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Neuroprotection by Aspirin and 
Sodium Salicylate Through 

Blockade of NF-KB Activation 
Mariagrazia Grilli," Marina Pizzi, Maurizio Memo, 

PierFranco Spano 

Aspirin (acetylsalicylic acid) is a commonly prescribed drug with a wide pharmacological 
spectrum. At concentrations compatible with amounts in plasma during chronic anti- 
inflammatory therapy, acetylsalicylic acid and its metabolite sodium salicylate were 
found to be protective against neurotoxicity elicited by the excitatory amino acid glu- 
tamate in rat primary neuronal cultures and hippocampal slices. The site of action of the 
drugs appeared to be downstream of glutamate receptors and to involve specific inhi- 
bition of glutamate-mediated induction of nuclear factor kappa B. These results may 
contribute to the emerging theme of anti-inflammatory drugs and neurodegeneration. 

Glutalnate is thc most abundant excitatory 
ncurotrans~nitter in the brain; however, un- 
der certain conditions, it may bcconle a 
potent excitotoxin and contribute to ncu- 
rodegeneration ( I ) .  On thc other hand, an 
acc~u~nulation of clinical and experimental 
cvidcncc suggests that neurodegeneration is 
often associated with infla~n~nation (2). Wc  
testcd the possibility that the anti-inflam- 
matory drugs aspirin [acetylsalicylic acid 
(ASA)] and sodi~un salicylate (NaSal), be- 
cause of thcir wide spcctruln of pharmaco- 
logical activities and ~nultiplc sitcs of action 
(3), may confer neuroprotcctivc propcrtics. 

Several ~nodels of ncurons in culture 
have been uscd to unravcl the nlolccular 
cvcnts triggcrcd by gluta~natc that lead to 
cell dcath as well as to develop pharmaco- 
logical conlpounds ablc to counteract cxci- 
totoxicity. Hcrc wc used primary culturcs of 
rat ccrebcllar granule cclls, where a brief 
pulsc of glutamatc, through activation of 
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the N-methyl-D-aspartate (NMDA) type of 
glutamatc rcccptor, induces ccll dcath (4). 
ASA and NaSal wcrc addcd to thc culturc 
nlcdiu~n 5 ~ n i n  bcfore and during a 15-min 
application of 50 p M  glutamate (5), a con- 
centration that reduced cell survival by 70 
to 80%. Thc  ranec of concentrations for u 

both drugs was corrclatcd with the amounts 
in plasnla (1  to 3 mM) for optimal anti- 
infla~n~natory effects in patients with rhcu- 
lnatlc d~scascs (3). A concentrat~c~n-depcn- 
dcnt protcctlon agalnst glutamatc-~nduccd 
ncurotoxicity was obscrvcd in thc prcsencc 
of both drugs (Fig. 1A). For ASA, thc 
calculated ~ncdian effcctivc conccntration 
(EC5,) was 1.7 mM, with ~naxinlal cffcct 
(83%) protection) at 3 mM. The conccntra- 
tion of NaSal giving 50% protection was 5 
mM, and maximal rcsponse (87% protcc- 
tion) was observed at 10 mM. Unlikc sa- 
licylatcs, at concentrations compatible with 
the plasma levels during chronic drug treat- 
Incnt (1 to 20 pM)  ( 3 ) ,  the anti-inflamma- 
tory drug indo~ncthacin was unable to prc- 
vcnt elutamatc-induced ccll dcath ( 6 ) .  - ~, 

Ncuroprotcction was also evaluated in 
hippocampal slices of 8-day-old rat brain 
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(7), a system that more closely represents in 
vivo conditions. In the hippocampal slices, 
most pyramidal neurons of CA1 and CA3 
and granule cells of dentate gyms (DG) be- 
came acutely necrotic, exhibiting swollen 
cytoplasm with large vacuoles, nuclear 
shrinkage, and focal clumping of chromatin 
(Fig. 1B). Application of ASA preserved 
hippocampal cell viability from the NMDA- 
mediated injury (Fig. 1, B and C). ASA did 
not modify cell viability at 1 mM, but at 3 
mM it specifically produced significant neu- 
roprotection in the CA3 region (Fig. 1C). 
Higher concentrations of ASA completely 
inhibited the NMDA effect in CAI and DG 
as well as in CA3 cells (Fig. 1, B and C). 
Compared with primary cultures of rat cere- 
bellar granule cells, 2 mM NaSal efficiently 
counteracted NMDA-mediated toxicity in 
hippocampal slices (Fig. 1C). 

To  dissect the molecular mechanisms by 
which salicvlates  reserved cell viabilitv 
against excitoxicity, we tested whether these 
drugs diminished glutamate-mediated calci- 
um entry (8). In rat cerebellar granule cells, 
application of glutamate in the absence of 
external MgZ+ caused a rapid increase in the 

intracellular CaZ+ concentration ([Caz+ 1,) 
followed by a sustained plateau (Fig. 2A), 
principally because of the NMDA receptor 
subtype activation (9). ASA, applied at neu- 
roprotective concentrations (1 to 3 mM), 
induced a very low and short-lasting [CaZ+], 
increase and did not modify glutamate-me- 
diated calcium entry (Fig. 2B). Similar re- 
sults were obtained with NaSal (9). Thus, it 
was likely that salicylates were acting on 
intracellular molecular targets further down- 
stream of glutamate receptor activation, a 
property that makes them distinguishable 
from most neuroprotective drugs. It also ap- 
pears that neuroprotection occurred inde- 
pendently of mechanisms controlling [CaZ+], 
homeostasis. 

At plasma concentrations maintained dur- 
ing treatment of chronic inflammatory diseas- 
es, ASA and NaSal, but not indomethacin, 
inhibit the activation of nuclear factor kappa 
B (NF-KB)/R~~ transcription factors in T and 
pre-B lymphocytes (10). The NF-~Bfle l  
family is implicated in controlling expression 
of several genes crucially involved in immune 
and inflammatory function (1 1). NF-~Bf le l  
proteins are present in primary neurons and in 
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Fig. 1. Neuroprotection by salicylates. (A) Concentration-dependent effect elicited by ASA and NaSal in 
rat cerebellar granule cells. A glutarnate (50 pM) pulse was applied in the absence or presence of ASA 
(*) and NaSal (m). Neuronal survival was expressed as percent of neuroprotection, with glutamate 
inducing 78 + 3% of cell loss. Thex axis represents drug concentrations. Points represent the means + 
SEM of six experiments, run in triplicate, on different culture preparations. (8) Prevention of excitotoxic 
effect of NMDA in rat hippocampal slices by ASA. Sections were exposed to vehicle (control), 30 pM 
NMDA (NMDA), or 30 pM NMDA and 5 mM ASA (NMDA + ASA). Cell viability was evaluated in CAI, 
CA3, and DG. Scale bar, 10 pm. (C) Effect of ASA and NaSal on NMDA-induced cell loss in rat 
hippocampal slices. Test drugs were added to the slices at the indicated concentrations and cell viability 
in CAI, CA3, and DG was analyzed. Columns represent the means + SEM of three experiments run on 
four slices each. Differences compared with NMDA alone were significant at P < 0.01 as indicated by 
an asterisk. 

several brain areas (12). Administration of 
glutamate to primary cultures of rat cerebellar 
granule cells also results in up-regulation of 
NF-KB nuclear activity (1 3) and of the tran- 
scriptional complex AP-1 (14). Cells were 
exposed to 50 pM glutamate in the absence or 
presence of ASA (1 or 3 mM) and NaSal (3 
or 10 mM), and nuclear extracts (15) were 
prepared 1 hour after stimulation. Both drugs 

Glutamate 
800 

1000 B I ASA 

Time (min) 

800. 

600. - - .  
r 3 400. 

200 - 

Fig. 2. Original recording showing the glutamate- 
induced [Ca2+Ii increase in rat cerebellar granule 
cells. (A) Effect of 50 pM glutamate (n = 95). (B) 
Effect of 50 pM glutamate in neurons pretreated 
with 3 mM ASA (n = 98). Traces are from repre- 
sentative cell recordings. 
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Fig. 3. Effect of neuroprotective concentrations of 
ASA and NaSal on glutamate-induced NF-KB and 
AP-1 DNA binding activities. Nuclear extracts 
from rat cerebellar granule cells were subjected to 
an electrophoretic mobility-shift assay with 
labeled oligonucleotide probes containing the im- 
munoglobulin KB (lanes 1 to 6) and the AP-1 DNA 
binding sites (lanes 7 to 12) (15). Cells were either 
unstimulated (lanes 1 and 7) or stimulated with 50 
pM glutarnate (15-min pulse) in the absence 
(lanes 2 and 8) or presence (lanes 3 to 6 and 9 to 
12) of the drugs as indicated. 
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~nhlhlteii the glutamate-induced increase ot  
NF-KB activ~ty III conce~~tration-dependent 
manner (Fig. 3), with calculated EC,,, values 
ot  1.3 anil 6 mM tor ASA and NaSal, reapec- 
t~vely. Parallel experlrnents III w h ~ c h  cell VI- 
ahillty \\.as measured 24 houra later revealed a 
\trict correlat~on hetween neuroprotectlve 
concentrations ot  anti-~nflammatory dn~ga 
and blockade ot  NF-KB iniluctlon (EC,, val- 
ues ot  1.5 I I ~ M  for '4% and 5.8 11lM tor 
NaSal). The  sallcylate etkct on N F - K B / R ~ ~  
protelns was spec~tic. 111 fact, ,4SA and NaSal 
L~ileii to mod~fy the glutamate-meil~:~teil nu- 
clear induct~on c ~ t  the transcript~onal ccjmplex 
AP-1 (FIE. 3). 

Thus, a t  concentrations compat~hle  w ~ t h  
arnounts III plasma during treatment o t  
c h r o n ~ c  inflammatory states, sal~cylates pre- 
vented g lu tamate -~~~duced  neurotoxlclty. 
T h e  neuroprotectlve ettect correlated nel- 
ther w ~ t h  the anti-inflammatory properties 
o t  these c o m p o u ~ ~ d s  nor 1 ~ 1 t h  cyclijoxygen- 
aae 1n111hitio11. 111 fact. ~ n d o r n e t h a c ~ n  exert- 
ed a l l t i - in t l a rnm~t ry  hut not neuroprotec- 
tive propertleb, and NaSal \vas neuroprotec- 
tive hut did not ~ntertere w ~ t h  cyclooxygen- 
ase actlvlty ( 3 ) .  T h e  common molecular 
target for ,4SA and NaSal hut not tor in- 
domethac~n  (10, 16) was the blockade o t  
NF-KB ~ ~ ~ d u c t ~ o n ,  suggesting a link het\veen 
11eurc>protectlij11 and the nuclear event. 

Here \17e nrc~vlde ev~dence  tor an  unusual 
pharmacolog~cal e tkc t  of AS.4 and its me- 
tahol~te  NaSal. 111 vlew o t  their d i s t~nc t  
ability to act not merely as anti-~ntlarnma- 
tory cijmpounds but also as neuroprotectlve 
agents ajialnst excitotoxic~ty, these drugs 
appear to possess a w ~ d e r  pharmacological 
spectrum than other nonsteroldal anti-in- 
flammatory drugs. 
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Tricorn Protease-The Core of a Modular 
Proteolytic System 

Tomohiro Tamura, Noriko Tamura, Zdenka Cejka, 
Reiner Hegerl, Friedrich Lottspeich, Wolfgang Baumeister* 

Large macromolecular assemblies have evolved as a means of compartmentalizing 
reactions in organisms lacking membrane-bounded compartments. A tricorn-shaped 
protease was isolated from the archaeon Thermoplasma and was shown to form a 
multisubunit proteolytic complex. The 120-kilodalton monomer assembled to form a 
hexameric toroid that could assemble further into a capsid structure. Tricorn protease 
appeared to act as the core of a proteolytic system; when it interacted with several 
smaller proteins, it displayed multicatalytic activities. 

I n  v ~ v o  proteolysis is an  essential ele~llent 
o t  Illany regulatory processes. It rnust he 
subject ti) spatial and te~llporal control in 
order ti) prevent damage to the cell. Pro- 
karyotic cells, which lack mernbrane- 
hounded compartments, have developed 
large macromolecular assernhlies or "molec- 
ular organelles" so as to cc>nt~ne proteolysls 
to a n  Inner cavity to 1v111ch only proteins 
targeted tor degradation have access. T h e  
paradigm o t  such a proteolyt~c cijmplex 1s 
the  proteasome ( I ) ,  w h ~ c h  is u b ~ q u ~ t o u s  
across the  three urkingdoms archaea ( 2 ) ,  
bacteria ( 3 ,  4) and eukarya (5). In the 

Max-Planck-nsttute for Bochemlstly, D-82152 Martlns- 
rled, Germany. 
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course o t  searching tor regulatory compo- 
nents o t  the  proteasome (6)  in Thermo- 
phsma acldoj~hllurn, we discovered a proteo- 
l y t ~ c  complex of high molecular mass that is 
not related to  the proteasome. T h ~ s  com- 
plex seerns to he the core of a modular 
proteolytic system generating ~ n u l t ~ c a t a l y t ~ c  
actlvltles. 

W e  purltied the  high-moleci~lar-~veight 
( H M W )  protein ti) homoge~~e i ty  hy a se- 
quence o t  chromatography steps (7). T h e  
purit~ed protein mlgrates a t  720 kL1 in gel 
t i l t ra t~on chrc~matography (versua migration 
a t  680 kL1 h\r the  205 proteasome), and ~t 
turned out ;o he corAposed o t  a s111gle 
polypeptide of 120 kD \vhen sublecteti to 
SIX-polyacryla~~lide gel electrophoresis 
(SLT-PAGE) (Fig. 1) .  T h e  purit~ed protein 
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