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CRNF, a Molluscan Neurotrophic Factor That 
Interacts with the p75 Neurotrophin Receptor 

M. Fainzilber," A. B. Smit, N. I. Syed, W. C. Wildering, 
P. M. Hermann, R. C. van der Schors, C. Jimenez, K. W. Li, 

J. van Minnen, A. G. M. Bulloch, C. F. Ibatiez, 
W. P. M. Geraerts 

A 13.1 -kilodalton protein, cysteine-rich neurotrophic factor (CRNF), was purified from the 
mollusk Lymnaea stagnalis by use of a binding assay on the p75 neurotrophin receptor. 
CRNF bound to p75 with nanomolar affinity but was not similar in sequence to neuro- 
trophins or any other known gene product. CRNF messenger RNA expression was 
highest in adult foot subepithelial cells; in the central nervous system, expression was 
regulated by lesion. The factor evoked neurite outgrowth and modulated calcium cur- 
rents in pedal motor neurons. Thus, CRNF may be involved in target-derived trophic 
support for motor neurons and could represent the prototype of another family of p75 
ligands. 

T h e  survival, ~ifierentiation, and plasticit\- 
of vertebrate neurons are in f l~~enced  hy 
neurotrophic factors, the liest characterized 
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of which are the neurotrophins ( 1 ) .  Inver- 
tebrate neuronal systenls have provided use- 
ful luodels for developnlent and regenera- 
tion of the nervous s\-stem; ho \~ever ,  effc)rts 
to clone neurotrophin or neurotrophin re- 
ceptor-like sequences in invertebrates have 
so far been unsuccessful (2 ) .  Indeed, it has 
been argued that neurotrophic factors may 
he a comparatively late aildition to the 
arsenal of ~l~echanis lns  controlling nervous 
system development and regeneration, and 
that such factors may be required only in 
long-lived organisms with complex nervous 
systems (2) .  T o  exanline the  existence ot 
neurotropl~in-related molecules in an  inver- 
tebrate. we fi~cused o n  the snail Lvrn~iaen 

C. F. baiiez, Laboratory of Molecular Ne~lrobology, De- sta,qnnlis, wlIiclI is used as a llloL{el ill cellular 
partment of Ne~lroscence. Karonska ns t t u te  Berzeus 
Laboratories Bulldlnq, Doktorsrlnqen 2A, s-l 71 77 and ln~lecular  . . neuroscience ( 3 ,  4 ) .  L v -  
Stockholrn, Sweden. tlaea hemolvmph or central nervous s\-stem 

.To whom correspondence s h o ~ l d  be addressed at the (c~S)kconditiolled (CM) evoke 
Karollnska Inst~t~l te E-mall: m~chael@cajal.mbb.k~ se neurite outgrowth fro111 snail motor neu- 

rons. This activity can he lnlill~icked b\- 
musine nerve gr0wt11 factor (NGF) ,  ~vhic11 
f~~r the rmore  has acute effects o n  calcium 
currents in Lymnaea neurons (4) .  

Initial attenlpts to clone a Lymncien neu- 
rotrophin ho111o1og by polymerase chain re- 
action (PCR) (711 the  basis of conserved 
regions of vertelirate neurotrophins (5) 
were not s ~ ~ c c e s s f ~ ~ l .  Therefore, we adopted 
a functional approach to target neurotro- 
phin famil\- members. All neurotrophins in- 
teract x i t h  twc receptor t\-Lies-l~ga~~i~-spe- 
cific receptor tyrosine kinases of the Trk 
famil\- (6 )  and a shared receptor termed 
p i 5  (7). Starting iron1 the  pren~ise that  a 
putative molluscan neurotrophin homolog 
might also hind to the  p 7 i  receptor, we 
assayed Lymnnea C M  anL1 hemoll-mph fur 
inhibition of binding of '"I-lai~eled N G F  
to A875 human  ~ l ~ e l a n o l l ~ a  cells, lvhich 
express high levels of p75 hut n o  Trk  
receptors. H e ~ n o l y n ~ p h  and CM-derived 
fractions inhi i~i ted N G F  binding to  p i 5  in 
a dose-dependent nlanner (Fig. 1 A ) .  Fur- 
ther f ract~onat ion revealecl that  NGF-'{is- 
p laci~lg  fractions from 170th C M  and he- 
mol\-mph had identical chromatograpl~ic 
elution properties and contained a n  al- 
nlost identical protein mass of 13.1 kD. 

T h e  higher amounts of the 13.1-kD pro- 
tein in 11emolymp11 enahled its purification 
to homogeneit\- from a pool of 7 liters of 
snail hemolymph, using matrix-assisted la- 
ser desorption ionization Illass spectrometry 
(MALDI-MS) to monitor the purification 
(8). T h e  final purified fraction (Fig. 1B) 
contained a ~ua jo r  component of 13.1 kD 
and a ruinor coruponent of 13.97 kD, as 
analyzed by RjlALDI-MS (Fig. I C ) .  I~l ternal  
and NH1-terminal peptide se~luences of 
hot11 proteins were identical and novel. 
These sequences served to design prinlers 
for PCR and eventual isolation of a cDNA 
clone (9 ) ,  which encoded a n  open readil~g 
frame of 121 anlino aclds, including a n  
18-residue putative signal sequence fol- 
lorved 177. a mature product of 103 anlino 
acids containing all the peptide sequences 
previously obtained (Fig. 1E). T h e  sequence 
was not significantly sin~ilar to any known 
protein or D N A  secluence in the pul~lic 
databases. T h e  protein molecular Inass pre- 
dicted from the  cDNA sequence is 12.5 kD, 
which is close to the measured masses of the  
purified CRNF isoforms and suggests that 
the  latter may arise fro111 different extents of 
glycosylation on the single consensus N- 
gl\-cosylation site (Fig. 1E). T h e  secluence 
contained a high number of cysteine resi- 
ciues, co~npris i~lg  over 10% of the  protein, 
hence the name C R N F  (cysteine-rich neu- 
rotrophic factor). 

A n  anti-peptide antiserum Ivas raised 
(9 )  against a synthetic peptide based o n  the 
COOH-terminal region of the  CRNF se- 
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quence. Immunoreactive bands with appar- 
ent electrophoretic mobilities of 14 to 16 
kD were observed upon protein immuno- 
blotting of Lymnaea foot tissue homoge- 
nates (Fig. ID). This antiserum was subse- 
quently used to monitor production of re- 
combinant CRNF in baculovirus-infected 
insect cells (9). Recombinant CRNF was 
readily produced in baculovirus-infected in- 
sect cells, but was not secreted, and could 
be identified in cell lysates as two major 
immunoreactive bands with apparent mo- 
lecular masses of 18 and 24 kD (Fig. ID). 
No CRNF immunoreactivity could be 
found in mock-infected cells. The larger 
apparent mass of the protein produced in 
baculovirus could be due to incomplete pro- 
cessing of the signal peptide in the insect 
cells or to a higher extent of glycosylation. 

Both native and recombinant CRNF in- 
hibited binding of 1251-NGF to p75 in a 
dose-dependent manner with measured me- 
dian inhibitory concentrations (IC,,'s) of 
approximately 15 nM for the native protein 
and 45 nM for recombinant CRNF (Fig. 
2A). CRNF displacement of NGF from p75 
could be mediated by a number of different 
mechanisms, including competitive binding 
of CRNF to p75 or a direct interaction 
between CRNF and NGF. We used surface 
plasmon resonance (10) to determine di- 
rectly whether CRNF can interact with 

Fig. 1. Identification and pu- 
rification of CRNF. (A) Lym- 
naea hemolymph (HL, gray 
bars) and CM-derived frac- 
tions (black bars) inhibit bind- 
ing of 1251-NGF to p75 recep- 
tors on A875 melanoma cells 
in a dose-dependent man- 
ner. Striped bar indicates 
control. (B) Final reverse- 
phase high-performance liq- 
uid chromatography step in 
the purification of CRNF, Vy- 
dac C4, with a flow of 1 mV 
min. Gradient of acetonitrile 
in aqueous 0.1% TFA is 
shown by dashed line; CRNF 

NGF or with a soluble p75 extracellular 
domain (Sp75) (1 1). NGF or CRNF were 
immobilized separately on BIAcore sensor 
chips, and these chips were subsequently 
used to monitor binding of the other ligand 
or of Sp75. No interaction between NGF 
and CRNF was observed. In contrast, Sp75 
bound comparably to both immobilized 
NGF or CRNF, whereas no binding was 
observed on control chips (Fig. 2B). Titra- 
tion of Sp75 binding to CRNF (Fig. 2C) 
enabled calculation of kOff and k,, from the 
dissociation and association phases of the 
curves, respectively. The apparent equilib- 
rium dissociation constant (Kd) subsequent- 
ly calculated from these kinetic measure- 
ments was 50.9 ? 9.7 nM, which is in the 
same range as the IC,, for competitive dis- 
placement of NGF from A875 cells. 

In order to gain insight into possible 
physiological roles of CRNF, we examined 
its mRNA expression in various tissues of 
the adult snail by ribonuclease protection 
assays (RPAs). High CRNF mRNA expres- 
sion was almost exclusively restricted to the 
foot, with low levels in mantle tissue (Fig. 
3A). In addition, CRNF expression could 
be induced by mechanical lesion of CNS 
explants in vitro (Fig. 3B), suggesting a role 
for CRNF in injury repair. In situ hybrid- 
ization was performed to localize CRNF 
expression sites in the peripheral tissues 
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ing under the peak. (C) - 

MALDI-MS on the purified 31 C N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ & ~ ~ ~  60 
peak reveals two protein 
masses of 13.1 0 and 13.97 61 ACMQPCWDLGIPCRTQCYKVYDQCTSDCPY 90 . 

kD. (D) SDS-polyacrylarnide 91 TVPNPYECFTTCFKERSPRSNLKYPKQILM 120 
gel electrophoresis of puri- 
fied CRNF under reducing 121 Q 

conditions reveals two bands upon Coomassie staining after blotting (lane 1). An antiserum to CRNF 
peptide identified a 14- to 16-kD band on protein irnrnunoblots of extracts of Lymnaea foot tissues 
(lane 2). Insect cells infected with a CRNF-recombinant baculovirus revealed irnrnunoreactive bands 
of higher apparent mass in insect cell lysates (lane 4), but not in conditioned medium (lane 3). 
Molecular size markers are indicated. (E) Amino acid sequence of CRNF, as predicted from the cDNA 
clone. The putative signal sequence is in italics, cysteine residues are in bold, one consensus site for 
N-linked glycosylation is indicated by an asterisk, and the stop codon is indicated by a dot. 
Sequences corresponding to the peptides previously obtained by Edman degradation are under- 
lined. Single-letter amino acid abbreviations are as in (18). 

comprising the foot. Intense labeling was 
observed in a distinct layer of large globular 
subepithelial cells (Fig. 3C). This region of 
the foot has extensive arborization from the 
pedal nerves on the way to their target cells 
(12). . , 

The highly restricted pattern of expres- 
sion of CRNF mRNA in adult foot might - 
indicate trophic roles for this molecule on 
peripheral and pedal neurons innervating 
the foot. Adult Lymnaea neurons are not 
dependent on exogenous trophic factors for 
survival in vitro, and furthermore, develop- 
mental programmed cell death has not been 
observed in molluscan CNS (13). However. . , 

trophic activity in molluscan neurons can 
readily be monitored as neurite outgrowth 
in isolated neuronal cultures (3, 4). CRNF 
activities were examined, using Lymnaea 
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Fig. 2. Binding of CRNF to the p75 neurotrophin 
receptor. (A) Inhibition of lZ51-NGF binding to 
A875 cells (79) by native (solid squares) and re- 
combinant CRNF (empty squares). (B) Surface 
plasmon resonance measurement of the interac- 
tion of 0.5 pM soluble p75 extracellular domain 
(Sp75) with control chips, and chips on which 
NGF or CRNF was immobilized (20). Arrows indi- 
cate start and ending of Sp75 application. Note 
the association and dissociation curves observed 
on NGF or CRNF chips, in contrast to the unspe- 
cific mass effect seen on the control chip. RU, 
resonance units. (C) Titration of Sp75 interaction 
with immobilized CRNF. Concentrations of Sp75 
in pM are indicated for each trace. 
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pedal A motor neurons (PedA), which are a 
potential target population for this factor. 
Purified CRNF evoked neurite outgrowth 
from PedA neurons in vitro (Fig. 4, A 
through C), with responses including neu- 
rons that displayed multiple short neurites 
tipped with small growth cones (Fig. 4B), 
whereas other neurons formed large growth 
cones that approached the cell body in 
diameter (Fig. 4C). This response peaked 
within 24 hours and was dose dependent, 
with a maximal effective concentration of 

25 pM (Fig. 4D). The lower response seen 
at higher doses of CRNF is reminiscent of 
the bell-shaped dose-response relationships 
previously reported for several vertebrate 
trophic factors in outgrowth assays [for ex- 
ample, ( 1411. 

Murine NGF enhances high-voltage ac- 
tivated (HVA) calcium currents in Lym- 
naea Parietal A motor neurons (ParA), 
within seconds of application (4). There- 
fore, we examined the effects of CRNF on 
HVA calcium currents in ParA neurons. 

Fig. 3. Expression of CRNF B 
~ R N A  in adult Lymnaea tis- 
sues. (A) RPA on 5 pg total 
RNA from different adult tis- 
sues revealed high expres- 
sion of CRNF mRNA in the 
foot and lower levels in man- 
tle tissue (overnight expo- 
sure) (27). Position of a 380- 
nucleotide band is indicat- 
ed. (6) RPA analysis of 
CRNF mRNA in control CNS 
compared to CNS after 36 
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Buccal mass 

Sallvary gland 

Foregut 
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Control CNS 

Culture 
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hours in culture and cultured ~ ~ n d g u t  
CNS after crush lesion to the 
interganglionic connectives Mantle 
and commisures. We used . 

CNS 0 20 pg total RNA from each 
sample, and exposure time Yeast tRNA I 

was 7 days. (C) Localization 380 
of CRNF mRNA expression 
in adult foot by in situ hybridization. Intense signal was observed in a layer of large subepithellal cells. 
No signal was detected using a control probe. (E, epithelial layer; Ct, connective tissue layer; scale 
bar, 50 pm.) 

Fig. 4. Effects of CRNF 
on Lymnaea motor neu- 
rons. (A through D) 
CRNF evokes neurite 
outgrowth from cultured 
PedA motor neurons. 
(A) Control cultures 
showed no neurite ex- 
tension. (B and C) Neu- 
rons developed pro- 
cesses and growth 
cones 24 hours after D E F 
treatment with CRNF. Voltage (mV) 
(D) Dose-response rela- 80 Control ' -40 -20 0 20 40 60 
tion of the number of 
cells exhibiting neurite 5 : C  

outgrowth in response 40 
to CRNF (n = 6 for each ; 
data point). (E and F) ur CRNF 
Modulation of HVA cal- 0 
cium currents in Right 0 50 
Parietal A motor neu- CRNF (pM) Time (ms) -6 
rons by CRNF. (E) Calci- 
um current recorded under whole-cell clamp techniques at a test potential of 0 mV (holding potential 
of -80 mV) before application of CRNF (control) and 10 min after the start of an application of 1 nM 
CRNF. The early peak current was markedly increased in the presence of CRNF. (F) Current-to- 
voltage relations of peak (squares) and late (circles) currents show that the effect of CRNF appears 
restricted to the peak current. Open symbols are peak and late current values prior to CRNF 
application and filled symbols are values 10 min after the start of CRNF application. Methods were as 
described (4). 

Superfusion of ParA neurons in vitro with 1 
nM CRNF modulated the HVA calcium 
currents in 50% of the cells tested (n = 8). 
In ParA cells expressing both fast- and 
slow-inactivating calcium currents. CRNF - 
enhanced the peak calcium current (Fig. 
4E). The current-to-voltage relation (Fig. 
4F) illustrates that the effect of CRNF was 
primarily on the fast-inactivating current, 
whereas the slow-inactivating current re- 
mained largely unaffected. In contrast to 
previous observations with murine NGF, 
the effects of CRNF on the HVA calcium 
currents did not reverse within a few min- 
utes of washing. Thus, CRNF differentially 
modulated the various comDonents of HVA 
calcium currents expressed in Lymnaea mo- 
tor neurons, and may play a role in plastic- 
ity-related processes in Lymnaea CNS. 

We propose that CRNF is an inverte- 
brate neurotrophic factor (15) because it is 
expressed in a restricted pattern and, at low 
levels, it has trophic and plasticity-related 
activities at low concentrations on poten- 
tial target neurons and was identified on the - 
basis of its interaction with the p75 neuro- 
trophin receptor. CRNF shares no obvious 
sequence similarity with mammalian neuro- 
trophins, suggesting that properties in com- 
mon between these two families may have 
arisen from convergent evolution. Alterna- 
tivelv. as our data do not rule out the nos- , , 
sibility that neurotrophins exist in Lymnaea, 
CRNF may represent the prototype of a 
novel family of p75 ligands. A number of 
gene families important in axon guidance 
and wiring of the nervous system were first 
identified in invertebrates (16); therefore, 
the phyletic distribution of CRNF is of 
primary interest. 
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T Cell Telomere Length in HIV-1 Infection: No 
Evidence for Increased CD4+ T Cell Turnover 

Katja C. Wolthers, G. Bea A. Wisman, Sigrid A. Otto, 
Ana-Maria de Roda Husman, Niels Schaft, Frank de Wolf, 
Jaap Goudsmit, Roel A. Coutinho, Ate G. J. van der Zee, 
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Progression to acquired immunodeficiency syndrome (AIDS) has been related to ex- 
haustion of the regenerative capacity of the immune system resulting from high T cell 
turnover. Analysis of telomeric terminal restriction fragment (TRF) length, a marker for 
cellular replicative history, showed that CD8+ T cell TRF length decreased but C D 4  T 
cell TRF length was stable during the course of human immunodeficiency virus type-1 
(HIV-I) infection, which was not explained by differential telomerase activity. This ob- 
servation provides evidence that turnover in the course of HIV-I infection can be in- 
creased considerably in CD8+ T cells, but not in CD4+ T cells. These results are 
compatible with CD4+ T cell decline in HIV-I infection caused by interference with cell 
renewal. 

In the course of HIV-1 infection, C D 4  T 
cells are progressively lost, CDS- T cell iium- 
bers gradually increase, and ~mmune  function 
is progressively disturheii ( I  ). Chronic 1111- 
i1illlle activatiini LS reflected hy an  activated 
  he no type of CD8- T cells in blood and 
l p p l i  nodes ( 2 ) ,  high c o n c e ~ i t r a t ~ o n ~  i ) t  cir- 
culating HI\'-specific c y t o t ~ ~ i c  T lympho- 
cyte (CTL) effectors that are highly activat- 
eil ( 3 ) ,  and activation-induceil progra~nlned 
cell ileatli that affects both CD8- and CD4+ 
T cells (4) .  CD4+ T cell numl~ers ileclme ,it 
an accelerateil rate about 1.5 to 2 years be- 

tore the onset of AIDS (5).  It has been 
proposed that HI\'-inducec? rapid CD4+ T 
cell turnover eventually leads to exhaustio~i 
of tlie regenerative capacity of the iminune 
system (6.  7).  

T o  stuily T cell turnover, we analyzed 
telolileric TRF length. Telorneres are the 
extreme ends of chrolnosornes that consist 
of T T A G G G  repeats, -lC kh long in hu- 
mans (ti). After each round of cell division 
telollleric sequence is lost (9-1 2 )  because of 
the  i~lahility of D N A  polyliierases to f ~ ~ l l y  
replicate the  5 '  elid of tlie chromosome 

forrned w t h  equal amounts of total PNA, usng PPAII 
reagents IAmb~on). Equal oad~ng was \ver~f~ed on 
ethldum b,omde-stalned gels and by parallel PPA 
\:>!th rboprobes for u b q u t o ~ ~ s y  expressed Lymnaea 
lnPNAs [fructose 1,6-bphosphate aldolase (Gen- 
bank accesson number U73114l for the experment 
of F g  3A and a CNS tyrosne knase rA. G M BLI- 
loch, unp~lbshed data) for F I ~  381 
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( 1  3).  Cross-sectional st~ldles liave revealed 
a loss of 30 to 5C base pairs (hp) per year for 
human leucocytes in v l ~ o  (9 .  10,  14) ,  and 
telomere length has been used as a marker - 
for replicative history and the  proliterative 
potentla1 of cells (9-1 1 , 15,  16) .  T o  over- 
come :he considerable variation in lympho- 
cyte teloniere length between donors of the  
same age (1 7 ) ,  we analyzed TRF length o n  
sequential peripheral b l o ~ d  mononuclear 
cell (PBMC) samples. For these analyses, 
the  subtelomeric probe p T H 2 1  (18)  lvas 
chosen because it does not result In dispro- 
portionally high signals for longer telo~lleric 
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