rain toward the equator (sediment focusing),
enhancing accumulation rates there, and
that this focusing effect displays a glacial-
interglacial variation linked to periods of
carbonate dissolution (40). If correct, this
effect might introduce a glacial-interglacial
bias into stratigraphically based accumula-
tion rates. Indeed, barite accumulation rates
in PC72 calculated by the **"Th__ normal-
ized method (Fig. 3C) do not display coher-
ent, systematic, and consistent variations
with climate signals. Taken at face value,
this would suggest that productivity in this
region does not vary systematically with
global climate changes. The coherent vari-
ations in stratigraphically based barite accu-
mulation in the two equatorial Pacific sites
we studied that are apart by 30° of longitude,
at 140°W and 110°W (Fig. 3A), however,
would then require that sediment focusing
and its secular variations be remarkably uni-
form along the equator. More work will be
required to evaluate the reasons for the ex-

(overproduction)  inventories — of
SOTh,. in equatorial sediments and their
temporal change. We thus assume here that
sediment focusing in the equatorial Pacific is
not an important factor in our barite accu-
mulation records and that the stratigraphi-
cally based barite accumulation rates in
PC72 and 8PC (Fig. 3A) are reliable proxies
for late Pleistocene productivity variations
in the equatorial Pacific Ocean.
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Stability of Perovskite (MgSiO,) |
in the Earth’s Mantle
Surendra K. Saxena, Leonid S. Dubrovinsky, Peter Lazor,

Yngve Cerenius, Patrik Haggkvist, Michael Hanfland,
Jingzhu Hu

Available thermodynamic data and seismic models favor perovskite (MgSiO,) as the
stable phase in the mantle. MgSiO, was heated at temperatures from 1900 to 3200 kelvin
with a Nd-YAG laser in diamond-anvil cells to study the phase relations at pressures from
45 to 100 gigapascals. The quenched products were studied with synchrotron x-ray
radiation. The results show that MgSiO, broke down to a mixture of MgO (periclase) and
SiO, (stishovite or an unquenchable polymorph) at pressures from 58 to 85 gigapascals.
These results imply that perovskite may not be stable in the lower mantle and that it might
be necessary to reconsider the compositional and density models of the mantle.

The Earth's lower mantle has been thought
to consist of principally the iron-magnesium
silicate perovskite with an average composi-
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tion of 10 to 15 mole percent of the iron
component and some magnesiowustite (I,
2). Tro et al. (3) showed experimentally that
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Table 1. Description of the samples. All samples contained ruby. Sample 1 was kept under pressure
after laser heating and was studied in situ; ruby at the edge and platinum at the center were used as
pressure standards (see Fig. 1). Temperature is for the metal foil and the range includes 3 to 5%
estimated error. Natural enstatite (almost pure MgSiO, with less than 1% aluminum and iron) obtained
from U. Halenius (Stakholmen, Halsingland, Sweden, Riksmuseet, Stockholm) was used in samples 1
and 7. The other enstatite (pure MgSiO,) was synthesized from melt by H. Skogby. Perovskite (pure
MgSIO,) was synthesized by Y. Wang. Pt, platinum; Fe, iron; En, enstatite; Fo, forsterite; Pv, perovskite;

St, stishovite; and S, silica phase (Fig. 2A).

N Comp. P (GPa) T (K) Prod.
1 Pt+En 62-86 1900-2300 MgO,S
2 Pt+En 70-100.2 2600-2900 MgO,St
3 Fe+Pv 57.5-70.0 2200-2600 MgO,St
4 Fe+En 45.4-63.8 2500-3200 Pv

5 Fe+En 70.0-90.0 2600-3000 MgO,St
6 Fe+Fo 80-100.0 2600-3000 MgO,St
7 Pt+En 35-48 1900-2600 Pv

iron containing perovskite, when heated to
1373 K or more at a pressure of ~24 GPa,
forms a mixture of a low-iron perovskite
(Mg,Fe)SiO;, magnesiowustite, and stisho-
vite. In a recent study, Meade et al.(4) noted
a similar reaction when a perovskite
(Mg g64:Fe 136)SiO;, was heated at some un-
known high temperature at 70 GPa.

Pure MgSiO; has always been assumed to
be stable at mantle conditions. Its stability
has been measured experimentally to pres-
sures of about 32 GPa. To examine the sta-
bility of pure MgSiO; at higher pressures, we
conducted several laser heating experiments
on perovskites or enstatites and characterized
the products either at the Brookhaven Na-
tional Laboratory (NSLS) or at the European
Synchrotron Facility (ESRF).

We conducted seven different laser-heat-
ing experiments (Table 1). The x-ray study of
the quenched sample (under pressure or at 1
atm) indicates that in these laser-heating di-
amond-anvil cell experiments, every sample
of enstatite was completely converted to pe-
rovskite. In some of the experiments at
various temperatures and pressures this
perovskite dissociated to periclase and
SiO, (stishovite or maybe to one of its
polymorphs). We obtained the same result
when we used either perovskite or forster-
ite as the starting material. No actual re-
versals in the experiments were attempted
because of experimental difficulties.

We used either platinum or iron as heating
medium (Table 1) for the absorption of Nd-
YAG laser. The silicate was heated indirectly
by the heat from the hot metal (5) by scan-
ning the sample with a 20-wm laser beam for
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10 to 15 min. Pressure was measured by ruby
fluorescence. The error in pressure measure-
ment was 5% below 100 GPa and the error in
temperature measurement was 3 to 5%. The
cells containing iron as the laser absorber were
carefully dried under vacuum for several hours
to avoid any reaction with perovskite. There
was no visible reaction between the metal and
silicate either at the beginning or at the end of
the experiments. Vacuum drying the sample
prevented the iron from reacting with the
silicate (6). If significant oxygen is present,
the reaction is quite vigorous and is easily
detected during heating. We scanned areas of
50 to 150 wm with x-ray beams with a size of
10 by 10 pm at ESRF and 12 by 14 pm at
NSLS (7).

The results from one of the samples are
shown in Fig. 1 as an example. The sample
contained a small piece of platinum foil em-
bedded in enstatite powder (Fig. 1). A rheni-

um gasket with a thickness of 250 pm was

drilled to create a hole of 200 um. A small
ruby chip was placed on the side of the gasket
hole away from the platinum foil. As we
increased the pressure to about 62 GPa at the
edge of the hole, the size of the hole decreased
to about 120 pm. The platinum was heated to
temperatures from 1900 to 2300 K by scan-
ning a laser with a beam size of 20 um across
it for 10 to 15 min on each spot. We used the
narrow slit method of spectroradiometry as
described in (8) to determine temperature.
While still under pressure, the sample was
taken to NSLS for x-ray study. Because ruby
was placed at the edge of the gasket hole, we
used the platinum cell constants to determine
the pressure of the sample. The pressure was
86 GPa at the center of the sample. Through-
out the heated area over and around the
platinum, all the perovskite dissociated to
MgO and SiO, (Fig. 2A). Perovskite re-
mained stable in the unheated or slightly
heated areas. In a second sample (2, Table 1),
we used a thicker platinum foil and heated
several spots to temperatures between 2600
and 2900 K; enstatite was used as the starting
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Fig. 1. Diagram of the laser-heated sample and the
pressure and temperature distribution. A thin foil of
platinum was sandwiched between the enstatite
(MgSiO,) crystals in a 120-pm size hole in a 250-
rm-thick rhenium gasket. We used the Mao-Bell
type diamond-anvil cell with a diamond culet size of
400 pm. A small ruby crystal was placed on one
side of the gasket. The whole metal foil was
scanned with a laser; for 10 to 15 min of heating.
The sample was x-rayed with a beam of 14 pm in
diameter. The temperature indicated is the temper-
ature of the platinum foil measured by spectroradi-
ometry (8). The silicate temperature will vary from
this to a lower value both radially and axially. The
stars represent the dissociation products MgO and
SiO, and the crosses represent perovskite.

material, and it converted to perovskite even
in areas not directly heated by the laser. In
such parts of the sample, the temperature
could not have reached much more than 1500
K. Perovskite had dissociated to periclase and
SiO, not only in the directly heated areas
(Fig. 2B, top curve), but also away from the
directly heated areas, indicating that the re-
action might occur at temperatures as low as
1500 K.

In two samples, heated at pressures from
38 to 63 GPa, perovskite did not dissociate.
These results indicate that the reaction may
take place close to 60 GPa and that the
slope of the reaction in the pressure-tem-
perature field may not be significantly de-
pendent on temperature (Fig. 3). We repro-
duced this result with three other samples.

One consequence of our results on pure
MgSiO; perovskite is that perovskite of any
composition may not be stable in the lower
mantle. This would be the case because if
another cation larger in ionic size than Mg?*,
for example, APP* or Ca?™, replaces Mg?* in
the crystal lattice, the molar volume will in-
crease making the perovskite unstable with
increasing pressure. Our results are consistent
with those of Meade et al. (4) but also estab-
lish that even the pure MgSiO; perovskite
may not be stable in the lower mantle. It is
uncertain as to what extent the dissociation of
perovskite may be induced by thermal stress.
Even if this effect is several gigapascals, our
results are in contrast with available thermo-
dynamic data (2, 9, 10) and the common
result in seismic modeling that perovskite is
stable in the lower mantle. In the thermody-
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Fig. 2. X-ray data on perovskite (MgSiO,) and the dissociation products. (A) X-ray data for the sample
(1, Table 1) as pictured in Fig. 1. The top curve represents the conversion of enstatite to perovskite. The
bottom curve shows the products of dissociation between pressures of 62 to 86 GPa at temperatures
between 1900 to 2300 K. The reflections marked S represent a possible SiO, phase with structure
intermediate between «-PbO,, and ZrO,,. Two of the reflections at 3.01 A (23.63 keV) and 2.47A (28.80
keV) cannot belong to stishovite or CaCl,-like silica phase (77, 13) but they can be easily indexed as
(011) and (111) reflections of a theoretically predicted phase (72); 26 = 10.0. (B) The curve at the bottom
shows the x-ray diffraction of the original sample of perovskite as determined at Uppsala and used as
sample 3 (Table 1). The curve labeled sample 3 is for heated perovskite. The other two curves are for
samples 2 and 4 for which starting material was enstatite. The pressure and temperature of the samples
are indicated in Table 1 and discussed in the text. The sample numbers are the same as in Table 1; 26

=12.0.

namic models, the extrapolation of thermal
expansion to high pressure and of bulk mod-
ulus to high temperature is a significant prob-
lem (10). Theoretical studies (11, 12) indi-
cate that a post-stishovite phase may occur at
high pressures, which should have a lower
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volume. Using molar volume data [from (2)

r (10)], we calculate that the molar vol-
ume for the new SiO, phase at 300 K would
need to be 3% less than that of stishovite in
order for the oxide mixture to become dens-
er than perovskite at 70 GPa over a large
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Fig. 3. The pressure-temperature phase relations

for MgSIO;. The sample description is given in

Table 1. The temperature data reflect the maxi-

mum for the part directly in contact with the metal

foil on the laser beam side.

temperature range. It is likely that the sta-
bility of a post-stishovite phase along with
the effect of thermal stress may explain the
dissociation of perovskite in our experi-
ments. For mantle mineralogy, it is signifi-
cant that this happens at such low pressures
(relative to lower mantle) and it is thus
possible that perovskite is not stable in the
deep interior and is replaced by magnesio-
wustite and a silica phase.
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