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Neuroprotection by Aspirin and
Sodium Salicylate Through
Blockade of NF-kB Activation

Mariagrazia Grilli,* Marina Pizzi, Maurizio Memo,
PierFranco Spano

Aspirin (acetylsalicylic acid) is a commonly prescribed drug with a wide pharmacological
spectrum. At concentrations compatible with amounts in plasma during chronic anti-
inflammatory therapy, acetylsalicylic acid and its metabolite sodium salicylate were
found to be protective against neurotoxicity elicited by the excitatory amino acid glu-
tamate in rat primary neuronal cultures and hippocampal slices. The site of action of the
drugs appeared to be downstream of glutamate receptors and to involve specific inhi-
bition of glutamate-mediated induction of nuclear factor kappa B. These results may
contribute to the emerging theme of anti-inflammatory drugs and neurodegeneration.

Gilutamate is the most abundant excitatory
neurotransmitter in the brain; however, un-
der certain conditions, it may become a
potent excitotoxin and contribute to neu-
rodegeneration (1). On the other hand, an
accumulation of clinical and experimental
evidence suggests that neurodegeneration is
often associated with inflammation (2). We
tested the possibility that the anti-inflam-
matory drugs aspirin [acetylsalicylic acid
(ASA)] and sodium salicylate (NaSal), be-
cause of their wide spectrum of pharmaco-
logical activities and multiple sites of action
(3), may confer neuroprotective properties.

Several models of neurons in culture
have been used to unravel the molecular
events triggered by glutamate that lead to
cell death as well as to develop pharmaco-
logical compounds able to counteract exci-
totoxicity. Here we used primary cultures of
rat cerebellar granule cells, where a brief
pulse of glutamate, through activation of
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the N-methyl-D-aspartate (NMDA) type of
glutamate receptor, induces cell death (4).
ASA and NaSal were added to the culture
medium 5 min before and during a 15-min
application of 50 uM glutamate (5), a con-
centration that reduced cell survival by 70
to 80%. The range of concentrations for
both drugs was correlated with the amounts
in plasma (1 to 3 mM) for optimal anti-
inflammatory effects in patients with rheu-
matic diseases (3). A concentration-depen-
dent protection against glutamate-induced
neurotoxicity was observed in the presence
of both drugs (Fig. 1A). For ASA, the
calculated median effective concentration
(ECs,) was 1.7 mM, with maximal effect
(83% protection) at 3 mM. The concentra-
tion of NaSal giving 50% protection was 5
mM, and maximal response (87% protec-
tion) was observed at 10 mM. Unlike sa-
licylates, at concentrations compatible with
the plasma levels during chronic drug treat-
ment (1 to 20 uM) (3), the anti-inflamma-
tory drug indomethacin was unable to pre-
vent glutamate-induced cell death (6).
Neuroprotection was also evaluated in
hippocampal slices of 8-day-old rat brain
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(7), a system that more closely represents in
vivo conditions. In the hippocampal slices,
most pyramidal neurons of CAl and CA3
and granule cells of dentate gyrus (DG) be-
came acutely necrotic, exhibiting swollen
cytoplasm with large vacuoles, nuclear
shrinkage, and focal clumping of chromatin
(Fig. 1B). Application of ASA preserved
hippocampal cell viability from the NMDA-
mediated injury (Fig. 1, B and C). ASA did
not modify cell viability at 1 mM, but at 3
mM it specifically produced significant neu-
roprotection in the CA3 region (Fig. 1C).
Higher concentrations of ASA completely
inhibited the NMDA effect in CA1 and DG
as well as in CA3 cells (Fig. 1, B and C).
Compared with primary cultures of rat cere-
bellar granule cells, 2 mM NaSal efficiently
counteracted NMDA-mediated toxicity in
hippocampal slices (Fig. 1C).

To dissect the molecular mechanisms by
which salicylates preserved cell viability
against excitoxicity, we tested whether these
drugs diminished glutamate-mediated calci-
um entry (8). In rat cerebellar granule cells,
application of glutamate in the absence of
external Mg?* caused a rapid increase in the
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Fig. 1. Neuroprotection by salicylates. (A) Concentration-dependent effect elicited by ASA and NaSal in
rat cerebellar granule cells. A glutamate (50 wM) pulse was applied in the absence or presence of ASA
(@) and NaSal (m). Neuronal survival was expressed as percent of neuroprotection, with glutamate
inducing 78 * 3% of cell loss. The x axis represents drug concentrations. Points represent the means +
SEM of six experiments, run in triplicate, on different culture preparations. (B) Prevention of excitotoxic
effect of NMDA in rat hippocampal slices by ASA. Sections were exposed to vehicle (control), 30 uM
NMDA (NMDA), or 30 uM NMDA and 5 mM ASA (NMDA + ASA). Cell viability was evaluated in CA1,
CA3, and DG. Scale bar, 10 pm. (C) Effect of ASA and NaSal on NMDA-induced cell loss in rat
hippocampal slices. Test drugs were added to the slices at the indicated concentrations and cell viability
in CA1, CA3, and DG was analyzed. Columns represent the means + SEM of three experiments run on
four slices each. Differences compared with NMDA alone were significant at P < 0.01 as indicated by

an asterisk.
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intracellular Ca’* concentration ([Ca“]i)
followed by a sustained plateau (Fig. 2A),
principally because of the NMDA receptor
subtype activation (9). ASA, applied at neu-
roprotective concentrations (1 to 3 mM),

induced a very low and short-lasting [Ca’*],

increase and did not modify glutamate-me-
diated calcium entry (Fig. 2B). Similar re-
sults were obtained with NaSal (9). Thus, it
was likely that salicylates were acting on
intracellular molecular targets further down-
stream of glutamate receptor activation, a
property that makes them distinguishable
from most neuroprotective drugs. It also ap-
pears that neuroprotection occurred inde-
pendently of mechanisms controlling [Ca?*],
homeostasis.

At plasma concentrations maintained dur-
ing treatment of chronic inflammatory diseas-
es, ASA and NaSal, but not indomethacin,
inhibit the activation of nuclear factor kappa
B (NF-kB)/Rel transcription factors in T and
pre-B lymphocytes (10). The NF-kB/Rel
family is implicated in controlling expression
of several genes crucially involved in immune
and inflammatory function (11). NF-kB/Rel
proteins are present in primary neurons and in
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several brain areas (12). Administration of
glutamate to primary cultures of rat cerebellar
granule cells also results in up-regulation of
NF-kB nuclear activity (13) and of the tran-
scriptional complex AP-1 (14). Cells were
exposed to 50 wM glutamate in the absence or
presence of ASA (1 or 3 mM) and NaSal (3
or 10 mM), and nuclear extracts (15) were
prepared 1 hour after stimulation. Both drugs
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Fig. 2. Original recording showing the glutamate-
induced [Ca2*]; increase in rat cerebellar granule
cells. (A) Effect of 50 uM glutamate (n = 95). (B)
Effect of 50 wM glutamate in neurons pretreated
with 3 mM ASA (n = 98). Traces are from repre-
sentative cell recordings.
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Fig. 3. Effect of neuroprotective concentrations of
ASA and NaSal on glutamate-induced NF-«xB and
AP-1 DNA binding activities. Nuclear extracts
from rat cerebellar granule cells were subjected to
an electrophoretic mobility-shift assay with y-32P-
labeled oligonucleotide probes containing the im-
munoglobulin kB (lanes 1 to 6) and the AP-1 DNA
binding sites (lanes 7 to 12) (15). Cells were either
unstimulated (lanes 1 and 7) or stimulated with 50
wM glutamate (15-min pulse) in the absence
(lanes 2 and 8) or presence (lanes 3 to 6 and 9 to
12) of the drugs as indicated.



inhibited the glutamate-induced increase of
NF-kB activity in a concentration-dependent
manner (Fig. 3), with calculated EC,, values
of 1.3 and 6 mM for ASA and NaSal, respec-
tively. Parallel experiments in which cell vi-
ability was measured 24 hours later revealed a
strict correlation between neuroprotective
concentrations of anti-inflammatory drugs
and blockade of NF-kB induction (ECs, val-
ues of 1.5 mM for ASA and 5.8 mM for
NaSal). The salicylate effect on NF-kB/Rel
proteins was specific. In fact, ASA and NaSal
failed to modify the glutamate-mediated nu-
clear induction of the transcriptional complex
AP-1 (Fig. 3).

Thus, at concentrations compatible with
amounts in plasma during treatment of
chronic inflammatory states, salicylates pre-
vented glutamate-induced neurotoxicity.
The neuroprotective effect correlated nei-
ther with the anti-inflammatory properties
of these compounds nor with cyclooxygen-
ase inhibition. In fact, indomethacin exert-
ed anti-inflammatory but not neuroprotec-
tive properties, and NaSal was neuroprotec-
tive but did not interfere with cyclooxygen-
ase activity (3). The common molecular
target for ASA and NaSal but not for in-
domethacin (10, 16) was the blockade of
NF-kB induction, suggesting a link between
neuroprotection and the nuclear event.

Here we provide evidence for an unusual
pharmacological effect of ASA and its me-
tabolite NaSal. In view of their distinct
ability to act not merely as anti-inflamma-
tory compounds but also as neuroprotective
agents against excitotoxicity, these drugs
appear to possess a wider pharmacological
spectrum than other nonsteroidal anti-in-
flammatory drugs.
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Tricorn Protease—The Core of a Modular
Proteolytic System

Tomohiro Tamura, Noriko Tamura, Zdenka Cejka,
Reiner Hegerl, Friedrich Lottspeich, Wolfgang Baumeister*

Large macromolecular assemblies have evolved as a means of compartmentalizing
reactions in organisms lacking membrane-bounded compartments. A tricorn-shaped
protease was isolated from the archaeon Thermoplasma and was shown to form a
multisubunit proteolytic complex. The 120-kilodalton monomer assembled to form a
hexameric toroid that could assemble further into a capsid structure. Tricorn protease
appeared to act as the core of a proteolytic system; when it interacted with several
smaller proteins, it displayed multicatalytic activities.

I vivo proteolysis is an essential element
of many regulatory processes. It must be
subject to spatial and temporal control in
order to prevent damage to the cell. Pro-
karyotic cells, which lack membrane-
bounded compartments, have developed
large macromolecular assemblies or “molec-
ular organelles” so as to confine proteolysis
to an inner cavity to which only proteins
targeted for degradation have access. The
paradigm of such a proteolytic complex is
the proteasome (1), which is ubiquitous
across the three urkingdoms archaea (2),
bacteria (3, 4) and ecukarya (5). In the
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course of searching for regulatory compo-
nents of the proteasome (6) in Thermo-
plasma acidophilum, we discovered a proteo-
lytic complex of high molecular mass that is
not related to the proteasome. This com-
plex seems to be the core of a modular
proteolytic system generating multicatalytic
activities.

We purified the high-molecular-weight
(HMW) protein to homogeneity by a se-
quence of chromatography steps (7). The
purified protein migrates at 720 kD in gel
filtration chromatography (versus migration
at 680 kD by the 20S proteasome), and it
turned out to be composed of a single
polypeptide of 120 kD when subjected to
SDS—polyacrylamide  gel electrophoresis
(SDS-PAGE) (Fig. 1). The purified protein
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