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Neurons in the cortex of behaving animals show temporally irregular spiking patterns. 
The origin of this irregularity and its implications for neural processing are unknown. The 
hypothesis that the temporal variability in the firing of a neuron results from an approx- 
imate balance between its excitatory and inhibitory inputs was investigated theoretically. 
Such a balance emerges naturally in large networks of excitatory and inhibitory neuronal 
populations that are sparsely connected by relatively strong synapses. The resulting 
state is characterized by strongly chaotic dynamics, even when the external inputs to the 
network are constant in time. Such a network exhibits a linear response, despite the 
highly nonlinear dynamics of single neurons, and reacts to changing external stimuli on 
time scales much smaller than the integration time constant of a single neuron. 

R e c e n t  theoretical and experimental stud- 
ies have focused on the source o i  the tem- 
porally Irregular firing patterns of ncurons 
in cortex, as exemplified by their Poisson- 
like histograms of interspike inter\~als ( I  ). 
Undcrstanil~ng the origin of this irregularity 
has important implications tor elucidating 
the temporal components of the neuronal 
code in cortex. In experiments periormed in 
vitro, cortical slices s11oa.ed regular firing 
patterns \\,hen stimulated hy a constant cur- 
rent, indicating that the irregular iiring of 
neurons In the intact hrain is due to strong 
temporal fluctuations in their synaptic in- 
puts (2 ) ;  ho~rever, the orlgin o i  the tluctu- 
ations o t  the synaptic inputs is not yet 
known. Furthermore, hecause a neuron in 
cortex makes thousands of synaptlc con- 
tacts w t h  othcr ncurons, the fluctuations in 
the total synaptic input to a cell is expected 
to he relatively small even n41en iniliv~dual 
synaptic inputs are strongly fluctuating (3) .  
It [ras recently proposed that the timing of 
the tiring o i  cells in cortcx is sensitive to 
the relat~vclv small fluctuations In their 
total synaptic Input because the excitatory 
Inputs arc largely canceled by the inhih~tory 
ones (4 ,  5).  This intriguing hypothes~s rais- 
es several cluestions ahout ( I )  the origln of 
the ~rrcgularity of indl\~idual synaptic in- 
puts, ( i ~ )  the fine-tuning of synaptlc con- 
stants requlred to ensure the halance bc- 
tnreen the total excitatory and inhibitory 
currcnts, and (iii) the iiinctional henefits of 
generating synaptic currents that cancel 
each othcr. Several studies (5) have inves- 
t~gated the halance hypothesis in net~rork 
models, hut nrhethcr a balance het\\recn ex- 
citation and inhibition can emergc ~vithoiit 
tine-tuning of the net~vork parameters re- 
mained an open question. 

We st~lilieil a simple network of h', ex- 
citatory and N, inhihitory neurons. A n  ad- 
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ditlonal Nc neurons fiom outsiilc the net- 
work pro\~ide external excitatory inputs to 
the network neurons (Flg. 1).  The model 
ncurons are two-state units that update 
their state se~~uentially (6 ) .  The updateil 
state o i  a neuron is active if the value o i  its 
input at the time of update exceeiis its 
threshold; othcrnise, it is quiescent. Biolog- 
ically, the Inputs to a unit correspond to the 
synaptic currents Impinging on a neuron, 
and the time hctn~ecn t ~ r o  consecutive up- 
dates o i  a unit represents the neuronal 
membrane tlme constant (approximately 10 
111s). 

A n  important aspect o i  the architecture 
is the random, sparse connectivity. O n  av- 
erage, K excitatory, K inhibitory, anil K 
external neurons project to each ncuron in 
the network. Although the average numher 
of projections, K, is large, ~t IS still much 
smaller than the total number of neurons in 
the subpopulations NF anil N,. Also impor- 
tant is the assumption that the individual 
connections are relatively strong, namely, 
that only <K excitatory inputs are needed 
to cross the firing threshold (7) .  For cxam- 
ple, each cell may receive about K = 1000 
input currents, each on the ordcr o i  10.0 
pA, and the threshold current may he about 
0.3 nA. Because the number o i  inpiits that 
are shared by two cells is rel;~tlvcly small, 
the firing patterns of pairs o i  ncurons are 
only nreakly correlated. Hence, the input to 

External 

Fig. 1. Schematc representaton of the network 
architecture. Excitatory connections between 
populat~ons are shown as open circles; nhibtory 
ones, as filled c~rcles. 

a cell generated hy the activity of its K 
presynaptic excitatory cells has a mean pro- 
portional to K and a relatively small fluctu- 
ating component proportional to <K (8). 
The same holds for the inhibitory input. 
Because we focus on the role o i  the network 
dynamics In generating the temporal irrcg- 
ularity, \re assume that the external input 
does not fluctuate; thus, each cell receives a 
constant external excitatory input of ordcr 
K. The mean synaptic inputs are also pro- 
porticln;ll to the firing rates of the p resp-  
aptic populat~ons. Because the threshold is 
only of the order of \iC/K synaptic inputs, the 
total synaptic input to a cell will be over- 
\vhelmingly depolarizing or hyperpolarizing 
iinlcss the activity o i  the excitatory anil 
inhibitory ilynamically ailjust 
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Fig. 2. (A) Temporal structure of the inputs and 
act~vity of a s~ngle exc~tatory unit. The upper panel 
shows the total excitatory input (consstng of ex- 
ternal input and excitatory feedback) (upper trace) 
and the total lnhbtory nput (lower trace), as well 
as the net Input (mdde  trace). The currents are 
shown n unts of the threshold (dashed line). They 
were calculated by sampling from the Gaussan 
statstcs of the currents predcted by the theory 
(8) Below. the tmes when the cell switched to the 
act~ve state are ndcated. The cell IS set to the 
actve state when a suprathreshold net nput co- 
lncdes with the update tme  of the cell (6). (B) The 
mean activty of the exctatory neurons (solid n e )  
and the Inhibitory ones (dashed line) as functions 
of the actvity of the external unts (10) The act~v- 
~ t ~ e s  shown here and in the f o o w ~ n g  f~gures cor- 
respond to fring rates divided by their maxmum 
value. Assum~ng a neuronal maxlmum rate of 
1000 Hz, a mean actv~ty of 0.1 corresponds to a 
f~ring rate of 100 Hz. Parameter values. K = 1000. 
J,, = J,, = J I E  = 1 .O. J ,  = 0 8,  J ,  = 2 . 0 .  J = 

-1.8, 8, = 1.0, H I  = 0 .8 ,andD = 0.3 in(A)and 
(B). Also In (A). m ,  = 0.08 and T = 0.9. 



themselves so that the large total inhibitory 
input nearly cancels the large excitatory one 
(9). This halance hetween excitation and 
inhibition generates a net synaptic input 
whose mean and fluctuations are both on the 
order of the threshold. The precise timing of 
the crossing o i  the threshold is determined 
hy the fl~lct~lations of the synaptic input, 
yielding a strongly irregular pattern o i  activ- 
ity (Fig. 2A). This disorder is a signature of 
deterministic chaos. Its presence does not 
require external sources o i  noise. One ieature 
o i  the balanced network is that although the 
single-cell dynamics is highly nonlinear, the 
population-averaged rates increase nearly 
linearly with the external input (Fig. 2B). 
This linear dependence results irom the ad- 
justments o i  these rates to maintain the bal- 
ance between the total excitatory and inhib- 
itory inputs to the cells (1L1). Thus, the bal- 
ance o i  the inhibition and excitation is an 
emergent property of the network dynamics 
and does not require precise tuning o i  the 
network parameters. 

The balanced state is characterized also 
by a broad distribution of (time-averaged) 
firing rates across the netxork. This distri- 
bution is the outcome o i  the different syn- 
aptic projections on each neuron as well as 
their different threshold levels (7). Figure 
3A sho\vs the analytical results o i  the dis- 
tribution of rates in the excitatory popula- 
tion tor difierent values of mean rates. A 
prominent feature is the skelvness o i  the 
distribution at low mean rates. Because in 
our model the temporal fluctuations are 
generated hy the network activity itself, 
they are relatively small when the mean 
network activity is low. Hence, only those 
neurons that have relatively low thresholds 
tire vigorously; the rest show activity levels 
much lower than the mean rate. This iea- 
ture agrees well x i th  experimentally ob- 
tained histograms of firing rates of neurons 
in the monkey prefrontal cortex (Fig. 3B) 
(1 1 ). Our analysis shows that increasing the 
external inputs to the netxork shifts the 
peak of the distribution to larger values but 
does not give rise to a himodal distribution 
(Fig. 3A). 

One possible iunctional advantage of 
the balanced state is that the balanced net- 
xork cluickly tracks changes in the rate o i  
the external input. The response time o i  the 
population rates is shorter than the time 
constant of single units by a factor o i  

A n  example of tracking a ramped 
external input mc(t) = m, + vi?t is shown in 
Fig. 4. For comparison, we also show the 
slow response o i  an unbalanced network of 
linear units \vith the same stationary rates 
and the same single-unit time constants as 
our net\vork (12). The ability of our net- 
work to react to changes in its environment 
on time scales that are much shorter than 
the updare rimes of the individual neurons 
is a result of the combination of the large 
synaptic gain (on the order o i  <K) and the 
asvnchronous nature of the dynamics. A 
change in the external input 'by a small 
amount over a small time increment oener- 
ates a relatively large change in the synaptic 
inputs to the neurons in the network. As a 
result, those neurons that happen to he 
ready to update make a large change in 
their activity level. By successively recruit- 
ing different groups of neurons, the netxork 
pi~pulation rates quickl\- adapt to the 
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Fig. 4. The average excitatory rate (solid line) for 
an external drive that varies with time t . The ex- 
ternal drive IS constant at m, = 0.06 fort < 1 , then 
increases linearly until t = 2, and thereafter re- 
mains constant at m, = 0.1 6. The dashed line 
shows the evolution of the excitatory rate for a 
hypothetical network that tracks the external rate 
infinitely quickly. The response of an unbalanced 
network of linear neurons is also shown (dotted 
line) (13). Parameters are the same as In Flg. 2A. 
except form,. 
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the rates of neurons In the 
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rates ( s o d  n e )  m, = 0 01 I 

1~ 

1 z 
and (dashed ~ne)m, = 0 03 P 

The rate dlstrlbutlon IS 

shown In terms of the local -- 
i rates dlvlded by the mean O b  

- - 

1 2 3 loo"i '0 20 40 60 80 
rate Parameters are as ln Ratelmean rate Rate (Hz) 
Flg 28 (B) The dlstrlbutlon 
of frlng rates of neurons In the rght prefrontal cortex of a monkey attending to a varety of stmull (Ight 
source and sound) and executing smple reachng movements ( 7  1) The rates were averaged over the 
duraton of events (st lmu or movements) that showed a sgnfcant response The average rate was 15 8 
Hz Most cells f re at a lower rate whereas a small fractlon of the cells f re at much hlgher rates 

changing input. 
The chaotic nature of the balanced state 

is similar in many respects to the chaotic 
states of spin-glasses with random asymmet- 
ric connection matrices (13, 14). Ho\vever, 
in spin-glasses, the balance between inhibi- 
tion and excitation is automatically guaran- 
reed for an arbitrary state of the network hy 
the randomness of the signs of the connec- 
tions. In the present networks, the sign of 
the connections is spatially organized, and 
the balance between excitation and inhihi- 
tion is maintained by the network dynamics. 

Cortical neurons and circuits are much 
more complex than the simple netxork we 
have studied here, but the mechanism pro- 
posed here can also account for the irregular 
spike trains observed in ci~rtical cells. In- 
deed, the simplicity o i  our model suggests 
that irregular spiking is an emergent ner- 
work property that does not necessarily de- 
pend on intricate cellular mechanisms. 
Other aspects of balanced networks such as 
broad, skewed rate distributions and fast 
tracking are expected ti) hold also for more 
realistic models. The linear response of pop- 
ulation activities xi11 also hold provided 
that synaptic i n p ~ ~ t s  are summed approxi- 
mately linearly. Finally, the predicted cha- 
otic activity of the balanced networks puts 
constraints on the use o i  precise temporal 
patterns o i  tiring as neural codes. 
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Photolysis of the Carbon Monoxide Complex of 
Myoglobin: Nanosecond Time-Resolved 

Crystallography 
Vukica ~ra jer ,  Tsu-yi Teng, Thomas Ursby, Claude Pradervand, 

Zhong Ren, Shin-ichi Adachi, Wilfried Schildkamp, 
Dominique Bourgeois, Michael Wulff, Keith Moffat* 

The biological activity of macromolecules is accompanied by rapid structural changes. 
The photosensitivity of the carbon monoxide complex of myoglobin was used at the 
European Synchrotron Radiation Facility to obtain pulsed, Laue x-ray diffraction data 
with nanosecond time resolution during the process of heme and protein relaxation after 
carbon monoxide photodissociation and during rebinding. These time-resolved exper- 
iments reveal the structures of myoglobin photoproducts, provide a structural foundation 
to spectroscopic results and molecular dynamics calculations, and demonstrate that 
time-resolved macromolecular crystallography can elucidate the structural bases of 
biochemical mechanisms on the nanosecond time scale. 

Structural intermediates in b~ological reac- 
tions can be very short-lived, with lifetimes 
spanning the time scale from ferntoseconds 
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(1 ) to mill~seconds or longer (2).  Structural 
s t ~ ~ d i e s  of these intermediates have been 
carr~ed out e ~ t h e r  ( i )  by artificially prolong- 
ing the lifet~me of ~nterrnediates hy cheml- 
cal or physical man~pulations (3-6) or (ii) 
hy develop~ng very fast x-ray Laue tech- 
nlques (7) for structure determ~nation and 
applying them to authentic, short-lived in- 
termediates. We describe a Laue crystallo- 
graphic ~nvestigation \virh nanosecond time 

resolution ot the structural changes that 
occur In the carbon ~ n o n o x ~ d e  complex of 
myoglobin (MbCO) at room temperature 
on CO photodissociat~on by a nanosecond 

laser pulse. The results reveal directly the 
s t r~~ctural  relaxation of the heme and pro- 
tein in response to the ligand photodisso- 
ciation and rebinding. The MbCO photol- 
ysis reaction has been studied in s o l ~ ~ t i o n  hy 
numerous spectroscopic technicl~~es (8-1 8 )  
and computational approaches hy molecu- 
lar dynamics simulations (1 9-21), to which 
we relate our crystallographic results. 

The nanosecond time-resolved crystallo- 
graphic data were collected at the white 
beam station BL3 (ID9) at the European 
Synchrotron Radiation Facility (ESRF), 
Grenohle, France. Photolysis n.as initiated 
hy 7.5-ns laser pulses, and subsequent struc- 
tural changes were monitored with either a 
single 150-ps x-ray pulse or a 940-ns pulse 
train (22, 23). Photolysis and CO rebinding 
were also monitored optically (22). Com- 
plete x-ray i a t a  sets were obtained (Table 
1) to 1.8 A resolution at six time delays 
hetween laser and x-ray pulses: 4 ns (150-ps 
x-ray exposure, 15-mA beam current, sin- 
gle-bunch mode ot operation of ESRF), 1 
ps, 7.5 ps, 50.5 FS, 350 ps, and 1.9 ms 
(940-ns x-ray exposure, 150 mA, one-third 
filling mode). 

Ditference Fourier maps corresponding 
to each of the six time delays (Fig. 1, A to 
F) reveal the differences b e t w e n  the aver- 
age structure at a time delay t ,  Mbg(t),  x i th  
the stable MbCO structure. The MhCO 
content ot the Mh*(t) state, \vhich results 
from either incomplete initial photolysis or 
ligand recombination, cancels out in these 
maps. The reterence map (Fig. l G )  displays 
the difference in electron density bet\veen 
the conventional, statlc structures of deoxy 
Mb (24) and MbCO (25). With the excep- 
tion of the maps at time delays ot 350 ps 
and 1.9 ms, all show a prominent negative 
feature (laheled P in Fig. 1, A to D and G )  
correspond~ng to loss of the CO upon pho- 
tolysis. The peak value of this teature at the 
4-ns time delay corresponds to -9.8 cr 
where a is the root-mean-square value of 
the difference electron density In the asym- 
metric unit. The ~ n a g n i t ~ ~ d e  of this feature 
declines \vith time as photodissociated CO 
r e c o m h ~ n e  and, a< expected, parallels the 
extent of recombination estimated from the 
time course of the opt~cal  signal (Fig. 2). 
That is, this feature carries information 
;ihout ligand r e b ~ n d ~ n g  kinet~cs. The  ab- 
sence otfeatures at longer tune delays is also 
expected since optical data show that re- 
c o m b ~ n a t ~ o n  of the photod~ssociated CO is 
complete by about 100 p,s (Fig. 2).  The 
longer time delay data therefore serve as 
negative controls to ~llustrate the complete 
optical and s tr~~ctural  reversib~lity of the 
reaction. The ~ n ~ t i a l  fraction o t  p11otoly:ed 
molecules is estimated to be 45 i 10% from 
the initial amplitude of the optical change 
(22) and 42 i 100.0 from comparison of the 


