
REPORTS 

U1406(H3)-ring ll(6), U1406(H6)-ring IV(4'"), C1407(H4)-
ring ll(6), ring lll(2"), C1407(H5)-ring IV(1'", 2'"), 
A1408(H6)-ring 1(1') ring ll(6), G1489(H8)-ring IV(4'"), 
U1490(H5)-ring lll(3", 4", 5") ring IV(3'", 4"\ 5'", 6'"), 
U1490(H6)-ring ll(5"), G1491(H1)-ring 1(1'), G1491(H2')-
ring 1(3', 4'), G1491(H3')-ring l(2', 3'), A1492(H3')-ring 
l(3', 4', 5'), A1492(H5')-ring l(3'), A1493(H2')-ring ll(3), 
A1493(H3'-ring ll(2 equatorial, 3), A1493(H5')-ring ll(3), 
A1493(H8)-ring l(3\ 4', 5') ring ll(2 axial), G1494(H1)-
ring ll(2 axial, 2 equatorial, 6), G1494(H3')-ring ll(2 
axial, 2 equatorial), U1495(H5)-ring 11(1, 2 axial, 2 
equatorial, 3, 6), U1495(H3)-ring ll(6). 

14. RNA dihedral restraints were assigned following the 
general strategy of Varani and co-workers [F. H.-T. 
Allain and G. Varani, J. Mol. Biol. 250, 333 (1995)]. 
p-Dihedral angles were restrained from estimates of 
the 3Jp_H5'>

 3^P-H5"< aRd 3^p-c4' coupling constants 
from the HP-COSY and HCP experiments [J. P. 
Marino et ai, J. Am. Chem. Soc. 116, 6472 (1994)]. 
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short (20 ms) mixing time. For a gauche+ conforma­
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nealing protocol within the Insightll N MR Architect 
package (Biosym Technologies, San Diego, CA). A 
randomized array of atoms corresponding to RNA 
and paromomycin was heated to 1000 K, and bond­
ing, distance and dihedral restraints, and a repulsive 
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ue over 40 ps of molecular dynamics. The molecules 
were then cooled during 10 ps to 300 K and subject­
ed to a final energy minimization step that included 
an attractive Lennard-Jones potential. No electro­
static term was included in the target function. Using 
this protocol, 30% of the structures converged, as 
based on restraint violation energies, and 30 of them 
were collected to be further refined with the final set 
of restraints. There were differences of greater than 
100 kcal • mol""1 between converged and uncon-
verged structures. During refinement, molecules 
were heated to 1000 K and subject to 30 ps of 
molecular dynamics following the same protocol as 
above. The molecules were then cooled during 10 ps 
to 300 K and subjected to a final energy minimization 
step that again included an attractive Lennard-Jones 
potential and no electrostatic term. A total of 392 
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total of 154 experimental dihedral restraints were 
used, comprising 8 paromomycin and 146 RNA re­
straints. Additional restraints were used to maintain 
chirality, and base pair planarity outside the internal 
loop of the RNA. The final force constants for dis­
tance restraints were 40 kcal • mol - 1 . Base pairing 
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constants were set to 60 kcal • mol - 1 . All color fig­
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sym Technologies, San Diego, CA). 
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Major Susceptibility Locus for Prostate Cancer 
on Chromosome 1 Suggested by a 

Genome-Wide Search 
Jeffrey R. Smith,* Diha Freije,* John D. Carpten,* 
Henrik Gronberg,* Jianfeng Xu5* Sarah D. Isaacs, 

Michael J. Brownstein, G. Steven Bova, Hong Guo, 
Piroska Bujnovszky, Deborah R. Nusskern, Jan-Erik Damber, 

Anders Bergh, Monika Emanuelsson, Olli P. Kallioniemi, 
Jennifer Walker-Daniels, Joan E. Bailey-Wilson, Terri H. Beaty, 

Deborah A. Meyers, Patrick C. Walsh, Francis S. Collins, 
Jeffrey M. Trent,f William B. Isaacs 

Despite its high prevalence, very little is known regarding genetic predisposition to 
prostate cancer. A genome-wide scan performed in 66 high-risk prostate cancer 
families has provided evidence of linkage to the long arm of chromosome 1 (1 q24-25). 
Analysis of an additional set of 25 North American and Swedish families with markers 
in this region resulted in significant evidence of linkage in the combined set of 91 
families. The data provide strong evidence of a major prostate cancer susceptibility 
locus on chromosome 1. 

1 rostate cancer is the most common malig­
nancy diagnosed in U.S. males, accounting for 
more than 40,000 deaths in this country an­
nually (I). African Americans have the high­
est incidence and mortality rates of any pop­
ulation studied (2). Numerous studies have 
provided evidence for familial clustering of 
prostate cancer, indicating that family history 
is a major risk factor for this disease (3-5). 
Segregation analysis of familial prostate can­
cer suggests the existence of at least one dom­
inant susceptibility locus and predicts that 
rare high-risk alleles at such loci account in 
the aggregate for 9% of all prostate cancers 
and more than 40% of early onset disease (6). 

Analyses of genetic alterations in pros­

tate cancer have demonstrated frequent du­
plication of DNA sequences on the distal 
long arm of chromosome 8 (7), as well as 
loss of DNA sequences resulting in loss of 
heterozygosity (LOH) for the short arm of 
chromosome 8 and the long arm of chro­
mosome 13 (8, 9). Preliminary investiga­
tions by linkage analysis of these regions as 
well as sites of known tumor suppressor 
genes have not identified a susceptibility 
locus in prostate cancer (10, 11). 

Prostate cancer presents a number of seri­
ous obstacles to linkage analysis. The preva­
lence is extremely high; there is a one in five 
lifetime probability of prostate cancer diagno­
sis in U.S. males (I). This potentially could 
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result in a high rate of phenocopies; individ­
uals whose prostate cancers result from very 
different causes. The late age of onset [less 
than 0.1% of prostate cancer cases are diag­
nosed under the age of 40 (I)] leads to general 
lack of availahle samples from an affected 
individual's ancestors. These obstacles are 
complicated by the absence of known clinical 
features (other than age of onset) that might 
allow subgrouping of prostate cancer families 
to reflect potential genetic heterogeneity (5). 
Finally, it is difficult to find extended pedi­
grees that are highly informative for linkage 
(in other words, that contain large numbers of 
affected family members) (12). 

In spite of these difficulties, we have un­
dertaken a linkage analysis to search for ev­
idence of loci contributing to risk for pros­
tate cancer in a group of 79 Nor th American 
and 12 Swedish pedigrees, each having at 
least three first-degree relatives affected with 
prostate cancer. These families were selected 
on the basis of the number of affected males 
from which samples could be obtained for 
typing, either as blood samples or archival 
specimens and the absence of evidence of 
bilineal inheritance (13). A summary of the 
characteristics of the families studied is given 
in Table 1. Overall, affected individuals in 
these families had an average age of diagnosis 
of 65, with a total of 34 males diagnosed 
before the age of 55. 

To search for the location of high-risk 
alleles for prostate cancer, a genome-wide 
scan was performed in a subgroup of 66 
North American families. A total of 341 
dinucleotide repeat markers w7ere analyzed in 
these pedigrees to complete a map with a 
marker density of 10 cM (14), requiring 
more than 130,000 genotypes. O n average, 
79% of our study group were heterozygous for 
each marker. For the parametric analysis of 
the genotype data, we used a model of dom­
inant inheritance that includes a fixed phe-
nocopy rate of 15% and the assumption that 
unaffected men over the age of 75 are not 
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likely to be gene carriers (15). A plot of 
two-point lod (logarithm of the likelihood 
ratio for linkage) scores (16) for the genome-
wide scan (Z) is shown in Fig. 1. The highest 
lod score observed was 2.75 with marker 
D1S218, which maps to the distal long arm 
of chromosome 1 ( lq24-25). As chromo­
some 1 showed the most significant evidence 
for linkage, additional markers in this region 
were typed in the original 66 families as well 
as in an additional group of 25 families, 12 of 
which were collected in Sweden (13). These 
analyses provided additional evidence for 
linkage in the lq24-25 region with a maxi­
mum two-point lod of 3.65 at recombination 
fraction © - 0.18 with marker D1S2883 
(Table 2). 

As parametric analyses are model-de­
pendent, we also used nonparametric anal­
yses to further examine linkage data in this 
region (16). Nonparametric multipoint 
linkage (NPL) Z scores are given for this 
analysis in Table 2. Highly significant P-
values were obtained for multiple markers, 
providing further evidence for linkage in 
this region. To determine the most likely 
location for the susceptibility locus, para­
metric multipoint analyses were performed 
with various combinations of markers in 
this region. Lod scores > 4 were obtained, 
but did not allow unequivocal placement of 
the susceptibility locus due to apparent ge­
netic heterogeneity. Significant evidence 
for locus heterogeneity (x2 = 8.11, P = 

Table 1. Prostate cancer families. 

0.004) (16) was obtained by an admixture 
test with an estimate of 34% of the families 
being linked to the region. T h e maximum 
multipoint lod score with markers 
D1S2883, D1S158, and D1S422 under the 
assumption of heterogeneity was 5.43, with 
the postulated susceptibility locus mapping 
close to D1S422 (Fig. 2). N o clinical fea­
tures appeared to distinguish families show­
ing linkage to chromosome 1 from the non-
linked pedigrees. 

The risk of prostate cancer in siblings of 
affected individuals is modified by the age of 
diagnosis (6). Subgrouping families by age of 
diagnosis, either by mean age within a family 
or by number of men diagnosed under age 55, 
provided little evidence that the families 
showing linkage to chromosome 1 had an 
earlier onset of prostate cancer than the un­
linked families. However, because of difficul­
ties in equating age of diagnosis with age of 
onset (17), further analysis will be necessary 
to support this conclusion. 

Both Afr ican-American families ana­
lyzed in this study showed linkage to this 
region, yielding a combined lod score of 
1.4- As there is evidence of linkage in 
Caucasian families in Sweden and N o r t h 
America as well, al terations in the l q24-
25 region may increase prostate cancer 
susceptibility in a variety of populat ions 
and e thnic backgrounds. 

LOH studies have not previously impli­
cated the chromosomal region lq24-25 in 

Sample 

North American 
Swedish 
Total 

Number of 
families 

79 
12 
91 

Average number per family 
(range) 

Affected 

5.1 (3-15) 
3.9 (3-5) 
4.9(3-15) 

Typed* 

3.7(2-11) 
3.6 (3-5) 
3.7(2-11) 

Average age of 
diagnosis (range) 

64.3 (39-85) 
69.3 (56-76) 
64.9(39-85) 

"Typed refers to the number of affected family members analyzed. 
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Fig. 1. Two-point lod scores for the genome-wide scan. Affected and unaffected individuals in 66 
prostate cancer pedigrees were genotyped at 341 loci throughout the genome. Maximum two-point lod 
scores were calculated and the results plotted as a function of marker location in centimorgans. 
Chromosomal number is designated at the top of the plot. 
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prostate cancer, although analysis of cancer 
DNA from hereditary cases is lacking. A 
study by Cher et al. (8) did indicate that a 
large portion of the q arm including the 
1q24-25 region is frequently increased in 
copy number in advanced prostate cancer 
specimens examined by comparative 
genomic hybridization. Candidate genes in 
the interval implicated include the ski, abl2, 
and trk oncogenes as well as LAMC2, which 
encodes an isoform subunit of a basement 
membrane protein (laminin) (1 8). 

The data presented here indicate that a 
susceptibility locus that may account for a 
significant fraction of hereditary prostate 
cancer can be detected in families by linkage 

analysis. If this linkage is confirmed in an 
independent data set, then we propose the 
designation HPCl (hereditary prostate can- 
cer 1) for this locus. This observation if 
confirmed sets the stage for the challenging 
task of cloning HPCl and identifying the 
responsible genetic alterations in high-risk 
families. Given that previous segregation 
analyses have suggested that approximately 
one in 170 individuals in the United States 
may carry a dominant susceptibility allele for 
prostate cancer (6), one can estimate (very 
roughly) that one in 500 may have an alter- 
ation in HPCI. Because early diagnosis can 
be lifesaving in prostate cancer, the potential 
ability to identify individuals at genetically 

Table 2. Linkage results for susceptibility to prostate cancer and nine markers on chromosome 1 in 91 
families. Z and O represent the maximum lod scores and recombination fractions, respectively. NPL 
Z scores are not directly comparable to parametric Z (LOD) scores. Therefore, significance levels are 
given for the NPL Z scores. For parameter (LOD) scores, a Z  score of 3.0 corresponds to a signifiance 
level of a 0.0001. 

Marker Distance 
(cM)* 

Parametric analysis: 
two-point lod 

Nonparametric multipoint 
analysis 

Z score 

'Distances in centimorgans from the preceding marker in the table were derived from the CRIMAP analysis. 
tMarkers used in genome-wide scan. 

Fig. 2 Multipoint lod scores 
for the prostate cancer sus- 
ceptibility locus relative to 
markers in the 1 q24-25 re- 
gion. Parametric multipoint 
lod scores were calculated 
with markers DlS2883, 
DlS518, and DlS422. The 
results are plotted as afunc- 
tion of distance from 
DlS2883, and are given for 
the North American and 
Swedish families, calculated 
both independently and 
combined. The combined 
values (total) are plotted for 
values of a = 1 .O (assuming 
all families linked) and for a 
= 0.34 (assuming hetero- 
geneity, with 34% of the 
families linked). The maxi- 
mum lod score under ho- 

. 
mogeneity is 3.67, but it ris- . 
es to 5.43 if heterogeneity is 
assumed. 

high risk, especially when combined with 
methods that detect early signs of malignan- 
cy (physical exam, transrectal ultrasound, 
and prostate-specific antigen), could ulti- 
mately be of significant medical benefit. 
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'J. R. O'Conne and D. E \:':eeks. ,Vatktfre Genet. 
11 , 432 (1 995jj for r n ~ ~ l t o o n t  n k a g e  analysis ivlul- 
t p o n t  ana )ss  iias the advantage of u t r i n y  clata 
frorn multiple lbnlted lnarkers to niaxtnize the nfor- 
~na to r i  t i  a glt/eri pedgree Nonparametrc ~ L I ~ I -  

oont  analyss ';?hch is robust even ;diien the rnode 
of nher~tance s not krio'i?ri. ')?as also oer(orrned. 
\.vth GENEHUNTER 'L. Krugayk and E. S. Lander, 
Am J. H L , ~  Genet 57, 139 (1995~1 to calculate 
normalzed Z scores and assocatecl P val~res In all 
of the n k a g e  analyses a lee  fre:luences for the 
markers \.vere estmated from nclependent nd~v~c l -  
uas  n tile f a m e s  ancl unrelated ~r id i~ /~c I~~a ls  seoa- 
rate) for the North Arnercan and S\.vecIsh f a l n e s  
CR\iIAP [E. S Lander ancl P. Green. PJroc. :Vat) 
Acad. Sci. U . S  A. 84. 2363 :I 98711 was used to orcler 
tile mult~ole markers on chromosome 1 usng the 
genotyoe clata from a ped~grees The BUILD op;on 
of CRMAP was frst ~ ~ s e d  to estabsh the order of 
markers 'wth at least a Ikel~hood rato of 1333 1. The 
FLIP oot~on was then used to calculate the l~kel~hood 
of alternati'ce marker orders by oerniutng adjacent 
o c ~  lflve flanklng markers) Ttie mos; lil<ely order thus 
determlned s the sarne as the oubshed order (tittp: 
!,'cedar soton.ac, ukpub l  The adrn~xture test as m -  
plernented In HO\ilOG [J. Ott. Anaiysis of Human 
GeneBc Lv?kage [Johns Hopltns Unv. Press, 3aI;l- 
rnore 1985) po 233-2033 ;das used to test forge- 
netc heteroyene~t) n the context of the t\:~o-oont 
oarametrc analyss. 

17 The evaluat~on of aye as a var~able s confoundecl 
because of the changng methods used to clagnose 
ths  cisease and Increased nterest n screenrig for 
ths dlsease For the years orior to the use of pros- 
tate-spec~f~c antlgen :PSAj cl~aynos~s of orostate 
cancer ;das often not made u n t  men presented 'wth 
advanced d~sease \:)hereas today most men are 
d~agnosed younyer ancl at an earler stage 

18 The experi technca assstance of C E;dny ancl J 
Robnson and the help of X Chen, D Sch;denge R. 
Paul. C. Engstrand. A. Ka l l~on~eni~  L Harde ancl B 
Carter durng the earl) phases of ths  \.vork is ac- 
kno't?ledged 'd!e also thank 3 .  Chds ,  J, saacs, and 
D. Coffey for helpful advice. 'd!e ackno\.vledge the 
asss;ance of L ivlddeiori C. Francomano, and the 
Fami) Stucl~es Core of the Natona Center for Hu- 
man Genome Research :NCHGR), and the Genet~c 
Resources Core Faciry (JHU) Vde also ackno;dl- 
edge A Lo\:~e and D Gilbert at the Aopecl B~osys- 
;ems D ~ ~ ~ s i o n  of Perkln-Elmer for provd'ng valuable 

genotyong tech~i~cal S L I Q Q O ~ ~  Vde \:~s/i to thank all Cancer Fo~rnclaton. Deoartment of Oncology, UmeB 
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RAC Regulation of Actin Polymerization 
and Proliferation by a Pathway Distinct 

from Jun Kinase 
Tom Joneson," Michele McDonough,* Dafna Bar-Sagi, 

Linda Van Aelst-l- 

The RAC guanine nucleotide binding proteins regulate multiple biological activities, 
including actin polymerization, activation of the Jun kinase (JNK) cascade, and cell 
proliferation. RAC effector loop mutants were identified that separate the ability of RAC 
to interact with different downstream effectors. One mutant of activated human RAC 
protein, RACV12H40 (with valine and histidine substituted at position 12 and 40, respec- 
tively), was defective in binding to PAK3, a Ste20-related p21 -activated kinase (PAK), but 
bound to PORI, a RAC-binding protein. This mutant failed to stimulate PAK and JNK 
activity but still induced membrane ruffling and mediated transformation. A second 
mutant, RACV12L37 (with leucine substituted at position 37), which bound PAK but not 
PORI, induced JNK activation but was defective in inducing membrane ruffling and 
transformation. These results indicate that the effects of RAC on the JNK cascade and 
on actin polymerization and cell proliferation are mediated by distinct effector pathways 
that diverge at the level of RAC itself. 

T l i c  R A C  PI-oteins have lyecn impl~cateii 
~n thc  regulation of various funilnmentnl 
cellular procc\scs including act111 cytoskcl- 
eta1 organixtion ( I  ), t r a n s ~ r i ~ t l o n i ~ l  activn- 
tion ( 2 ) ,  and ccll prolifcratlon (3-5). T o  
~dentify the effector pathways that nieiliatc 
tlic biological act~vities inclucecl hy RAC,  
lve isolated mutant R A C  ~yroteins that 
could discr~minatc among the R A C  targets 
PAK and P O R l  in tlic ycast t~vo-liybr~ci 
s!-stem. PAK protelns are a fam~l!- of l i~ghly 
cc>nserved ser~ne-tlireonine kinases that arc 
acti\~atecl hy dlrect interaction with R A C l  
(6) .  '4 role f(jr PAK has l?ecn suggested In 
mediating RAC- in i l~~ced  act i \~ ,~t ion of JNK 
and 1338 mitogen-activated protein (LIAP) 
kinase saicaiies (7) .  P O R l  Interacts \\-lth 
R A C l  and appears to f i ~ ~ i c t i o n  ~n RAC-  
~nciuccil membrane r~~f f l ing  (8). 

Lihrar~es of vectijrs expressing mutant 
human R,4C protcini f~lsed to tlie LexA 
D N A  hini i~ng d o m a ~ n  (LBD) lvcre creatcii 
hy polymerase clialn reaction (PCR)  mu- 
tagenesls (9 )  ancl screenecl for interaction 
with P.4K3 and POR1. TLYO mutants con- 

T. Joneson ancl D. Bar-Say. Department of Molecular 
Genetcs and Mcrob.oogy, State Universit) of Ne;d Yorlt 
Storiy Brook, NY 11 794 USA 
ivl McDo~io~ryI i  and L \!an Aelst. Cold Sor~ng Harbor 
Laboratoy. 1 Bungto\.vn Road Cold Sorlng Harbor NY 
1 1724 USA. 

taining a s ~ ~ i g l c  amino acid suhstitut~on 111 

thc  R A C  effector loop Lvcre iiientifieii. O n c  
mutant, RAC\"'"4', f;l~lecl to hint1 PAK3 
but died hinil POR1, ancl another nnltant, 
RL4C\'l?1.'7 , Ix~unil PAK3 nix  P O R l  
(Tal?le 1) .  Icient~cal liindlng prijfiles \jrcre 
ohtained for thc  interaction of these mu- 
tants ~vitl i  PAKl (1 0).  

T o  invest~gate tlie h~i>lijgical ac t i \~i t~es  of 
the R A C  mutants, \jre f~ r s t  exanli~icd tlieir 
a b ~ l ~ t i c s  to s t im~~la te  PAK and activate the 
JNK path~vay. COS-1 cells were cotrans- 
fected w ~ t h  citlicr RAC\ ", RAC\"2Ht", or 
RAC"1'L'7 C X ~ ~ C S S I ( > I ~  plasmicls ancl a plas- 
illiil encoiii~ig a ~Myc-tagged vcr\ion of 
PAK1. P.4K1 a c t ~ \ ~ i t y  was assayed in imiml- 
ncjprecipitates \\,it11 in!-elin Iias~c protein 
(LIBP) as thc substrate ( I  1 ). Express~on of 
RAC\?I 3-17 rcsulted ~n stimulation of PAK 

activity, whereas expression of R,4C\"2H4C 
did not (Flg. 1,  top). Thus, the activat~on of 
PAK b!- the R A C  mutants 1s depcndcnt on 
their ahility to interact \\,it11 PAK. T o  test for 
tlic ab111ty of (lie R A C  mutants to incluce 
JNK acti\~ation, we cotransfected COS-1 
cells \vlth expression plasmids cncod~ng 
R,4C mut.ants aixi a l?lasmid cncoding a 
FLAG-tagged \~ersion of JKKI . JKK activity 
was assaycd ~ v i t h  glutathione-S-tra~~sferase 
(GST) f ~ ~ s e d  to c-Jun as the substrate ( 1 2 ) .  
RAC\ I LH4C , \\.hich did not blnd ti) or acti- 

'These authors contributed e:l~rally to ths  'work vate PAK, also did not stiinulatc JxK acti17- 
T o  v /ho~n corresoondence shoucl be adcressed it\- (Fig. 1, hottom). 'The RL4C'"'"-" mr~tant.  


