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Major Susceptibility Locus for Prostate Cancer
on Chromosome 1 Suggested by a
Genome-Wide Search
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Michael J. Brownstein, G. Steven Bova, Hong Guo,
Piroska Bujnovszky, Deborah R. Nusskern, Jan-Erik Damber,
Anders Bergh, Monika Emanuelsson, Olli P. Kallioniemi,
Jennifer Walker-Daniels, Joan E. Bailey-Wilson, Terri H. Beaty,
Deborah A. Meyers, Patrick C. Walsh, Francis S. Collins,
Jeffrey M. Trent,T William B. Isaacs

Despite its high prevalence, very little is known regarding genetic predisposition to
prostate cancer. A genome-wide scan performed in 66 high-risk prostate cancer
families has provided evidence of linkage to the long arm of chromosome 1 (1g24-25).
Analysis of an additional set of 25 North American and Swedish families with markers
in this region resulted in significant evidence of linkage in the combined set of 91
families. The data provide strong evidence of a major prostate cancer susceptibility

locus on chromosome 1.

Prostate cancer is the most common malig-
nancy diagnosed in U.S. males, accounting for
more than 40,000 deaths in this country an-
nually (1). African Americans have the high-
est incidence and mortality rates of any pop-
ulation studied (2). Numerous studies have
provided evidence for familial clustering of
prostate cancer, indicating that family history
is a major risk factor for this disease (3-5).
Segregation analysis of familial prostate can-
cer suggests the existence of at least one dom-
inant susceptibility locus and predicts that
rare high-risk alleles at such loci account in
the aggregate for 9% of all prostate cancers
and more than 40% of early onset disease (6).

Analyses of genetic alterations in pros-
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tate cancer have demonstrated frequent du-
plication of DNA sequences on the distal
long arm of chromosome 8 (7), as well as
loss of DNA sequences resulting in loss of
heterozygosity (LOH) for the short arm of
chromosome 8 and the long arm of chro-
mosome 13 (8, 9). Preliminary investiga-
tions by linkage analysis of these regions as
well as sites of known tumor suppressor
genes have not identified a susceptibility
locus in prostate cancer (10, 11).

Prostate cancer presents a number of seri-
ous obstacles to linkage analysis. The preva-
lence is extremely high; there is a one in five
lifetime probability of prostate cancer diagno-
sis in U.S. males (I). This potentially could
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result in a high rate of phenocopies; individ-
uals whose prostate cancers result from very
different causes. The late age of onset [less
than 0.19% of prostate cancer cases are diag-
nosed under the age of 40 (1)] leads to general
lack of available samples from an affected
individual's ancestors. These obstacles are
complicated by the absence of known clinical
features (other than age of onset) that might
allow subgrouping of prostate cancer families
to reflect potential genetic heterogeneity (5).
Finally, it is difficult to find extended pedi-
grees that are highly informative for linkage
(in other words, that contain large numbers of
affected family members) (12).

In spite of these difficulties, we have un-
dertaken a linkage analysis to search for ev-
idence of loci contributing to risk for pros-
tate cancer in a group of 79 North American
and 12 Swedish pedigrees, each having at
least three first-degree relatives affected with
prostate cancer. These families were selected
on the basis of the number of affected males
from which samples could be obtained for
typing, either as blood samples or archival
specimens and the absence of evidence of
bilineal inheritance (13). A summary of the
characteristics of the families studied is given
in Table 1. Overall, affected individuals in
these families had an average age of diagnosis
of 65, with a total of 34 males diagnosed
before the age of 55.

To search for the location of high-risk
alleles for prostate cancer, a genome-wide
scan was performed in a subgroup of 66
North American families. A total of 341
dinucleotide repeat markers were analyzed in
these pedigrees to complete a map with a
marker density of 10 cM (14), requiring
more than 130,000 genotypes. On average,
79% of our study group were heterozygous for
each marker. For the parametric analysis of
the genotype data, we used a model of dom-
inant inheritance that includes a fixed phe-
nocopy rate of 15% and the assumption that
unaffected men over the age of 75 are not
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likely to be gene carriers (15). A plot of
two-point lod (logarithm of the likelihood
ratio for linkage) scores (16) for the genome-
wide scan (Z) is shown in Fig. 1. The highest
lod score observed was 2.75 with marker
D1S§218, which maps to the distal long arm
of chromosome 1 (1q24-25). As chromo-
some 1 showed the most significant evidence
for linkage, additional markers in this region
were typed in the original 66 families as well
as in an additional group of 25 families, 12 of
which were collected in Sweden (13). These
analyses provided additional evidence for
linkage in the 1q24-25 region with a maxi-
mum two-point lod of 3.65 at recombination
fraction @ = 0.18 with marker DI1S2883
(Table 2).

As parametric analyses are model-de-
pendent, we also used nonparametric anal-
yses to further examine linkage data in this
region (16). Nonparametric multipoint
linkage (NPL) Z scores are given for this
analysis in Table 2. Highly significant P-
values were obtained for multiple markers,
providing further evidence for linkage in
this region. To determine the most likely
location for the susceptibility locus, para-
metric multipoint analyses were performed
with various combinations of markers in
this region. Lod scores >4 were obtained,
but did not allow unequivocal placement of
the susceptibility locus due to apparent ge-
netic heterogeneity. Significant evidence
for locus heterogeneity (x> = 8.11, P =

Table 1. Prostate cancer families.

0.004) (16) was obtained by an admixture
test with an estimate of 34% of the families
being linked to the region. The maximum
multipoint  lod  score  with  markers
D1S2883, DISI158, and D1S422 under the
assumption of heterogeneity was 5.43, with
the postulated susceptibility locus mapping
close to DI1S422 (Fig. 2). No clinical fea-
tures appeared to distinguish families show-
ing linkage to chromosome 1 from the non-
linked pedigrees.

The risk of prostate cancer in siblings of
affected individuals is modified by the age of
diagnosis (6). Subgrouping families by age of
diagnosis, either by mean age within a family
or by number of men diagnosed under age 55,
provided little evidence that the families
showing linkage to chromosome 1 had an
earlier onset of prostate cancer than the un-
linked families. However, because of difficul-
ties in equating age of diagnosis with age of
onset (17), further analysis will be necessary
to support this conclusion.

Both African-American families ana-
lyzed in this study showed linkage to this
region, yielding a combined lod score of
1.4. As there is evidence of linkage in
Caucasian families in Sweden and North
America as well, alterations in the 1¢q24-
25 region may increase prostate cancer
susceptibility in a variety of populations
and ethnic backgrounds.

LOH studies have not previously impli-
cated the chromosomal region 1q24-25 in

Average number per family

Number of (range) Average age of
Sample families diagnosis (range)
Affected Typed*
North American 79 5.1 (3-15) 3.7 (2-11) 64.3 (39-85)
Swedish 12 3.9 (3-5) 3.6 (3-5) 69.3 (56-76)
Total 91 4.9 (3-15) 3.7 (2—11) 64.9 (39-85)
"Typed refers to the number of affected family members analyzed.
Chromosome
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Fig. 1. Two-point lod scores for the genome-wide scan. Affected and unaffected individuals in 66
prostate cancer pedigrees were genotyped at 341 loci throughout the genome. Maximum two-point lod
scores were calculated and the results plotted as a function of marker location in centimorgans.
Chromosomal number is designated at the top of the plot.
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prostate cancer, although analysis of cancer
DNA from hereditary cases is lacking. A
study by Cher et al. (8) did indicate that a
large portion of the q arm including the
1q24-25 region is frequently increased in
copy number in advanced prostate cancer
specimens examined by comparative
genomic hybridization. Candidate genes in
the interval implicated include the ski, abl2,
and trk oncogenes as well as LAMC2, which
encodes an isoform subunit of a basement
membrane protein (laminin) (18).

The data presented here indicate that a
susceptibility locus that may account for a
significant fraction of hereditary prostate
cancer can be detected in families by linkage

analysis. If this linkage is confirmed in an
independent data set, then we propose the
designation HPC1 (hereditary prostate can-
cer 1) for this locus. This observation if
confirmed sets the stage for the challenging
task of cloning HPCI and identifying the
responsible genetic alterations in high-risk
families. Given that previous segregation
analyses have suggested that approximately
one in 170 individuals in the United States
may carry a dominant susceptibility allele for
prostate cancer (6), one can estimate (very
roughly) that one in 500 may have an alter-
ation in HPCI. Because early diagnosis can
be lifesaving in prostate cancer, the potential
ability to identify individuals at genetically

Table 2. Linkage results for susceptibility to prostate cancer and nine markers on chromosome 1 in 91
families. Z and © represent the maximum lod scores and recombination fractions, respectively. NPL
Z scores are not directly comparable to parametric Z (LOD) scores. Therefore, significance levels are
given for the NPL Z scores. For parameter (LOD) scores, a Z score of 3.0 corresponds to a signifiance

level of a 0.0001.

Parametric analysis:

Nonparametric multipoint

Marker Distanf:e two-point lod analysis
™M) - N

Z (C] Z score P
D18452 — 0.94 0.27 2.28 0.01
D18218+ 1.9 2.31 0.23 2.14 0.02
D1S212 3.6 2.98 0.19 4.22 0.00001
D152883 0.0 3.65 0.18 4.16 0.00002
D1S466 5.1 2.41 0.20 4.71 0.000001
D152818 0.9 1.69 0.24 4.66 0.000002
D1S158 15 2.53 0.21 4.62 0.000002
D1S422 4.4 2.67 0.20 4.26 0.00001
D1S413% 49 1.80 0.21 2.83 0.002

*Distances in centimorgans from the preceding marker in the table were derived from the CRIMAP analysis.

+tMarkers used in genome-wide scan.

Fig. 2. Multipoint lod scores

for the prostate cancer sus- e
ceptibility locus relative to 3.51
markers in the 1924-25 re- 5.04
gion. Parametric multipoint
lod scores were calculated 4.51
with  markers D152883, 40+
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high risk, especially when combined with
methods that detect early signs of malignan-
cy (physical exam, transrectal ultrasound,
and prostate-specific antigen), could ulti-
mately be of significant medical benefit.
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RAC Regulation of Actin Polymerization
and Proliferation by a Pathway Distinct
from Jun Kinase

Tom Joneson,* Michele McDonough,* Dafna Bar-Sagi,
Linda Van Aelstt

The RAC guanine nucleotide binding proteins regulate multiple biological activities,
including actin polymerization, activation of the Jun kinase (JNK) cascade, and cell
proliferation. RAC effector loop mutants were identified that separate the ability of RAC
to interact with different downstream effectors. One mutant of activated human RAC
protein, RACY'2H40 (with valine and histidine substituted at position 12 and 40, respec-
tively), was defective in binding to PAKS, a Ste20-related p21-activated kinase (PAK), but
bound to POR1, a RAC-binding protein. This mutant failed to stimulate PAK and JNK
activity but still induced membrane ruffling and mediated transformation. A second
mutant, RACY'2-37 (with leucine substituted at position 37), which bound PAK but not
POR1, induced JNK activation but was defective in inducing membrane ruffling and
transformation. These results indicate that the effects of RAC on the JNK cascade and
on actin polymerization and cell proliferation are mediated by distinct effector pathways

that diverge at the level of RAC itself.

The RAC proteins have been implicated
in the regulation of various fundamental
cellular processes including actin cytoskel-
etal organization (1), transcriptional activa-
tion (2), and cell proliferation (3-5). To
identify the effector pathways that mediate
the biological activities induced by RAC,
we isolated mutant RAC proteins that
could discriminate among the RAC targets
PAK and PORI in the yeast two-hybrid
system. PAK proteins are a family of highly
conserved serine-threonine kinases that are
activated by direct interaction with RACI
(6). A role for PAK has been suggested in
mediating RAC-induced activation of JNK
and p38 mitogen-activated protein (MAP)
kinase cascades (7). PORI interacts with
RACI and appears to function in RAC-
induced membrane ruffling (8).

Libraries of vectors expressing mutant
human RAC proteins fused to the LexA
DNA binding domain (LBD) were created
by polymerase chain reaction (PCR) mu-
tagenesis (9) and screened for interaction

with PAK3 and PORI1. Two mutants con-
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taining a single amino acid substitution in
the RAC effector loop were identified. One
mutant, RACY2H40 " fajled to bind PAK3
but did bind POR1, and another mutant,
RACY?37 hound PAK3 but not PORI1
(Table 1). Identical binding profiles were
obtained for the interaction of these mu-
tants with PAK1 (10).

To investigate the biological activities of
the RAC mutants, we first examined their
abilities to stimulate PAK and activate the
JNK pathway. COS-1 cells were cotrans-
fected with either RACY!2, RACY!2H4 o
RACV!?37 expression plasmids and a plas-
mid encoding a Myc-tagged version of
PAKI1. PAKI activity was assayed in immu-
noprecipitates with myelin basic protein
(MBP) as the substrate (11). Expression of
RACY!37 resulted in stimulation of PAK
activity, whereas expression of RACY!2H40
did not (Fig. 1, top). Thus, the activation of
PAK by the RAC mutants is dependent on
their ability to interact with PAK. To test for
the ability of the RAC mutants to induce
JNK activation, we cotransfected COS-1
cells with expression plasmids encoding
RAC mutants and a plasmid encoding a
FLAG-tagged version of INK1. JNK activity
was assayed with glutathione-S-transferase
(GST) fused to c-Jun as the substrate (12).
RACY!2H% which did not bind to or acti-
vate PAK, also did not stimulate JNK activ-
ity (Fig. 1, bottom). The RACY'?*7 mutant,



