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the recovery of the native enzymatically
active tetramer (0). Alternatively, interac-
tion with the individual chaperones Hsp90,
Hsc70, Hsp70, or Cyp-40 does not lead to
refolding of the denatured substrate to its
native state, but rather leads to an apparent
collapse of the denatured B-Gal to a stable
proteolysis-resistant nonnative intermedi-
ate that is subsequently responsive to the
refolding activity of Hsp70 and Hdj-1. We
suggest that the interaction between p23
and denatured B-Gal represents a distinct
activity that results in the maintenance of
the B-Gal in a proteolysis-sensitive, yet sol-
uble, nonnative state that can be converted
to the native state upon addition of Hsp70
and Hdj-1. These studies identify new
members of the family of proteins that act
as molecular chaperones. The involvement
of multiple proteins with apparently redun-
dant chaperone activities in heteromeric
complexes may provide diversity and spec-
ificity in the regulation of the biological
activity of associated protein substrates.
This may have implications for pathways of
hormonal regulation, signal transduction,
and immunosuppression (11).
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Influence of Nitrogen Loading and Species
Composition on the Carbon Balance of
Grasslands

David A. Wedin* and David Tilman

In a 12-year experimental study of nitrogen (N) deposition on Minnesota grasslands, plots
dominated by native warm-season grasses shifted to low-diversity mixtures dominated
by cool-season grasses at all but the lowest N addition rates. This shift was associated
with decreased biomass carbon (C):N ratios, increased N mineralization, increased soll
nitrate, high N losses, and low C storage. In addition, plots originally dominated by
nonnative cool-season grasses retained little added N and stored little C, even at low N
input rates. Thus, grasslands with high N retention and C storage rates were the most
vulnerable to species losses and major shifts in C and N cycling.

Humans have dramatically altered the cy-
cling of nitrogen on’ Earth, doubling the
natural rate of N fixation and causing at-
mospheric N deposition rates to increase
more than tenfold over the last 40 years to
current values of 0.5 to 2.5 g N m ™2 year™!
in eastern North America and 0.5 to 6.0 g
N m~? year~! in northern Europe (I). Be-
cause N is the primary nutrient limiting
terrestrial plant production, N addition is
causing shifts in plant species composition,
decreases in species diversity, and changes
in food-web structure in terrestrial ecosys-
tems (2=5). This N-driven terrestrial eu-
trophication parallels phosphorus-driven
eutrophication in lakes. Increased N depo-
sition may lead to greater C storage in soil
organic matter and vegetation, thus provid-
ing a sink for CO, and potentially explain-
ing the globally “missing C” (6). Despite
this, almost no experimental data exist on
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changes in ecosystem C in response to long-
term N addition in nonagricultural ecosys-
tems; rather, effects on C stores have been
estimated from models, giving divergent
predictions (6).

We present results of 12 years of exper-
imental N addition to 162 grassland plots in
three N-limited Minnesota grasslands that
varied in successional age, total soil C, and
plant species composition (7, 8). The
youngest field (Field A) was dominated by
vegetation with the C; photosynthetic
pathway, primarily nonnative “cool-season”
grasses and forbs, whereas the two older
fields (Fields B and C) were dominated by
native C, “warm-season” prairie grasses. Be-
cause other potentially limiting nutrients
were supplied and soil pH was controlled,
our study addresses the eutrophication ef-
fects of N loading while controlling for
acidification and related biogeochemical ef-
fects that might also affect natural ecosys-
tems (9, 10).

Nitrogen loading dramatically changed
plant species composition, decreased species
diversity, and increased aboveground pro-
ductivity in these plots (2, 7, 11). After 12



e

years of N addition, species richness de-
clined by more than 50% across the N
addition gradient (Fig. 1A), with the great-
est losses at 1 to 5 g N m™? year '—levels
spanning current atmospheric deposition
rates in eastern North America and north-
ern Europe (1). This loss of diversity was
accompanied by major shifts in composi-
tion, with C, grasses (predominantly the
native bunchgrass Schizachyrium scoparium)
declining and the weedy Eurasian C; grass
Agropyron repens becoming dominant at
high N addition rates (Fig. 1B) (2, 7, 11).

As the vegetation shifted with increas-
ing N inputs from C, species to Cjy species,
the C:N ratios of aboveground and below-
ground plant tissues decreased (Fig. 1, C
and D) (12). Two analyses indicate that
interspecific differences in tissue chemistry
together with the observed species shifts
can account for most of this shift in biomass
C:N ratios across the experimental N gra-
dient. First, nitrogen-use efficiency (NUE),
the ratio of plant production to N use [es-
timated following (13)], averaged 203
across the N addition gradient for S. scopa-
rium (14). The high NUE of S. scoparium
and other perennial C, grasses is well doc-
umented (15, 16). In contrast, Poa pratensis
and A. repens, the dominant C, grasses, had
mean NUE values of 107 and 78, respec-
tively. Intraspecific plasticity for NUE—the
shift in tissue chemistry within species
across the N addition gradient—was small
relative to the large interspecific differences
among the three species (14). In addition,
multiple regression showed that the best
correlate, after the rate of N fertilization, for
the C:N ratio of dead biomass in a plot was
the S. scoparium abundance in the plot
(17).

At N addition rates of <5 g N m™?
year™ !, soil NO,; ™ concentrations were sig-

nificantly lower in the older fields dominat-
ed by S. scoparium (Fields B and C) than in
the C;-dominated youngest field (Field A)
(Fig. 2A) (18, 19). This parallels results
from experimental monocultures of these
prairie and old-field grasses (20). Soil NO; ™~
did not respond significantly to N addition
atrates <5 g N m~ % year™! (19), but NO,~
concentrations increased by a factor of ten
at higher N addition rates (Fig. 2A). With
the exception of two treatments in Field B,
annual net N mineralization rates also
showed relatively little change at low N
addition rates, but increased linearly with
increased N addition at rates >5 g N m™~?
year ! (Fig. 2B).

At low N addition rates (1 to 2 g N m 2
year '), the two C,-dominated fields re-
tained approximately all of the N inputs
after 12 years (Fig. 2C) (21). Nitrogen re-
tention in these fields dropped as N addi-
tion increased, converging on an N reten-
tion of 35% of N inputs at the two highest
N addition rates. Similar results are report-
ed for N-loading studies in European forests,
where, on average, 43% of N inputs were
retained at N inputs ranging from 2.5 to
7.5 ¢ N m~? year ! (22). However, N
retention varied greatly from site to site in
those studies, supporting the conclusion of
Aber et al. (23) that “N retention will vary
non-linearly depending on the internal
state of the system.” In contrast to the two
older fields, the C;-dominated Field A re-
tained essentially none of the added N at
low input rates (Fig. 2C) (24). Although
the mechanisms of N loss in Field A are
unresolved, our grassland result contrasts
with that of forest research, where early
successional stands are hypothesized to
have higher nutrient retention (25, 26).

On a plot-by-plot basis, net N losses (as
g N m~?) (21) were highly correlated with

Fig. 1. Vegetation re- A B
sponses to 12 years of N 20 - 80
addition. Points represent @ __ o Fedd = L
treatment means (6 repli- @ 154 TATT FeC 607
cates per N addition level, -E, g ' ﬁ Q.Q
12 for controls) for eachof % 5 10 £ 40 M
three fields. (A) Number of & € 5 VA
vascular plant species g3 5 S 2050
found in 0.3-m? vegeta- @~ X al
tion samples. (B) Biomass 0 10 20 30 N
of grasses with the C, C go D
photosynthetic pathway as
a proportion of above- o 50 K]
ground live biomass at ~ ® ©

( . 403 =z
mid-growing  season. z B ]
One species, S. scopa- ~ © 30t 3
rium, contributed >95% £ 20 2
of the C, biomass in the = {
plots. Biomass C:N ra- 10 10
tios for (C) aboveground 0 .1.0 _30 q %0 0 10 28 %

N addition (g m-2 year-1) N addition (g m-2 year)

dead biomass (both re-

cent and old) and (D) belowground biomass (live and dead).

SCIENCE e« VOL. 274 « 6 DECEMBER 1996

the average growing-season concentration
of soil NO, ™ (Fig. 3A). Soil NO, ™ is highly
mobile, and high soil NO; ™ concentrations
frequently lead to large leaching losses of N,
as presumably happened in this study (10,
27). We cannot partition N losses, howev-
er, because N leaching, ammonia volatiliza-
tion, dissolved organic N losses, and deni-
trification were not measured (28).

Soil NO;™ concentrations were highly
correlated with biomass C:N ratios (Fig. 3B)
(29). A comparable relationship existed be-
tween soil NO; ™ and the C:N ratio of either
belowground biomass or aboveground litter.
At biomass C:N ratios greater than 30, soil
NO,~ concentrations were low (<1 mg/kg).
As C:N ratios dropped below 30, the immo-
bilization sink for mineral N provided by
dead organic matter disappeared, rates of net
N mineralization increased, soil NO;™ in-
creased sharply, and overall N retention
rates decreased (Fig. 2). Thus, our results
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Fig. 2. Nitrogen dynamics after 12 years of N
addition. (A) Seasonal average extractable soil
NO, " concentrations, (B) annual in situ net N min-
eralization, and (C) net N retention after 12 years
estimated as the change in total system N (relative
to controls) divided by the sum of experimental N
additions.
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support the conclusion that microbial immo-
bilization of mineral N is a major factor
regulating N retention (10, 23, 25, 30).

Our analyses indicate another potential-
ly important factor regulating soil NO;~
pools in these grasslands. Plant species di-
versity remained a significant negative cor-
relate of soil NO; ™ in a multiple regression
model that accounted for the effects of litter
C:N ratio and N addition rate (29, 31).
This suggests that complementary spatial
and temporal patterns of nutrient uptake
associated with high plant-species diversity
or functional group diversity also play a
significant role in ecosystem N retention
(32).

We conclude that the shift from N im-
mobilization to mineralization, a threshold
determined by microbial resource require-
ments and the C:N ratio of an ecosystem’s
detrital biomass, creates an inherent non-
linearity in the response of these grasslands
to chronic N loading. In our study, species
shifts in the vegetation at low levels of N
loading appear to be driving such a nonlin-
ear response of the N cycle (4, 15). In
addition to shifts in species composition,
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Fig. 3. (A) The relationship between net N losses
or gains (the change in total system N minus the
sum of experimental N additions) and seasonal
average soil NO,~ concentrations in 162 experi-
mental plots. The equation for the fitted curve
(note log scale) is N, oo, = (—75.66) — [94.89 X
log(NO,)]. (B) The relationship between soil NO,~
and the C:N ratio of plant biomass (aboveground
dead biomass plus belowground biomass). Verti-
cal line represents a biomass C:N ratio of 32.
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the loss of diversity, per se, during eutrophi-
cation may contribute to decreased N re-
tention in grassland ecosystems subjected to
atmospheric N deposition (31).

Two patterns emerged for the net
change in total ecosystem C stores after 12
years (12, 21). First, although total C stores
differed significantly among the three fields
across the experimental N gradient, differ-
ences were greater at the low end of the
gradient (33). At the high end of the N
addition gradient, all ficlds were converging
on total C stores of roughly 4000 to 5000 g
C m~%. Second, total C stores increased
significantly at low N addition rates in the
C,-dominated fields (Fields B and C) but
not in the C,-dominated field. Averaging
across the three lowest N addition levels (1,
2,and 3.4 g N m 2 year '), total ecosystem
C increased 21% (545 ¢ C m~?) in Field B,
which had lower soil C initially, 10% (445
g Cm™2) in Field C, and only 1% (27 ¢ C
m~2) in Field A. In contrast, theoretical
estimates of C storage for humid temperate
grasslands in response to climate change,
direct CO, enrichment, or both range from
3% to —3% (34). Carbon storage resulting
from anthropogenic N inputs, although
highly dependent on grassland type, may be
markedly greater than C storage in response
to other components of global change.

Finally, we determined the net long-
term change in total ecosystem C per unit
of added N over our 12-year study. In re-
gression analysis, there was significantly
lower C storage (g C/g N) at N addition
rates <5 g N m 2 year ! for Field A than
for Fields B and C, as well as a significant
effect of N addition rate and a significant
field-by-N-addition interaction (Fig. 4)
(35). Without field as a categorical vari-
able, plot C, biomass was the best single
predictor of C storage (35).

At the lowest N addition rates (1 and 2 g
N m 2 year '), the C storage rate averaged

30

—®— Field A(Cy)
I} ----O--- Fields B and C (C,)

20 -

Net C storage (g/g of nitrogen)

0 10 20 30
N addition (g m2 year-1)

Fig. 4. Net C storage per unit experimentally add-
ed N after 12 years. Because C storage rates (g
C/g N) did not differ significantly between Fields B
and C (34), overall treatment means for the two
C,-dominated fields are presented.
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243 g Clg N (n = 24, SE = 7.6) in Fields
B and C (Fig. 4). Although we know of no
comparable values from other long-term ex-
periments, our value of 24.3 g C/g N is low
compared to most model estimates of net C
storage in response to atmospheric N dep-
osition, which range from 17 to >100 g C/g
N (6). This difference probably relates to
ecosystem type. In our two C,-dominated
grasslands, 63% of the long-term C storage
was in soils, which had a C:N ratio of
roughly 11. Globally, woody vegetation
with a higher C:N ratio becomes a more
significant C sink.

Estimates of C storage in response to N
loading are the product of two terms: net C
storage per unit N retained and the N re-
tention rate. In simulations with the CEN-
TURY model of long-term C budgets for S.
scoparium monocultures in our soils and cli-
mate, we found a long-term C storage rate
of 22 g C/g N input from atmospheric dep-
osition (36). Thus, our empirical and mod-
eling estimates of C storage (g C/g N) were
very similar for low N addition plots in
Fields B and C, where N retention rates
were ~100%.

In contrast, the model (36) did a rela-
tively poor job of predicting C storage rates
for Fields B and C at medium to high N
inputs and Field A across the N gradient.
CENTURY simulations predicted a long-
term C storage rate of 10 g C/g N for A.
repens monocultures, the dominant C; grass
in Field A and in high-N plots. However,
no net C storage was observed for Field A at
low N inputs, and at the high end of the
gradient, net long-term C storage across all
fields converged on roughly 4 ¢ C/g N (Fig.
4). These results underscore the need for a
clearer understanding of why N retention
rates differ among ecosystems if ecologists
are to make reasonable estimates, whether
on local or global scales, of C sequestration
in response to N loading.

The grassland types best able to retain
added N and sequester C were also the types
most vulnerable to N eutrophication
through losses of diversity, changes in plant
species composition, and the resultant
changes in C and N cycling. Thus, N-
caused shifts in species composition limit
the ability of temperate grasslands to serve
as significant long-term C stores. In our
fields dominated by C, prairie grasses, shifts
in species composition at relatively low N
addition rates led to decreased biomass C:N
ratios and decreased N immobilization po-
tential, and, consequently, increased soil
NO,~ concentrations, high N loss rates,
and low C sequestration rates (g C/g N).
The nonlinear or threshold-dependent re-
sponse that we observed in response to
chronic N loading appears to have two
causes: species shifts in response to N eu-




trophication and an N mineralization or
immobilization threshold for the decompo-
sition of litter and soil organic matter. Our
results show that N loading is a major threat

to

grassland ecosystems, causing loss of di-

versity, increased abundance of nonnative

Sp!

ecies, and the disruption of ecosystem

functioning, and that these responses are

tightly linked.
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addition (F = 2.65, P = 0.051) and field-by-N-addi-
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that N losses are dominated by NO,~ leaching is
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Inamultiple regression model predicting the season-
al average soil NO,~ concentration (In transformed),
biomass C:N ratio (aboveground litter and roots;
slope = —0.0648, partial F = 59.7, P < 0.0001), N
supply rate (N addition plus net N mineralization;
slope = 0.0367, partial F = 33.78, P < 0.0001), and
plant species diversity (Shannon-Wiener index cal-
culated from aboveground proportional biomass,
slope = —0.1701, partial F = 14.25, P = 0.0002)
were significant (n = 162, r? = 0.768). Root bio-
mass, live biomass, root:shoot ratio, and soil C:N
ratio were not significant correlates of soil NO, ™.
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Total ecosystem stores (g C m™2) in control plots
differed significantly among fields (F = 53.18, P <
0.0001; means: Field A = 3639, Field B = 2537,
Field C = 4619). Differences among fields were sig-
nificant but smaller for the highest N addition treat-
ment (F = 6.59, P = 0.0088; means: Field A = 4509,
Field B = 3897, Field C = 5094).
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In GLM analyses predicting C storage per unit N
input (Fig. 4), the effects of field (categorical variable,
F = 7.04, P = 0.0013), N addition rate (In trans-
formed, F = 6.99, P = 0.009), and the field-by-N-
addition interaction (F = 3.48, P = 0.034) were sig-
nificant (2 = 0.16, n = 126). In a GLM model pre-
dicting C storage per unit N without the field effect,
the effects of C, aboveground biomass (F = 18.15,
P < 0.0001), soil C:N ratio (F = 12.39, P = 0.0006),
and root biomass (In transformed, F = 11.13, P =
0.0011) were significant (r? = 0.332, n = 126). All F
values are partial Fs.

CENTURY is a grassland simulation model of pro-
ductivity and soil organic matter dynamics that has
been used extensively and is described in [W. J.
Parton, D. S. Schimel, C. V. Cole, D. S. Qjima, Soil
Sci. Soc. Am. J. 51, 1173 (1987); see also (34)]. The
long-term monoculture simulations for S. scoparium
and A. repens used species-level data on productiv-
ity, allocation, and litter quality from (75, 20).
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