
Genetic Data and the African Origin of Humans gle origin might break dom:n because there 
may have been nulnerous Alu(-)  chrotno- 
solnes In the  proposed migration event. 

A further problem with the  argument 
presented by Tishkoff et al. (1 )  is that ,  in  
light of other studies of pop~l la t ion coales- 
cent  times fur mitoct,ondrial D N A  16).  

S. A. Tishkoff et al. (1)  provide a n  intrigu- sisted of non-recombinant A h - )  chromo- 
somes, it would be reasonable to set hounds 
o n  N,p by using standard coalescent as- 

ing analysis of human genetic variation at  
the CD4 locus. W e  are concerned, hornrev- 
er, that their data do not provide significant 
suooort for the  estimate that modern hu- 

, , ,  

the  Y chromosome (3, and autosomal 
microsatellite markers 18). i t  seems LIII- 

. . 

sumptiolls to generate random trees with 85 
tios 13). 

mans first emerged from Africa in the  last 
100.000 years. It aooears that a robust esti- 

L , ,  

In this case, we also know the A h - )  
frequency in the total sample, and it is pos- 
sible to use the coalescent approach to get 
the distribution of mutations in the Alui - )  

, , 

likely tha t  the  Alu polymorphism is as old 
as 5 million years, as implicitly suggested. 
However, if it were this old, the  absence of 
the  A h - )  allele in chimpanzees a ~ o u l d  
not  rule out a n  age of more than  5 million 
years. T h a t  is, the  A l u ( - )  allele could 
have existed in  the  ancestral population of 

A 

mate of tllis migration time wlll require the 
use of numerous loci. 

T h e  estimate, which is predicated o n  a set 
of assumptions listed in their paper, depends 
in part o n  estimating the relative ages of the 
Alu deletlon [ A h - ) ]  allele ln African and 
non-African oooulations. Tishkoff et al. ar- 

chromosomes conditioned o n  that frequency. 
I11 order to do  this, are have generated trees 
of 806 chromosomes [the sample sire in the 
article (1 )] and selected only those that con- 
taln a clade of 132 chromosomes [the total 
number of A h - )  chromosomes]. T h e  rela- 
tive times of the nodes in  the tree of 806 are 

both  humans and chilnpanrees and subse- 
quently been lost from the  chimpanzee 

A k 

gue that among Africans, the frequency of 
Alu(-)  chrotnosolnes linked to the progen- 
itor [90 base pair (bp)] specific short tandem 
repeat polymotphism (STRP) allele is given 
by ~ - ~ \ i * ,  where N, is the age of the 
Alui - ) allele and I-L is the STRP mutation 

lineage. 
This analvsis sho~vs that as a result of the 

drawn from an  exponential distribution [the 
parameter is ( y )  between nodes n and n - 
11 ( 4 ) .  Taking the clade of 132 to correspond 
to the 132 Alui- )  chromosomes, we have 

shared ancesiry of individuals in a popula- 
tion, estimates of mutation times-or pop- 
ulation divergences based o n  a single mu- 
tating locus (STRP here)-can be highly 
unreliable, even when large samples of in- 
dividuals are used. 
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rate. (They give a n  equivalent expression 
for non-Africans, in  ~ v h i c h  N ,  reoresents 

now specifled the relationships within a sim- 
ulated data set in which all the relative 

u A 

t he  titne of migration out of Africa.) U n -  
der the  assutnptio~l of n o  back mutations, 
this expression does give the  expected fre- 
quency of the  90-bp allele o n  Alu( - )  
chromosomes. Because many of the  ~ n d i -  

branch lengths have been drawn from the 
appropriate conditional distribution. 

In  the original data set, 47 of the 132 
Alu( - ) cl~romoso~nes were recombinants 
and n.ere excluded from the analysis. In or- 

vlduals in  the  sample will l k e  a shared 
ancestry, the  alleles found in different in- 

der to further condition our olvn analysis on 
this infc~rmation, we have selected only 
those trees in which a clade of 47 lies wlthln 
the clade of 132 Alui- )  chromosomes. 

dividuals are highly correlated, and so a n  
estimate based o n  this nrocedure rnav have REFERENCES AND NOTES 
a n  extrenlely high variance. 

In estimating the age of the Alu(-)  
This  procedure has allowed us to  gen- 

erate trees of 85 individuals whose rela- 
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Hudson, In Mechanisms of Molecular Evolurion, N 
Takahata and A. G. Clark, Eds. (Sinauer Sunder- 
land, MA, 1992). pp 23-36. There is an implicit 
assumption of constant populat~on sze here, t hs  
w~l l  lead to a conservat~ve lower bound on N,p. 
However. it should be noted that the observat~on of 
both the Alu(-) mutation and the Alu(-) recombl- 
nant type being in hgh  frequency argues against a 
  nod el as extreme as exponentla1 populat~on 
growth [M. Slatk~n and R. R .  Hudson. Generics 
129, 555 (1991)l. 

5. This result IS based on at least 5% of the simulated 
sub-trees havng a mutant frequency at least as high 
as that observed bv Tishkoff et a/ for trial values of 

tionships to the  larger sample closely mim- 
ic those in  the  original data set. Each 

mutation, it is convenient to consider the 
problem in a coalescent framework (2 ) .  In  
this view, the individuals in a sample are 
related to one another bv some ancestral 

u 

simulation specified the  relative lengths of 
all t he  branches, and so picking a trial 
value of hT,p for the  top of the  A l u ( - )  
clade deterlnined the  expected number of 
mutations along each branch. For each 
simulated tree, and trial value of N,p, the  
number of mutations o n  each branch was 

tree (strictly speaking, this is ancestry a t  a 
specified locus). W h e n  a mutation occurs at 
some point o n  the  tree, all the  individuals 
who trace their ancestry through that point 
o n  the  tree will carry that m~ltatioll  (recall 
the assumption of no  hack m~ita t ion) .  This 
means that a mutation that occurs near the 
root of the tree 1~111 often he carried out by 
a large proportion of the sample. 

W e  have investigated the problem of 
establishing a lom~er boulld o n  N,,p, given 
the authors' observation that 34 out of 85 
non-recombinant African Alui - ) chrotno- 

drawn fro111 a Polsson distribution with 
that  expected value. 

Our  results, based o n  1@,0@0 random 
trees tha t  meet the  above criteria, are 
rather striking. T h e  value of hT,p, esti- 
mated usille the  lnethod of Tishkoff et al., 
is 0.916; however, we have found the  lorn:- 
er bound to  he 0.12 a t  the  5 %  level of 
statistical significance (5 ) .  This illdicates 
tha t  their estimate of N,  CL cc1~11d be serl- 

IN,(* 2 0  12. 
6. R.  L. Cann. M. Stonekng. A. C. Wilson, !Nature 325. 

31 (1987). L. Vigilant, M. Stonekng. H. Harpendng. 
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somes carry the progenitor allele [some of 
the Alu( - ) chromosomes seemed to be de- 7. R. L. Dorit, H. Akashi. VV. Gilbert. Science 268. 11 83 

(1995): M. F. Hammer ~Vature 378.376 (1 995). P. N scended from a single recombina~lt  and 
were excluded from the original analysis]. 
Their estimate of the lnigratio~l time out of 
Africa is crucially dependent o n  this lower 
bound. N o  detailed theory exists fc~r finding 
such a bound analytically. W e  can, howev- 
er, approximate confidence intervals with 
the use of simulations of the  coalescent 
process. If the entire African sample con- 

ously in error, and even without taking 
into account the  variance in the  other  
estimates 111 the  original calculation, the  
technique used cannot  reject a migration 
time out  of Africa as much as sevenfold 

, , 
~oodiel low. ibid.. p. 379 

8 D. B. Goldstein. A. R.  Ruiz Linares, L L Cavai- 
Sforza, M W Feldman, Proc Narl. Acad. Sci. U.S.A 

26 April 1996: accepied 28 Augilsi 1996 greater than  the  original estimate. 
It is also nosslble to analrze the  estimate 

of NBp in  a slmilar manner. In this case, 
however, the  coalescent assumption of sin- 

Response: Distinguishing between the "Out- 
of-Africa" model and the "Multiregional" 
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model of human evolution depends o n  the  
delnonstration of evolutionarily recent time 
depths for alleles f i~und  in  non-African pop- 
ulations. Multiregional   nod el enthusiasts 
also argue fur a n  African origin, hut place 
this orig~ll  a t  1 million years before present 
(Y.B.P.), the  approxi~nate time a t  a ~ h i c h  
H o m o  erectus re~nains  can he identified out- 
side Africa. Thus, for the  "Out-of-Africa" 
model to be accepted, it 1s critical that 
allellc time depths be nlore recent than 1 
million Y.B.P. 

In  support of the  recelnt "Out-of-Africa" 
model, we (1 )  attenlpted to show that a 
smgle.cl~rornosomal segment, a C D 4  locus 
haplotype composed of an  Alu(-)  allele 
and a n  STRP allele of 90 hp separated by 10 
kb, had a recent time depth in non-Afrl- 
cans. As \ve emphasized in the artlcle, 111 

the absence of knom:n recolnbinatioll he- 
tween the  sites or mutation rates a t  the 
STRP marker, it is impossible to estimate 
an  exact time of origin of this haplotype in  
non-Africans. Honre~~er ,  by ~naking certain 
conservative assumptions, ~t is possible to 
place llkely upper bounds f i ~ r  this date. W e  
used several methods of analysis to d e r n ~ e  
a n  upper boulnd for the  coalescent date for 
non-Africans. O n e  n.as based o n  the  vari- 
ance observed a t  the  STRP o n  Alu(-)  
chromosomes outside versus nlside Africa; 
this led to a date of 167,000 Y.B.P. Another  
analysis was based o n  the proportloll of 
Alu(-)  chromosonles with STRP alleles 
less than 110 bp outs~de versus inside A f r ~ c a  
that carry the progenitor (90 by) STRP 
allele. As a n  upper houlld o n  this propor- 
tion, are examined its variability across five 
geographically diffi~se sub-Saharan African 

that had Illore than 10  Alu( - )  
chromosomes. T h e  proportion carrying the  
90-hp repeat ranged fro111 0.25 in  the  
K'oloff to 0.53 in the Herero. W e  used 0.53 
as a n  upper bound f i ~ r  this value across 
sub-Saharan Africa. For no11-Africans, he- 
cause of the  slllall nulnber of Alu( - )  chro- 
lnosornes lnot carrying the 90-hp allele, we 
assumed a Poisson distrlhutlon to obtaln a 
lower 95% confidence bound for this num- 
ber. W i t h  these two bounds, we obtained a 
m a x i m ~ ~ r n  age of 313,000 Y.B.P. W e  also 
performed other conservative alnalyses 
[notes 40 and 41 in ( I ) ] ,  which gave addi- 
tional estimates of lnaxilllal dates ranging to 
450,000 Y.B.P. 

All of these estilnates of r n a x i ~ n u ~ n  age 
depend o n  the assumption that the  A h - )  
allele has a ~ n a x i ~ n ~ l n l  age of 5  nill lion years 
and originated m Africa. T h ~ s  upper-bound 
estimate was used hecause the  allele aras not 
observed in chimpanzees or gorillas. Prit- 
chard and Feldman state that the  mutation 
could technically be even older, but they 
also agree that ~t is far more likely that t h ~ s  
polylllorphlsm is less than 5 lllillion years 

old. A younger age seems likely because of 
the  lifetinle survival distribution for neutral 
mutations (2) .  In  fact, our data areue for a 
more recent origin, albeit still ancient [note 
42 in (1 )]. Cornparing variation in STRP 
allele slze (calculated by any of several 
methods) shows that Alu(-)  chromosomes 
have less variation than do  A l u ( + )  chro- 
mosonles and are therefore likely to have a 
Inore recent coalescent. 

Pritchard and Feld~nan use coalescent 
theory and a si~nulatloll to calculate a lower 
95% confidence bound for hT,k. T h e  sam- 
nle of chrolnoso~nes 011 which thelr analvsis 
is based derived from 10 extremely d i spa i t e  
African populations, spanning the entire 
continent,  for a:hich there  nus st have been 
considerable relative endogamy. Such pop- 
 lati ti on structure would make Inore recent 
ages fix the Alu(-)  allele far less likely 
than would appear in Pritchard's and Feld- 
man's simulation (3) .  Also, it 1s inlplausible 
that the  nooulation has been constant in  

k A 

size since the  Alu deletion first occurred. Its 
rather h ~ g h  frequency 111 A f i ~ c a  suggests a 
rapid increase in  the  nulllbers of this chro- 
lnosonle soon after its introduction. Such 
growth would lead to a snlaller estinlate of 
variance for N,k than that calculated by 
Pritchard alnd Feldman. 

Still, even under assunlptions ~mplausi- 
bly Inore conservative than ours, the  upper 
bound for the  estimate of the  coalescent 
date of the  Alu(-)  chrolnoso~ne 111 non-  
Africans is about 700,000 Y.B.P. (using 
Pritchard's and Feldman's estimate), still 
short of the 1 lnillion years speculated by 
the  "Multiregional" model. Their allalysis 
thus supports our conclus~on that a more 

recent date for a n  exodus of modern hu- 
mans fro111 Africa is Inore likely and that 
the CD4 data argue f i ~ r  the  "Out-of-Africa" 
nlodel rather than for the  "Multiregional" 
model. 

W e  originally stated (1 ) that  the  data 
we have obtainilii fur the  C D 4  locus rep- 
resent only a single realization of evolu- 
tionary history fur Africans and non-Afri- 
cans. As  Pritchard and Feldman point out ,  
it is tenuous to  derive statistical distribu- 
tlons for coalescent tnnes based simply o n  
theory because of the  arbitrary demo- 
graphic assumpt~ons required. T h e  best 
way to d e r ~ v e  such a distribution 1s empir- 
ically, combining the  results of nulnerous 
different l o c ~ .  Exanlinatioln of llnkage dis- 
eiluilibrium patterns for other systems in a 
fashion sinlilar to  what we have presented 
for C D 4  should provide more definitive 
conclusions regarding the  coalescence 
time fur non-Afr~cans .  
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Late Permian Extinctions 

I n  their article "Comparative Earth history 
and Late Permian Inass extinction" ( I ) ,  A .  
H.  Knoll et al. suggest that Late Permian 
extinctions were caused by the release to the 
atmosphere of massive quantities of carbon 
dioxide (CO,)  from the deep ocean; that the 
CO, bulldun 111 the ocean resulted from 17ri- 
mary production in the surface layer; and 
that, despite sluggish ocean circulation rates, 
the release of phosphorus from decaying or- 
iiallic matter in deeo anosic waters a~ould - 
have been sufficient to further stinlulate 
nhotosvnthesis ( 2 ) ,  ~vhich  would in turn 
have lhd to further organic decay ( that  is, 
posit~ve feedback) before oceanic o17erturn 
and release of COP 

Knoll et al. otherwise deemnhasize the  
role of nutrients in the  Pernlian extinctions, 
but if ocean circulation had been sufficient- 
ly slum: in the Late Permian, phytoplankton 
could have largely stripped the surface 

mixed layer of llutriellts (3) so that a "nu- 
trient collapse" could have occurred. Also, 
the expansion of gymnosperms during this 
time (4)  and the  greatly increased interior 
drainage associated with the for~nation of - 
the Pangean supercontinent (5 )  could have 
secluestered large amounts of nutrients 011 

land ( 4 ,  6 ) .  Greatly decreased n ~ ~ t r i e n t  
availability durme the Late Perlllial~ is con- 
slstent \v1;11 the 'loss of many suspension- 
feedine invertebrates and nekton and the  
differential survival of illfaullal taxa that fed 
011 organic-rich sediment (6 ,  7, 8), as de- 
scribed by Knoll et al. Moreover, hefi~re 
Late Per~nian extinctions, the  Permo-Car- 
boniferous was a time of increasing nutriellt 
and f i~od  availability in  the  water column 
( 6 ,  7). Thus, just as global ~nar ine  ecosys- 
tems were beco~ning increasingly depen- 
dent o n  greater food ava~lahility in the  Late 
Paleozoic, the rug, so to speak, could have 
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