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Molecular Chaperone Machines: Chaperone
Activities of the Cyclophilin Cyp-40 and the
Steroid Aporeceptor-Associated Protein p23

Brian C. Freeman, David O. Toft, Richard I. Morimoto*

Molecular chaperones are essential proteins that participate in the regulation of steroid
receptors in eukaryotes. The steroid aporeceptor complex contains the molecular chap-
erones Hsp90 and Hsp70, p48, the cyclophilin Cyp-40, and the associated proteins p23
and p60. In vitro folding assays showed that Cyp-40 and p23 functioned as molecular
chaperones in a manner similar to that of Hsp90 or Hsp70. Although neither Cyp-40 nor
p23 could completely refold an unfolded substrate, both proteins interacted with the
substrate to maintain a nonnative folding-competent intermediate. Thus, the steroid
aporeceptor complexes have multiple chaperone components that maintain substrates

in an intermediate folded state.

Although the general biochemical proper-
ties of certain molecular chaperones are
well established, much less is known about
how different chaperones interact with
nonnative proteins in transient or stable
complexes (I). Within the eukaryotic cy-
tosol, heteromeric complexes containing
chaperones and other accessory proteins
have been identified, although their func-
tion remains uncharacterized. Perhaps the
best studied of these complexes are steroid
aporeceptors that contain the heat shock
proteins Hsp90 and Hsp70, a Dna] protein
(Hdj-1), p60 (Stil), p48 (HiP), p23, and
the immunophilins (FKBP54, FKBP52, or
Cyp-40) (2). The association of the chap-
erones Hsp90 and Hsp70 with glucocorti-
coid and progesterone aporeceptors serves
to maintain an inert high-affinity hormone-
binding state, which is activated by the
appropriate hormone signal (3). The p23
protein, which interacts with Hsp90, is also
required for high-affinity hormone binding;
in the presence of the benzoquinoid ansa-
mycin geldanamycin, interactions between
p23 and Hsp90 are disrupted (4). Although
it has been established that Hsp90, p48, and
Hsp70 can function as chaperones or co-
chaperones (5, 6) and that the immunophi-
lins are peptidylprolyl cis-trans isomerases
(7), the functional properties of the apore-
ceptor-associated proteins p60 and p23 re-
main uncertain.

To establish whether Cyp-40, p23, or
p60 exhibited properties of molecular chap-
erones, we purified these proteins to homo-
geneity and examined their activities in the
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refolding of a denatured protein substrate
alone or in conjunction with Hsp70 and
Hdj-1 (Fig. 1) (8). A step in the chaperone-
dependent folding reaction in which Hsp90
exhibits a preferential ability to interact
with a denatured protein substrate to main-
tain a nonnative folding-competent inter-
mediate has been characterized (6). This
intermediate state corresponds to a func-
tional nonnative protein that can undergo
additional folding events (promoted by
Hsp70 and Hdj-1) that lead to the appear-
ance of the enzymatically active native pro-
tein. Guanidine hydrochloride-denatured
B-galactosidase (B-Gal) did not spontane-
ously refold, even in the presence of Hsp90,
Hsp70, Cyp-40, p23, p60, or Hdj-1 (<6%
activity; Fig. 1A). However, in combina-
tion with Hsp70, Hdj-1, and nucleotide,
~54% of the native B-Gal activity was
recovered (Fig. 1B). The addition of Hsp90,
p60, Cyp-40, or p23 neither enhanced nor
inhibited the refolding activity of Hsp70
and Hdj-1 (Fig. 1B). As these experiments
were performed at a high molar excess
(500:1) of Hsp70 and Hdj-1 relative to the
unfolded B-Gal, the effects of Cyp-40, p23,
and p60 may not be apparent. Therefore,
additional experiments were performed
with elevated concentrations of 3-Gal (up
to 12:1) in which we observed a 2.5-fold
stimulatory effect of p23 on the refolding of
B-Gal, whereas Hsp90, p60, and Cyp-40
had no effect (9).

To determine whether Cyp-40, p23, and
p60 exhibited the maintenance activity
common to Hsp90 and Hsp70, we per-
formed order-of-addition experiments in
which unfolded B-Gal was diluted into buff-
er containing various chaperones at 37°C.
The ability of p60, Cyp-40, or p23 to inter-
act productively with a nonnative protein
was determined by dilution of the unfolded
B-Gal into refolding buffer supplemented
with Hsp90, Hsp70, p60, Cyp-40, Hdj-1, or
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p23. After incubation at 37°C, the reaction
was supplemented with Hsp70, Hdj-1, or
both and the recovery of 3-Gal activity was
monitored. Hsp90 was highly effective in
this chaperone maintenance and refolding
assay (Fig. 2). In the presence of Hsp90,
B-Gal was maintained in a folding-compe-
tent state throughout a 2-hour period at
37°C; likewise, both Cyp-40 and p23 were
effective in maintaining 3-Gal in a folding-
competent state (at a 25:1 or 100:1 ratio,
respectively), albeit at an intermediate effi-
ciency relative to that of Hsp90 at equiva-
lent concentrations (Fig. 2) (6). This main-
tenance by Cyp-40 and p23 of the interme-
diate folded state was not dependent on
nucleotide. Moreover, the ability of Cyp-40
to interact productively with the denatured
substrate was not affected by the immuno-
suppressant drug cyclosporin A, which sug-
gests that the Cyp-40 chaperone activity is
not dependent on peptidylprolyl cis-trans
isomerase activity (9). In contrast to the
chaperone activities of Cyp-40 and p23,
p60 (at concentrations up to ~1000:1 mo-
lar excess) did not interact productively
with denatured B-Gal (Fig. 2). Thus, p60
and Hdj-1 did not exhibit any activity as a
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Fig. 1. Cyp-40, p60, or p23 neither independently
refold denatured B-Gal nor stimulate the refolding
activity of Hsp70 and Hdj-1. (A) Incubation of de-
natured B-Gal with individual components (3.2
wM Hsp90, Hsp70, Cyp-40, p60, Hdj-1, or p23) is
insufficient to promote recovery of native 3-Gal
activity. (B) Addition of Hsp90, Cyp-40(GST),
p60, or p23 to a refolding reaction does not stim-
ulate the refolding activity of Hsp70 and Hdj-1.
The effect of the various components on refolding
mediated by Hsp70 and Hdj-1 was determined by
diluting the denatured B-Gal into refolding buffer
containing only Hsp70 (1.6 wM) and Hdj-1 (3.2
wM) or buffer supplemented with 3.2 uM Hsp90,
p60, Cyp-40(GST), or p283.
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molecular chaperone in this refolding assay.

We next investigated the nature of the
interaction between Cyp-40 or p23 and un-
folded B-Gal in the maintenance chaper-
one activity. Dilution of the unfolded sub-
strate into buffer containing Hsp90, Hsc70,
or Hsp70 prevents aggregation of the non-
native B-Gal and mediates an apparent col-
lapse of the unfolded B-Gal to a premono-
mer state (6). The relative effectiveness of
the molecular chaperones Hsp90, Hsp70,
Hsc70, Cyp-40, and p23 in maintaining the
nonnative B-Gal in a folding-competent
state may indicate that each protein inter-
acts in a distinct manner with the dena-
tured substrate. We resolved the chaperones
and B-Gal by native polyacrylamide gel
electrophoresis (PAGE) or treated the re-
action mixture with chymotrypsin. The re-
sulting full-length B-Gal or proteolytic frag-
ments of B-Gal were detected by protein
immunoblot analysis (Fig. 3) (10). Dilution
of unfolded B-Gal into Hsc70, for example,
maintained B-Gal in a soluble nonnative
folded state that could enter a native gel
(Fig. 3A) and was relatively resistant to
protease digestion (Fig. 3B) (6). Interaction
between Cyp-40 and unfolded B-Gal also

60 T _g Hsp70 + Hdj-1
—3 BSA, Hsp70 + Hdj-1
50 & —a— Hsp90, Hsp70 + Hdj-1
- 4 -p60, Hsp70 + Hdj-1
——~ "
2\: @ -Cyp-40, Hsp70 + Hdj-1
> 40 + —g -Hdj-1, Hsp70 + Hdj-1
S - & p23, Hsp70 + Hdj-1
=
o
& 30 + e
© &
P [
2 s
20 1 e
e
/'.'
10 1
RS A A
- 8 8 0

Time (min)

Fig. 2. Cyp-40 and p23 can maintain nonnative
B-Gal in a folding-competent nonnative state over
an extended period of time at 37°C. Denatured
B-Gal (final concentration, 3.4 nM) was diluted
1:125 into refolding buffer containing 1.6 wM p60,
Cyp-40(GST), Hdj-1, or p23, and incubated at
37°C. After 2 hours, Hsp70 (1.6 uM) and Hdj-1
(3.2 uM) were added and B-Gal activity was mea-
sured. As a positive control for folding activity, a
B-Gal refolding reaction was initiated at the 2-hour
time point by dilution of denatured B-Gal directly
into refolding buffer supplemented with Hsp70
(1.6 M) and Hdj-1 (3.2 wM). As controls for chap-
erone maintenance activity, the denatured B-Gal
(final concentration, 3.4 nM) was diluted into re-
folding buffer containing 1.6 wM BSA, Hdj-1, or
Hsp90 and incubated at 37°C. After 2 hours,
Hsp70 (1.6 M) and Hdj-1 (3.2 wM) were added
and B-Gal activity was measured at the indicated
time points.

resulted in a soluble substrate that was rel-
atively resistant to proteolysis. In contrast,
B-Gal coincubated with either p23 or p60
did not enter the native gel matrix and was
sensitive to protease digestion (Fig. 3, A
and B). These results are consistent with
the idea that the denatured B-Gal, in the
presence of p23 and p60, aggregates to a
high-molecular mass complex that cannot
enter the native gel. To test this hypothesis,
we incubated denatured B-Gal for 2 hours
at 37°C in the presence of bovine serum
albumin (BSA), Hsc70, p60, Cyp-40, Hdj-
1, or p23 and clarified the reactions by
centrifugation to separate the insoluble ag-
gregated protein. Samples from the super-
natant and pellet fractions were resolved by
SDS-PAGE, and the B-Gal was detected by
protein immunoblot analysis (Fig. 3C). Na-
tive B-Gal was found entirely in the super-
natant, whereas the denatured B-Gal aggre-
gated in the presence of BSA, p60, or Hdj-1
and was recovered in the pellet. In the pres-
ence of Hsc70, Cyp-40, or p23, the B-Gal
was detected in the supernatant fraction
(Fig. 3C), consistent with the partial main-
tenance of the nonnative B-Gal in a fold-
ing-competent state (Fig. 2) (6). Upon ad-
dition of Hsp70 and Hdj-1, B-Gal enzymatic
activity was recovered only from the Hsc70,
Cyp-40, and p23 supernatant fractions (9).

These results indicate that Cyp-40
shares features in common with Hsp90,
Hsc70, and Hsp70 by at least three criteria
of chaperone function (protein refolding
competency, solubility, and folding to a na-
tive-like proteolysis-resistant state). Al-
though p23 was as effective as Cyp-40 in
maintaining the intermediate nonnative
state of B-Gal and slightly stimulated
Hsp70 and Hdj-1 refolding activity, there

Fig. 3. Cyp-40 maintains B-Gal in a
soluble and proteolysis-resistant state,
whereas p23 does not have a similar
effect. Denatured B-Gal was analyzed
after incubation with BSA, Hsc70, p60,
Cyp-40, Hdj-1, or p23 by native PAGE,
limited proteolysis, or centrifugation to
resolve the soluble and pelleted mate-
rial. (A) Native gel analysis of the soluble
fraction of nonnative B-Gal. Denatured
B-Gal (final concentration, 68 nM) was
diluted 1:125 into refolding buffer con-
taining 3.2 uM BSA, Hsc70, p60, Cyp-

40, Hdj-1, or p23; incubated 2 hours at 37°C; and then re-
solved on native acrylamide gel electrophoresis and protein
immunoblot analysis with anti-B-Gal. (B) Protease sensitivity of
the denatured B-Gal was determined by incubation with the
protease chymotrypsin, which was added after the 2-hour

were critical features of the substrate-p23
interaction that were distinct. In contrast to
Cyp-40, Hsp90, and Hsp70, the interaction
between p23 and denatured B-Gal did not
lead to the collapse of B-Gal to a proteoly-
sis-resistant form that could readily enter a
native gel matrix despite its apparent solu-
ble state. This may suggest that p23 forms a
stable high—-molecular mass complex with
nonnative B-Gal that is incapable of enter-
ing a native gel matrix. The sensitivity of
the nonnative B-Gal to protease digestion
in the presence of p23 suggests that the
substrate is in an extended conformation.
To address whether maintenance of the
nonnative B-Gal in an extended conforma-
tion by p23 requires direct association, we
used the chemical crosslinkers glutaralde-
hyde and ethylene glycol-bis(succinimidyl)
succinate (EGS) to demonstrate that the
nonnative B-Gal formed a high-molecular
mass complex with p23 (9).

Our observations establish a role for
Cyp-40 and p23 as molecular chaperones,
yet p23 interacts with the nonnative sub-
strate in a manner distinct from that of
Cyp-40 and other chaperones. In contrast,
p60 does not function as a chaperone de-
spite its proposed role in complex formation
between Hsp90 and Hsp70 (2). Perhaps p60
serves to organize the molecular chaperones
into a functional unit and thereby enhances
their combined activities. However, we do
not detect p60-dependent synergistic effects
on Hsp90 and Hsp70 chaperone activities
(9). Thus, we propose that interactions be-
tween a nonnative protein and the molec-
ular chaperones can have at least three
distinct fates. Dilution of denatured B-Gal
at permissive temperatures (22° to 41°C)
into Hsp70, Hdj-1, and nucleotide results in

incubation at 37°C. Samples were removed either immediately

(0 min) before addition of chymotrypsin or after a 10-min incubation with chymotrypsin and resolved on
10% SDS-PAGE, and B-Gal was detected by protein immunoblot analysis with anti-B-Gal. (C) Sepa-
ration of the nonnative B-Gal into soluble and pellet fractions by centrifugation. As a third assay of the
folded state of the nonnative B-Gal, the reactions were separated into soluble or pellet fractions and
resolved on 10% SDS-PAGE, and B-Gal was detected by protein immunoblot analysis with anti-B-Gal.
M, molecular weight marker; P, pellet fraction; and S, supematant fraction.
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the recovery of the native enzymatically
active tetramer (0). Alternatively, interac-
tion with the individual chaperones Hsp90,
Hsc70, Hsp70, or Cyp-40 does not lead to
refolding of the denatured substrate to its
native state, but rather leads to an apparent
collapse of the denatured B-Gal to a stable
proteolysis-resistant nonnative intermedi-
ate that is subsequently responsive to the
refolding activity of Hsp70 and Hdj-1. We
suggest that the interaction between p23
and denatured B-Gal represents a distinct
activity that results in the maintenance of
the B-Gal in a proteolysis-sensitive, yet sol-
uble, nonnative state that can be converted
to the native state upon addition of Hsp70
and Hdj-1. These studies identify new
members of the family of proteins that act
as molecular chaperones. The involvement
of multiple proteins with apparently redun-
dant chaperone activities in heteromeric
complexes may provide diversity and spec-
ificity in the regulation of the biological
activity of associated protein substrates.
This may have implications for pathways of
hormonal regulation, signal transduction,
and immunosuppression (11).
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Influence of Nitrogen Loading and Species
Composition on the Carbon Balance of
Grasslands

David A. Wedin* and David Tilman

In a 12-year experimental study of nitrogen (N) deposition on Minnesota grasslands, plots
dominated by native warm-season grasses shifted to low-diversity mixtures dominated
by cool-season grasses at all but the lowest N addition rates. This shift was associated
with decreased biomass carbon (C):N ratios, increased N mineralization, increased soll
nitrate, high N losses, and low C storage. In addition, plots originally dominated by
nonnative cool-season grasses retained little added N and stored little C, even at low N
input rates. Thus, grasslands with high N retention and C storage rates were the most
vulnerable to species losses and major shifts in C and N cycling.

Humans have dramatically altered the cy-
cling of nitrogen on” Earth, doubling the
natural rate of N fixation and causing at-
mospheric N deposition rates to increase
more than tenfold over the last 40 years to
current values of 0.5 to 2.5 g N m ™2 year™!
in eastern North America and 0.5 to 6.0 g
N m™2 year~! in northern Europe (1). Be-
cause N is the primary nutrient limiting
terrestrial plant production, N addition is
causing shifts in plant species composition,
decreases in species diversity, and changes
in food-web structure in terrestrial ecosys-
tems (2=5). This N-driven terrestrial eu-
trophication parallels phosphorus-driven
eutrophication in lakes. Increased N depo-
sition may lead to greater C storage in soil
organic matter and vegetation, thus provid-
ing a sink for CO, and potentially explain-
ing the globally “missing C” (6). Despite
this, almost no experimental data exist on
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changes in ecosystem C in response to long-
term N addition in nonagricultural ecosys-
tems; rather, effects on C stores have been
estimated from models, giving divergent
predictions (6).

We present results of 12 years of exper-
imental N addition to 162 grassland plots in
three N-limited Minnesota grasslands that
varied in successional age, total soil C, and
plant species composition (7, 8). The
youngest field (Field A) was dominated by
vegetation with the C; photosynthetic
pathway, primarily nonnative “cool-season”
grasses and forbs, whereas the two older
fields (Fields B and C) were dominated by
native C, “warm-season” prairie grasses. Be-
cause other potentially limiting nutrients
were supplied and soil pH was controlled,
our study addresses the eutrophication ef-
fects of N loading while controlling for
acidification and related biogeochemical ef-
fects that might also affect natural ecosys-
tems (9, 10).

Nitrogen loading dramatically changed
plant species composition, decreased species
diversity, and increased aboveground pro-
ductivity in these plots (2, 7, 11). After 12





