and open an 
insulating gap. In the first limit, a critical 
degree of disorder localizes the electrons 
through quantum interference and leads to 
the continuous Anderson transition at T = 

0. In the correlation-driven scenario, a met- 
al-insulator (MI) transition occurs when 
the ratio of the intrasite Co~llomb repulsion 
to the bandwidth is of order unity. This 
Mott-Hubbard picture applies at nonzero 
temperature and is ~ls~lally first order, often 
with coincident electronic, magnetic, and 
structural transitions. 

This dichotomy between the Anderson 
and the Mott-Hubbard limits suffuses theo- 
retical treatments of the MI transition ( 1 ) .  
However, blending correlations and disor- 
der can be more amenable to theoretical 
exposition, with the possibility of a well- 
defined order parameter (2). Experimental 
characterization of the critical behavior re- 
quires high-resolution measurements in the 
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T -+ 0 limit on materials that must satisfy a 
severe set of constraints: (i) true statistical 
disorder without the chemical segregation 
that gives rise to classical percolation ef- 
fects; (ii) strong electron-electron interac- 
tions, but only a modest band gap to permit 
tuning; and (iii) strong electron-electron 
interactions, but no first-order structural in- 
stability at the MI transition. 

It is this last constraint that may be the 
most restrictive in the highly correlated 
limit. For example, it is possible to decon- 
volute the effects of correlations and disor- 
der at the T = 0 MI transition in the 
Mott-Hubbard system vanadium sesquiox- 
ide ( 3 ) ,  but there are no actual divergences. 
The critical behavior at the transition is cut 
off by a sudden, symmetry-breaking, mono- 
clinic distortion. In contrast, the transition- 
metal chalcogenide NiS2_,Se, is one of the 
select few Mott-Hubbard materials (4) 
without a structural instability tied to the 
localization of charge (5). The T = 0 MI 
transition can be tuned with pressure, 
which offers an experimental approach to 
the mixture of statics and dynamics at a 
quantum critical point. 

Nickel diselenide, NiSe,, is a good met- 
al while nickel disulfide, NiS,, is a Mott 
insulator, whose half-filled narrow 311 e, 
band is split by the Hubbard U, the intra- 
site Coulomb repulsion, with a band 
gap < 1 eV (6).  Substitution of Se for S 
drives the system metallic, with a MI tran- 
sition seen as a function of temperature for 
NiS,_,Se, in the narrow range 0.47 < x < 
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0.54 (7,  8).  Both the metal and the insu- 
lator have a write structure, with some 

A ,  

reports of a volume change of the unit cell 
at the MI transition (9). The addition of 
Se increases the bandwidth W through 
covalent mixing without moving the sys- 
tem awav from half-filling. In addition to u 

decreasing the effective interaction 
strength UIW. Se substitution simulta- - , , 

neously introduces random disorder on the 
anion sites. Applied hydrostatic pressure 
also can increase W, with the empirical 
relation that 1% Se chemical uressure cor- 
responds to 1.2-kbar external pressure 
( 1  0) 

Single crystals of NiS2p1Se, were grown 
by the Te flux method, as opposed to the 
more usual chemical vapor transport oper- 
ation involving C1, or Br, as the transport 
agent (8, 11). Unlike chlor~ne or bromine, 
the heavier tellurium resists incorporation 
into the crystal. This procedure removes 
potential complications from excess impu- 
ritv concentrations 112). a serious con- , , ,  

straint for electrical measurelnents in the 
insulator, but undesirable as well in the 
metal. The amount of Se substitution x is 
determined frdm x-ray diffraction measure- 
ments of the lattice parameter by using 
Vegard's law which is accurately obeyed 
(13). Ion microprobe studies indicate an 
actual stoichiometry Ni(S,Se)2p8, with 8 = 

0.03 0.01 across the breadth of a crvstal. 
We performed four-probe resistivity kea- 
surements using an ac bridge technique in 
the ohmic and frequency-independent lim- 
its. While the error on the relative values of 
the resistivity p are less than 0.01%, there is 
an absolute uncertainty of 25% because of 
the small size of the crystals (from 0.3 to 0.7 
mm on a side) and the macrosco~ic silver 
paint contacts. We applied hydrostatic pres- 
sure P with a BeCu pressure cell designed to 
fit into the top-loading confines of an Ox- 

P (kbar) 
1.6 1.7 1.8 

s 

Fig. 1. The T -, 0 conductivity o0 as a function of 
reduced pressure t for two crystals with PC = 

1.51 kbar (filled circles) and PC = 1.67 kbar (open 
circles) at the MI transition. The conductivity falls 
smoothly to.zero, o, - ti*, where 1 (milliohm- 
cm)-' is of order the Mott conductivity. 

ford Model 200 dilution refrigerator. A chip 
of (Vo,99Tio,ol)203 inside the cell serves as a 
sensitive manometer through its own MI 
transition (14). 

We started with NiS1 56Se0,44 crystals 
just on the insulating side of the MI 
boundary and drove the system metallic 
with pressure. We plot in Fig. 1 the effec- 
tive T + 0 conductivity, a (T  = 0.05 K) ,  
versus P for two such samples, where - 1 
(milliohm-ern)-' is the characteristic 
Mott conductivity. We fit the data to the 
standard scaling form for a continuous 
transition, a ( 0 )  - t w ,  where t = (P - 
Pc)/Pc is the normalized distance from the 
quantum critical point, and we find p. = 
1.1 + 0.2 with PC = 1.51 (filled circles) 
and 1.67 kbar (open circles), respectively. 
These values of PC correspond to the ex- 
pected x, = 0.47; the difference of 0.16 
kbar corresponds to a difference in x - 
0.003. If the chemical pressure from the Se 
substitution is included in PC, our values 
for the dimensionless distance t would be 
more than an order of magnitude smaller. 

The metallic phase is highly correlated, 

Fig. 3. Near the quantum critical point (PC = 1.51 
kbar), a new functional form describes the tempera- 
ture-(frequency-)dependent conductivity. This first- 
order correction to uo at PC has a T o  " ' O O2 de- 
pendence, an exponent most accurately determined 
by dynamical scaling (Fig. 4). 

Fig. 2. The large T2 depen- 
dence of the resistivity p with 

' slope increasing at the ap- 
proach to the MI transition 
ind~cates a greatly enhanced 
electronic effect~ve mass. in- 
set: The effective mass en- 
hancement is revealed as 
well by the changing slope 
of the T1" dependence of 
the conductivity o for T < 1 
K, characteristic of electron- 
electron interactions in the 
oresence of d~sorder. 

as demonstrated by a large T2 term in the 
resistivity (Fig. 2) .  The increasing slope 
with decreasing P reflects a strong en- 
hancement in the effective mass as the MI 
transition is approached from above, con- 
sonant with the traditional Brinkman- 
Rice picture of an effective mass diver- 
gence driving the transition (15). At P = 
3.5 kbar, the slope of 0.042 (microhm-cm/ 
K2) is equivalent to that of barely metallic 
v20, ( 3 ,  16). 

At very low temperatures (T < 1 K), we 
observe a TIi2 form of the conductivitv 
characteristic of electron-electron interac- 
tions in the Dresence of disorder i 1 .  17) , ,  , 

whose increasing slope with decreasing P is 
a ~arallel  indicator of a ~ronounced effec- 
tive mass enhancement (Fig. 2, ~nset). As in 
the case of manv highlv correlated metals , u ,  

on the verge of a MI transition, the ground 
state is antiferromagnetic. NiS,-,Sex has 
the unusual distinction, however, and for 
our purposes the added advantage, of a P-T 
phase diagram where for decreasing T at 
fixed P the sequence paramagnetic insulator 
to antiferromagnetic insulator to antiferro- 
magnetic metal can occur. Well below the 

Fig. 4. Dynam~cal scaling curve for the six closest 
reduced pressures t to the T = 0 Mott-Hubbard 
MI transition. The ability to collapse the data onto 
a universal curve reflects the measurable influence 
of the quantum critical point. 
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NCel temperature, the spin fluctuations are 
frozen out and both the T2 and the T112 
electron-correlation terms in the resistivity 
can reflect the true behavior of the elec- 
tronic effective mass. 

We focus in Fig. 3 on the low-tempera- 
ture behavior of the conductivity for pres- 
sures very near the T = 0 MI transition. At 
Dressures more than 0.2 kbar above the tran- 
sition, we observed the ~ ~ s u a l  T'12 form. 
However, for P ;= PC, the influence of the 
critical point becomes apparent. A new 
functional form, (a - o,) - P 22 ,  describes 

u. 

best the dynamical (finite T or w)' response. 
This unusual exponent follows either from a 
simple 'two-parameter least squares fit 
(0.20 2 0.07) for 0.035 K < T < 0.800 K or 
more precisely (0.22 2 0.02) from the dy- 
namical scaling analysis discussed below. 

Wegner (1 8 )  proposed a dynamical scal- 
ing picture of the T = 0 MI transition for 
noninteracting electrons in a random po- 
tential. When these fdeas are extended to 
include interactions in the presence of dis- 
order (2,  19), the electrical conductivity is 
given by: 

o(t,T,) =b-"crf(tb''v,~b7) ( l a )  

where x, is an unknown exponent, z is the 
dynamical scaling exponent, v is the corre- 
lation length exponent, f is a scaling func- 
tion, and b is an arbitrary scale parameter. It 
follows that: 

with the conductivity exponent p. = vx,. 
By Eq. la, o / t p  should be only a function of 
T/tZV. 

We collapse our conductivity data (20) 
closest to the transition onto such a scaling 
plot in Fig. 4. The ratio zvlp. = =/xu = 

4.6 2 0.4 determines the exponent for the 
first-order correction to go. We then find p. 
= 1.1 + 0.2 by fitting the extracted values 
of ~ l n i t )  as a function of P, a result in , , ,  

accord with the analysis of the unscaled 
data of Fig. 1. 

Although the data closest to PC collapse 
onto a universal scaling curve (Fig. 4), and 
there is no structural distortion at PC, we 
observe a small hysteresis (-1 K)  on ther- 
mal cycling through the transition (21). 
Presumably, the MI transition is weakly first 
order, but sufficientlv weaklv first order to 
be effectively continious and to permit the 
influence of the quantum critical point to 
emerge. In our efforts to quantify the inter- 
play of statics and dynamics in high-quality 
single crystals of NiSl,56Se,,44, we found 
that the static critical exponent for the 
conductivity, p. = 1.1 + 0.2, has the value 
common to most T + 0 continuous MI 
transitions ( I ) ,  but that the value x,/z = 

0.22 2 0.02 is unexpected. For noninteract- 

ing electrons in three dimensions (d = 3), 
Wegner scaling gives (18) p = v and x,/z = 

113. Including the effects of electron-elec- 
tron interactions at the level of a Landau 
theory for d > 6, Kirkpatrick and Belitz (2, 
22) find x,/z = 213 for = 1. By analogy to 
the random-field Ising model, these authors 
also point out that hyperscaling should be 
violated (22). An additional experiment 
would be required to determine if hyperscal- 
ing holds for the Ni(S,Se), system. 
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Hf-W Isotopic Evidence for Rapid Accretion and 
~ifferentiation in the ~arly-Solar System 

Der-Chuen Lee and Alex N. Halliday 

The time scales over which inner solar system objects accreted and differentiated are 
unclear because the isotopic systems of many meteorites are disturbed. I8'Hf decays 
to I8*W with a half-life of 9 million years and is a particularly useful chronometer because 
both elements are highly refractory and immobile. Tungsten isotopic data for IIA, IIIA, IVA, 
and anomalous iron meteorites and H, L, and LL chondrites indicate that their parent 
bodies accreted rapidly and segregated metal within just a few million years. 

Radionuclides with half-lives on the order of 
106 to 108 years can provide information on 
the earliest history of the solar system and the 
nature of the nucleosynthetic events that 
contributed material to the molecular cloud 
that collapsed to form the solar nebula (1-4). 
Among various short-lived chronometers, 
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1S2Hf-1S2W [half life, t,!,, of 9 million years 
(m.y.)] is particularly useful for determining 
the timing of metal-silicate differentiation 
(such as core formation) in planets and plan- 
etesimals (5-7). Both Hf and W are highly 
refractory elements and thus are expected to 
be in chondritic proportions in much of the 
solar system, but Hf is strongly lithophile 
whereas W is moderately siderophile such 
that the Hf/W ratio in silicate phases will be 
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