
the recovery of thc native en:ymatically 
active tetramer (6 ) .  Altcrnativcly, interac- 
tion n.ith the  individual chaperones Hsp90, 
HsciO, Hsp70, or Cyp-40 ilocs not lead to 
refolding of thc  i i cna t~~rcd  suhstratc to its 
native state, hut rathcr lcads to an  apparent 
collapse of the denaturcci P-Gal to a stable 
proteolysls-resistant nonnative intermec1i- 
ate that 1s s ~ ~ h s c ~ ~ ~ c n t l y  responsive to the 
refolding activity of Hsp70 and Hdj-1. W e  
suggest that thc  interaction het~veen p23 
and denatured B-Gal rcvrescnts a Cilstinct 
activity that results in the lnaintcnance of 
thc P-Gal in a proteolysis-sensitive, yct sol- 
uhlc, nonnative state that can he converted 
to the nativc state upon addition of Hsp70 
and Hdl-1. These stuilics idcntifv new 
members of the family of proteins that act 
as mi~lecular chaperones. T h e  involvement 
of multiple proteins wit11 apparently redun- 
dant chaperone ac t i~ i t i e s  in heterolneric 
colnrleses may provide Ciiversitj~ and spec- 
ificity 111 thc  regulation of the 13iological 
activlty of associated protein substrates. 
This may havc ilnplications for path\vays of 
hormonal rcgulation, signal transduction, 
and 1mmunosuppressio11 (1 1 ). 
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Influence of Nitrogen Loading and Species 
Composition on the Carbon Balance of 

Grasslands 
David A. Wedin* and David Tilman 

In a 12-year experimental study of nitrogen (N) deposition on Minnesota grasslands, plots 
dominated by native warm-season grasses shifted to low-diversity mixtures dominated 
by cool-season grasses at all but the lowest N addition rates. This shift was associated 
with decreased biomass carbon (C):N ratios, increased N mineralization, increased soil 
nitrate, high N losses, and low C storage. In addition, plots originally dominated by 
nonnative cool-season grasses retained little added N and stored little C, even at low N 
input rates. Thus, grasslands with high N retention and C storage rates were the most 
vulnerable to species losses and major shifts in C and N cycling. 

H u m a n s  havc ciramaticaIIy altered thc cy- 
cling of nitrogen o n  Earth, doubling the 
natural rate of N fixation and causing at- 
mospherlc N dcposi t~on rates to increase 
Inore than tenfold over the last 40 years to 
current values of 0.5 to 2.5 g N 111~-' y e a r '  
in eastern North  Anlerica alld 0.5 t ~ )  6.0 g 
N mp' ycar-' In northcrn Europe ( I ) .  Be- 
cause N is the prirnary nutrient l ~ ~ n i t i n g  
terrestrial plant production, N addition is 
causing shifts In species composition, 
ilecreases in species iliversity, ani1 changes 
111 food-web structure In terrestrial ecosys- 
tems (2-5). This N-iiriven tcrrestl-ial eu- 
trophication parallels phosphorus-driven 
cutrophlcation In lakcs. Increased N d q o -  
sition lnay lead to greater C storage in so11 
organic matter and vegetation, thus provid- 
ing a >ink for CO, and potentially explain- 
il1g the globally "missing C" (6) .  Despite 
this, allnost no experimental clata cxist on  
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changes in ecosystcln C in response to long- 
term N ai id i t~on in n o n a e r i c ~ ~ l t ~ ~ r a l  ecosvs- 
tcms; rathcr, cffccts o n  C stores have heen 
cstimatcci from moiiels, giving divergent 
vrcdictlons (6) .  , , 

'We present results of 12  years of exper- 
 mental N addition to 162 grassland plots in 
three N-llrnited Minnesota grasslands that  
varicd in successional age, total sol1 C ,  and 
plant specles conlposition ( 7 ,  8). T h e  
\ioungest field (Ficld A )  was dolninated hy 
vegctatlon with the Cj  photosynthetic 
path~vay,  pr~marily nonnative "cool-season" 
grasses and forhs, whereas the tn-CJ older 
fields (Flclds B and C )  were dominated bv 
natlve C4 " ~ + - ~ s ~ I I - s ~ ~ s c J I I "  prairie grasses. Be- 
cause other potentially lilnitillg nutrients 
were supplied anii sol1 p H  was controlled, 
our s t ~ ~ d y  adJrcsses thc  eutrophication ef- 
fects of N loadine while controllintr for - 
aciiiification and related hiogeochenlical ef- 
fccts that might also affect n a t ~ ~ r a l  ecosys- 
tcms 19. I Q ) .  

Nltrogen loadlng dramatically changcd 
plant species composition, decreased species 
~ilr7erslty, anil incrcascd ahovcground pro- 
ductlvity In these plots ( 2 ,  7, 1 1  ). After 12 
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ycars of N addition, species richness dc- 
clined hy more than 50% across thc N 
addition gradient (Fig. I A ) ,  n.ith thc great- 
cst losses at  1 to 5 g N m p L  yearp'-levels 
spanning current atmospheric deposition 
rates in eastern North  Alncrica and north- 
ern Europe (1) .  This loss of divcrsity was 
accompanied hy rnajor shifts in composi- 
tion, n.ith C4 grasses (predominantly the 
native bunchgrass Schizachyrium scoparium) 
declining and the n.ecdy Eurasian C3 grass 
Agropq'ron repens hecolning dominant at  
high N addition rates (Fig. 1B) ( 2 ,  7, 1 1 ). 

As the  vegetation shifted with increas- 
ing N inputs from C4 species to C, species, 
the C :N ratios of aboveground and helow- 
ground plant tissues decreased (Fig. 1,  C 
and D) (12) .  Two  analyses indicate that  
intersnecific differences in tissue chernistrv 
together \vith the observed species shifts 
can account for most of this shift in biomass 
C:N ratios across the  experimental N gra- 
dient. First, nitrogen-use efficiency ( N U E ) ,  
the  ratio of plant production to  N use [es- 
timated following ( IS)] ,  averaged 201 
across the  N addition gradient for S .  scopa- 
rium (1 4 ) .  T h e  high N U E  of S .  scoparium 
and other perennial C4 grasses is u~el l  doc- 
umented (1 5,  16).  In  contrast, Poa pratensis 
and A .  repens, the dominant C, grasses, had 
mean N U E  values of 107 and 78, respec- 
tively. Intraspecific plasticity for NUE-the 
shift in tissue chemistry within species 
across the N addition pradient-was small 
relative to the large interspecific differences 
among the  three species (14) .  111 addition, 
multiple regression sho\ved that the hest 
correlate, after the rate of N fertililation, fccr 
the C :N ratio of dead hiornass in a plot was 
the S, scoparium abundance in the  plot 
(17).  

A t  N addition rates of <5  g N mp'  
yearp' ,  soil N O ,  concentrations were sig- 

nificantly lon.cr in thc  oldcr fields dominat- 
cd hy 5. scoparium (Fields B and C )  than in 
the C,-dominated youngest field (Field A )  
(Fig. 2 A )  (18,  19) .  This parallels r c s ~ ~ l t s  
from exrerilnental monocultures of these 
prairie and old-field grasses (20).  Soil N O , -  
did not  respond significantly to N addition 
at  ratcs <5  g N mp' yearp' (1 9 ) ,  but N O , -  
concentrations increased hy a factor of ten 
at  higher N ;addition rates (Fig. 2A) .  W i t h  
the exception of two treatments in Field B, 
annual net N ~rnineralilation rates also 
showed relatively little change a t  low N 
addition rates, but increased linearly u ~ i t h  
increased N addition a t  rates >5  g N m p 2  
yearp' (Fig. 2B). 

A t  low N addition rates ( 1  to 2 g N 111 

yearp ' ) ,  the  two C,-dominated fields re- 
tained approximately all of the N inputs 
after 12 years (Fig. 2C)  (21 ). Nitrogen re- 
tention in these fields dronaed as N addi- 
t ion increased, converging o n  a n  N r e t e n  
t ion of 15?6 of N inputs a t  the  two highest 
N addition rates. Similar results are report- 
ed for N-loading studies in European filrests, 
&,here, on average, 43% of N inputs were 
retained at  N inputs ranging frorn 2.5 to 
7.5 g N mp' yearp' (22).  However, N 
retention varied greatly frorn site t o  site in 
those studies, supporti~lg the  conclusion of 
Aher et al. (23)  that "N retention will vary 
non-linearly depending o n  the internal 
state of the  system." In  contrast t o  the  t\vo 
older fields, the C,-dom~nated Field A re- 
tained essentially none of the added N a t  
low input rates (Fig. 2 C )  (24) .  Although 
the  rnechanislns of N loss in Field A are 
unresolved, our grassland result contrasts 
with that  of forest research. where earlv 
successic~nal stands are hypothesized to 
have higher nutrient retention (25 ,  26).  

O n  a plot-by-plot basis, ne t  N losses (as 
g N m p 2 )  (21)  \Yere highly correlated with 

Fig. 1. Vegetat~on re- A B 
sponses to 12 years of N 80 
add~t~on Po~nts represent 
treatment means (6 repll- 1 
cates per N add~t~on level ? 
12 for controls) for each of 'g 10; . , I 

40 .- three f~elds (A) Number of .g f -* a A 
\ 

n 
vascular plant specles 
found n 0 3-mi vegeta " [ '-1 ‘7 20 r 

x I 
t~on samples (B) B~omass O O  10 20 30 0;- -̂ . 10 20 30 
of grasses w~th the C, 
photosynthetc pathway as 

60 

a propofl~on of above- 
ground I~ve b~omass at 5 40 
m~d-grow~ng season 2 

One specles S scopa- 
rum contr~buted >95% 

E I = 20 of the C, b~omass n the 
plots B~omass C N ra- l o 0  ' , ' , ' , I 
t ~os  for (C) aboveground 

10 20 ' 30 1 ° 0 '  ' 10 " '  20 30 
N addition (g m-2 year-') N addition (g m-2 year-') 

dead b~omass (both re- 
cent and old) and (D) belowground biomass (lve and dead) 

the  average growing-season concentration 
of soil N O ,  (Fig. I A ) .  Soil N O ,  is highly 
mohilc, and high soil N O ,  concentrations 
frcqucntly lead to large leachi~lg losses of N ,  
as presurnahly harpcned in this study (10 ,  
27). W e  cannot  partition N losses, hon.cv- 
er, hecause N Icaching, alnlnonia volatilila- 
tion, dissolved organic N losses, and d c n -  
trification n.ere not  measured (28).  

Soil N O ,  concentrations \+-ere highly 
corrclated n.ith hiomass C :N ratios (Fig. 1B) 
(29).  A colnparahle relationship existed be- 
tween soil N O ,  and the C:N ratio of either 
helowground hiomass or abovegrc~und litter. 
A t  biornass C:N ratios greater than 10, soil 
N O ,  concentrations were l o ~ v  (< 1 mg/kg). 
As C:N ratios dropped below 30, the immo- 
hililation sink for mineral N provided by 
dead organic matter disappeared, rates of net 
N mineralization increased, soil N O ,  in- 
creased sharply, and overall N retention 
rates decreased (Fig. 2) .  Thus, our results 

. . 

--t Field A 
----0--- Field B 

Field C 

0 5 10 15 20 25 30 
N addition (g m-2 year-') 

Fig. 2. N~trogen dynam~cs after 12 years of N 
add~t~on (A) Seasonal average extractable so11 
N O d  concentratons, (B) annual In s~tu  net N mln- 
erallzaton, and (C) net N retenton after 12 years 
est~mated as the change n total system N (reatve 
to controls) dlvlded by the sum of exper~mental N 
add~t~ons 
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sumort the conclusion that microbial irnmo- 
A A 

bilization of mineral N is a major factor 
regulating N retention (10, 23, 25, 30). 

Our analyses indicate another potential- 
iy important factor regulating soil NO,-  
pools in these grasslands. Plant species dl- 
versity relnalned a significant negative cor- 
relate of soil N O ,  in a multiple regression 
model that accounted for the effects of litter 
C:N ratio and N addition rate 129. 31). , ,  , 

This suggests that colnplelnentary spatial 
and tempc~ral patterns ( ~ f  nutrient uptake 
associated with high plant-species diversity 
or functional group diversity also play a 
significant role in ecosystem N retention 
(32). 

We conclude that the shift from N im- 
mohi1i:atic~n to mineralization, a threshold 
determined hv microbial resource reuuire- 
rnents and th; C:N ratio of an ecosys;emls 
detrital biomass, creates an inherent non- 
linearity in the response of these grasslands 
to chronic N loading. In our study, species 
shifts in the vegetation at low levels of N 
loading appear to he driving such a nonli11- 
ear response of the N cycle (4,  15). In 
addition to shifts in species cornposition, 

-400 . . . . . . '  , , . , . . . '  , . . . '  . 
0.01 0.1 1 10 100 

Soil NO3-N (mglkg) 

Biomass C:N ratio 

Fig. 3. (A) The relationship between net N losses 
or gains (the change In total system N mnus the 
sum of experimental N additions) and seasonal 
average soil N O ,  concentrations in 162 experi- 
mental plots. The equation for the fitted curve 
(note log scale) is N,,,, = (-75.56) - [94.89 x 
log(NO,)]. (B) The relationship between soil NO,- 
and the C:N ratio of plant b~omass (aboveground 
dead biomass plus belowground biomass). Verti- 
cal line re~resents a biomass C:N rato of 32. 

the loss of diversity, per se, during eutrophi- 
cation may contribure ti, decreased N re- 
tention in grassland ei(3systelns suhjected to 
atmospheric N deposition (3 1 ). 

Two patterns emerged for the net 
change in total ecosy.item C stores after 12 
years (1 2 ,  21 ). First, although total C stores 
differed significantly 21111011g the three fielids 
across the experimental N gradient, differ- 
ences u7ere greater at the lou~ end of the 
gradient (33). A t  the h ~ g h  end of the N 
addition gradient, all fields u7ere converging 
on total C stores of roughly 4000 to 5000 g 
C m '. Second, total C stores increased 
significantly at low N add~tion rates in the 
C4-dominated fields (Fields B and C )  but 
not in the C,-dominated field. Averagi~lg 
across the three lou~est N addition levels ( 1 ,  
2, and 3.4 g N mp' yearp'),  total ecosystem 
C increased 21% (545 g C mp') in Field B, 
which had lou~er soil C initially, 10% (445 
g C 6') in Field C, and only 1% (27 g C 

-7  

m - )  in Field A. In contrast, theoretical 
estimates of C storage fur humid temperate 
grasslands in response to clirnate change, 
direct CO' enrichment, or hoth range from 
1% to -1% (34). Carbon storage resulting 
from anthropogenic N inputs, although 
highly dependent on grassland type, may be 
markedly greater than C storage in response 
to other components of glohal change. 

Finally, we determined the net long- 
term change in total ecosystem C per unit 
of added N over our 12-year study. In re- 
gression analysis, there was significantly 
lower C storage (g C/g N )  at N addition 
rates <5 g N m ' yearp' for Field A than 
for Fielcls B and C, as \yell as a significant 
effect c ~ f  N addition rate and a significant 
field-by-N-addition interaction (Fig. 4) 
(35). Without field as a categorical vari- 
able, plot C4 biomass was the best single 
predictor of C storage (35). 

A t  the lowest N addition rates (1  and 2 g 
N mp' yearp'),  the C storage rate averaged 

- Field A (C3) 

.$ 20 

N addition (g m-2 year') 

Fig. 4. Net C storage per un~t experimentally add- 
ed N after 12 years. Because C storage rates (g 
Cig N) d ~ d  not differ significantly between Fields B 
and C (34). overall treatment means for the two 
C,-dominated f~elds are presented. 

24.1 g C/g N (n = 24, SE = 7.6) in Fields 
B and C (Fig. 4).  Although we know of no 
comparable values from other long-term ex- 
periments, our value of 24.1 g C/g N is lo\\ 
com~ared  to most model estimates of net C 
storage in response to atmospheric N dep- 
osition, which range from 17 to > 100 g C/g 
N (6). This difference prohahly relates to 
ecosystem type. In our two C4-dominated 
grasslands, 61% of the long-term C storage 
was in soils, tvhich had a C:N ratio of 
roughly 11. Globally, \voody vegetation 
u~ith a higher C:N ratio hecome.; a more 
slenificant C slnk. 

Estirnates o i C  storage in response to N 
loadine are the ~ r o d u c t  of two terms: net C 
storage per unit N retained and the N re- 
tention rate. In sirnulations u~i th  the CEN- 
TURY model of long-term C hudgets for S 
scoparium monc~cultures in our soils and cli- 
mate, we found a long-term C storage rate 
of 22  g C/g N input frorn atmospheric dep- 
osition (36). Thus, our ernpirical and mod- 
eling estimates of C storage (g C/g N )  were 
very slln~lar for lo~v  N addition plots in 
Fields B and C, where N retention rates 
were -100%. 

In contrast, the model (36) did a rela- 
tively poor job of predicting C storage rates 
for Fields B and C at medium to high N 
inputs and Field A across the N gradient. 
CENTURY sirnulations predicted a lo~lg- 
term C storage rate of 10 g C/g N for A .  
repens monocultures, the dorninant C, grass 
in Field A and in high-N plots. However, 
no net C storage was obserl,ed for Field A at 
low N inputs, and at the high end of the 
gradient, net long-term C storage across all 
fields cc~nvergeci on roughly 4 g C/g N (Fig. 
4).  These results underscore the need fur a 
clearer understanding of u~hy N retention 
rates differ arnong ecosystems if ecologists 
are to make reasonahle estimates. whether 
on local or global scales, of C sequestration 
in response to  N loadine. 

The grassland types best able to retain 
added N and sequester C \\ere also the types 
most vulnerable to N eutrophlcatlon 
through losses of dlverut), changes In plant 
species compcxition, and the resultant 
chanees in C and N cycline. Thus, N- , ,, 

caused shifts in species composition limit 
the ability of ternperate grasslands to serve 
a siirnificant Ion.-term C stores. In our 

F 

fielLi5 dominated by C4 pralrle gra,se,, ,hifts 
in ,tiecies comtlo5ition at relativejv low N 
addition rate5 1kd to Liecreased hio1ia55 C:N 
ratlo, and Liecrea5t.d N irnmobllization tio- 
tentlal, and, con\equentl\, ~ n c r e ~ ~ s e d  so11 
NO,- concentration,, h ~ g h  N loaa ratea, 
and lo\v C \equestratlon rate, (g Clq N ) .  
The nonllnedr or thresholii-depen&nt re- 
sponse that we oh5erved in respon,e to 
chronic N loaiding appear, to have two 
causes: specie, ,hift\ in respon,e to N eu- 
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trophication and an N mineralization or 
irnmohi1i:ation threshold tor the deco~npo- 
,ition ot litter and soil organic matter. Our 
results show that N loaiding is a major threat 
to grassland ecobybtems, causing los, ot ili- 
verblty, increased abundance ot nonnative 
,pecieb, and the disruption of ecosystem 
functioning, anid that thebe responses are 
tightly linked. 
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